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Deep Generative Models - Part II 

3/31/2025 

Objectives of the Lecture 

By the end of this lecture, students should be able to: 

1. Explain the concepts of RBM, VAE, GAN 
2. Explain the concept of Wasserstein distance and how it can be applied to construct 

Wasserstein Autoencoder 
3. How can Wasserstein Autoencoder be applied to various biological problems 
4. Describe Diffusion Probabilistic Models and its applications 

Key Concepts and Definitions 

● Restricted Boltzmann Machine (RBM): An energy-based model with a visible layer 
(observed data) and a hidden layer (latent features). It learns by assigning low energy to 
training data and their associated hidden representations. Parameters are trained using 
maximum likelihood estimation, often via contrastive divergence. 

● Variational Autoencoder (VAE): A generative model composed of a stochastic encoder 
and decoder. It minimizes a combination of reconstruction loss and the KL divergence 
between the latent posterior and a prior distribution (Gaussian).  

● Generative Adversarial Network (GAN): Consists of a generator and a discriminator 
trained in a minimax game. The generator tries to produce data that fools the 
discriminator, while the discriminator tries to distinguish real from fake data. When 
successful, the generator captures the data distribution.  

● Wasserstein Distance: Earth Mover's Distance (EMD), it quantifies the minimum cost to 
transport one distribution to another.  

● Wasserstein Autoencoder: Combines autoencoder structure with Wasserstein 
Distance. Model’s goal is to minimize reconstruction error and the divergence between 
the aggregated posterior and the prior, rather than pointwise KL divergence as in VAEs. 
Thus, instead of forcing each data point to fit the target shape, they just make sure that 
all the compressed versions combined match the target shape. 

● Diffusion Probabilistic Model: A generative model that learns how to generate data 
from a process of denoising a dataset that has had gaussian noise added to it iteratively 
until it is indistinguishable from pure gaussian noise. 

● Diffusion autoencoder: the model encodes any image into a two-part latent code that 
captures both semantics and stochastic variations and allows near-exact reconstruction. 

● Equivariant diffusion model: the model defines a noising process on both atom 
coordinates and types, and then learns the generative denoising process using an 
equivariant neural network 



Main Content/Topics 

Recap on RBM, VAE and GAN:  

- RBMs are energy-based models that learn to represent data using two layers 
(one input layer and one hidden feature layer). The connectivity is restricted to 
make inference and learning easier.  

- VAEs are a type of autoencoder that not only tries to reconstruct the input data 
accurately but also ensures that the internal representations (called latent 
variables) follow a smooth, known distribution (usually Gaussian), by adding a 
regularization term called KL divergence.  

- GANs can be distinguished with other models since they consist of two parts: a 
generator that tries to create realistic data, and a discriminator that tries to tell 
real from fake. However, GANs can be tricky to train because they may suffer 
from issues like instability and vanishing gradients, which make learning difficult. 

Wasserstein Distance definition: it is a way to measure how different two groups of data are. 
Imagine you have two piles of dirt shaped like two different data distributions, and you want to 
turn one pile into the other. WD can be interpreted as the minimum cost of changing a certain 
probability distribution shape into a certain different probability distribution shape. In this case, 
the cost is quantified by multiplying the amount of soil moved and the distance traveled. Even 
when two distributions are located in lower dimensional manifolds without overlaps, Wasserstein 
distance can still provide a meaningful and smooth representation of the distance in-between. 

Comparing Wasserstein Distance with KLD and JSD: As mentioned above briefly, unlike 
traditional measures such as KL divergence or Jensen-Shannon divergence (JSD), the 
Wasserstein distance works well even when the data distributions don’t overlap, which is 
common during the early stages of training generative models. KL and JSD often give zero or 
undefined gradients in such cases, which makes learning very difficult. In contrast, Wasserstein 
distance always provides a useful, smooth signal that helps the model learn how to improve, 
making it a more stable and reliable tool for comparing distributions in generative modeling. 

Comparing Wasserstein GAN with GAN: WGAN improves upon the original GAN by using the 
Wasserstein distance instead of the Jensen-Shannon divergence. This change results in more 
stable training and better guidance for the generator, especially when the generated data is still 
far from real data. WGAN avoids common GAN problems like vanishing gradients and mode 
collapse (when the generator produces very limited types of outputs) 

Wasserstein Autoencoder and its advantages: WAE is a generative model that combines the 
structure of an autoencoder with the principles of Wasserstein distance. Like other 
autoencoders, it learns to compress and reconstruct data, but unlike VAEs, it matches the 
overall distribution of the latent variables to a target shape instead of forcing each individual 
point to match it. This leads to clearer, higher-quality outputs, avoids issues like blurry 
reconstructions, and allows for more flexible and meaningful representations of data. 



- Properties of WAE: (1) disentangled representations, meaning each part of the 
compressed data can capture a different, interpretable feature (like motion, color, or 
structure). (2) they tend to produce sharper and more realistic outputs compared to 
VAEs, which often struggle when generating data from sampling overlapping latent 
spaces. (3) WAEs naturally promote a strong connection between the input and its 
representation, which helps preserve important details and improve reconstruction 
quality. 

- How to train WAE: Training a WAE involves two main goals: reconstructing the input 
data as accurately as possible, and making sure that the overall shape of the encoded 
data (the latent space) matches a desired prior distribution, like a normal distribution. (1) 
a GAN-like approach (WAE-GAN), where a separate network tries to distinguish 
encoded data from random samples (2) statistical method called Maximum Mean 
Discrepancy (WAE-MMD), which compares the average behavior of the two 
distributions. Both approaches help align the encoded data with the prior while 
maintaining high reconstruction quality. 

- Example application of WAE: Deconstructing T-cell receptor sequence into functional 
(binding) and structural sequences. By separating these regions into separate latent 
representations (zs and zf), it enables the user to manipulate these sequences 
independently. For example, inputting a novel target sequence while holding zs constant 
to generate a new T-cell receptor sequence 

 

- This same principle can be applied to small molecules by applying equivariant 
graph neural networks that function as encoders and decoders. It can still be 
used to deconstruct the molecule into structure and function 

Diffusion Probabilistic Model The forward diffusion process involves adding noise to the 
original data in repeated steps until the data is indistinguishable from a gaussian. Each addition 
of noise takes the form of a closed-form gaussian, therefore the marginal distribution and joint 
distributions are also gaussians, so there is no learning in the encoding. This gives these 
models a deterministic quality that allows the reverse process (the decoder) to recover the 
original data. The model is trained by teaching it how to undo each step when gaussian noise 
was added to the image. This process also allows backpropagation during training. 



- Classifier can be added by adding delta ln(p(y|x)) to the update function 

 

Diffusion autoencoder was designed to empower the diffusion model with semantic 
representations and therefore tackle the difficulty of controlling latent representations of the 
diffusion model. The implementation is having 2 parallel encoders: (1) Stochastic encoder: 
similar to a typical diffusion model, adding noise to the original image recursively to get XT; (2) 
Semantic encoder: similar to a typical autoencoder, squeezing the original image into a 
lower-dimensional latent space (and optionally training classifiers to create modified semantic 
embeddings). Then, the decoder reconstructs the image from both XT and semantic 
embeddings (Figure 1). The semantic encoding process enables the diffusion autoencoder to 
compositionally manipulate multiple attributes in image generation. For example–a portrait–we 
can modify the attributes such as how they smile, how young they look, how wavy their hair to 
change the portrait while keeping them the same person. Based on diffusion autoencoder, the 
latent diffusion model was developed to enable text-conditioned image-to-video generation. 
Specifically, the model learns the relationship between texts and optical flows/facial expressions, 
and then given a new static image and various texts, the model can make the image move like 
the text describes. 

 

 

Figure 1 Diffusion Autoencoder Architecture (Preechackul et al., CVPR, 2022) 

Equivariant diffusion model incorporates equivariant constraints into the denoising process. In 
other words, while the Wasserstein autoencoder generates molecules by an equivariant graph 
neural network as the encoder and decoder, the equivariant diffusion model utilizes such 



networks to learn the Gasussian noise added to the 3D molecules (atom coordinates and 
types). As exemplified by atom types, the model can be applied to discrete data, where simply 
adding Gaussian noise wouldn’t be effective. One of the solutions is to represent the discrete 
data as one-hot vectors. After adding Gaussian noise to these vectors, we normalize them and 
get the most likely categories. Then, in the application of equivariant diffusion models, we can 
have a semantic encoder to extract the attributes of the molecules and interpolate/manipulate 
them to generate molecules that have never been seen in experiments or optimize the 
molecules with new properties (like synthetic accessibility score, dopamine binding score) yet 
maintaining the same structures. 

The fact of limited data for training these generative models presses for a robust experimental 
design for protein/drug optimization. Given a prior distribution p(x) and applying any model 
learnt in this lecture, we would want to sample from p(x | y >= desirable value), but this can be 
challenging because samples satisfying that condition can be rare in the dataset. To tackle this 
problem, iterative importance sampling, based on a reweighting idea, fine tunes the 
generative model and then samples from it. The weight is the product of 2 components: one is 
that we require the new distribution not to deviate too much from the prior (the existing data), 
and the other is that we encourage the new distribution to include desired but rare events. After 
training the generative model with the existing data, we compute such weights for each sample, 
use these reweighted samples to fine tune the trained model, and then repeat this process 
many times so that the model will gradually move towards producing the desired samples. 

Discussion/Comments 

For diffusion autoencoders, how the semantic encoder is enforced to extract semantic attributes 
is underexplored. The size of latent space might influence its interpretability, because, 
theoretically, each dimension would represent an attribute. 

For equivariant diffusion models, some technical details are under debate. For example, the 
current method normalizes the atom coordinates and types by subtracting the center of gravity, 
but in the future, this might be an unnecessary step. 

List all suggested reading here and please answer: 
 
Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., & Ganguli, S. (2015, June). Deep unsupervised 
learning using nonequilibrium thermodynamics. In International conference on machine learning (pp. 
2256-2265). Pmlr. https://proceedings.mlr.press/v37/sohl-dickstein15.pdf 
This paper introduces probability diffusion models 
 
Ho, J., Jain, A., & Abbeel, P. (2020). Denoising diffusion probabilistic models. Advances in neural 
information processing systems, 33, 6840-6851. 
https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf 
This paper presents a novel method for denoising probabilistic diffusion models 
 

https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf


Preechakul et al., Diffusion Autoencoders: Toward a Meaningful and Decodable 
Representation. CVPR 2022. 
This paper introduced the concept and algorithm of the diffusion autoencoders. 
 
Hoogeboom, Emiel, et al., Equivariant diffusion for molecule generation in 3D. PMLR 
2022. 
Hoogeboom, Emiel, et al., Argmax flows and multinomial diffusion: Learning categorical 
distributions. NeurIPS 2021. 
These 2 papers demonstrate how the equivariant diffusion model can be applied to discrete 
data. 
 
Brookes, Park, Listgarten et al., Conditioning by adaptive sampling for robust design. 
PMLR 2019. 
This paper introduced the algorithm of interactive importance sampling. 
 

References ISL/ESL  (if any) 

ISL does not reach this level of depth in its chapter on Deep Learning 
 
ESL: 

● 17.4.4 Restricted Boltzmann Machines: pg 643 
 

Other Suggest references for many of the key concepts 

Weng, L. (2017, August 20). From GAN to WGAN. 
https://lilianweng.github.io/posts/2017-08-20-gan/ 
Highly recommended for deeper understanding of Wasserstein distance applied to GAN 
Rombach, Blattmann, et al. Align your latents: High-Resolution Video Synthesis with 
Latent Diffusion Models. CVPR 2023. 
A complementary for more information about the image-to-video generation with the latent 
diffusion models, which wasn’t elaborated during the lecture. 
 
 
 
 

https://lilianweng.github.io/posts/2017-08-20-gan/
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