
 Protein Simulation II (April 7th): 

 Objectives of the Lecture 

 By the end of this lecture, students should be able to: 

 ●  Understand the concepts behind protein core packing. 
 ●  Explain how hard-sphere models are used to study protein structures. 
 ●  Identify key methods for predicting protein side-chain conformations and their packing in 

 protein cores. 

 Key Concepts and Definitions 

 ●  Dihedral Angle: The angle between two planes formed by four atoms in a molecule, 
 often used to describe the orientation of atoms in side-chain rotations of proteins. 

 ●  Ramachandran Plot: A graphical representation of the φ (phi) and ψ (psi) dihedral angles 
 in proteins, showing allowed regions for these angles in protein structures. 

 ●  Rotamers: Different spatial conformations of a side-chain around its rotatable bonds. 
 ●  Hard Sphere Interaction: A model in which atoms or molecules are treated as spheres 

 that cannot overlap, used to represent steric interactions in protein packing. 
 ●  Contact Distance: The minimum distance at which atoms in a protein come into close 

 contact. 
 ●  Packing Fraction: The ratio of the volume occupied by atoms in a protein structure to the 

 total volume available, which reflects how efficiently the protein core is packed. 
 ●  Voronoi Tessellation: A method for partitioning space into regions based on the proximity 

 to a set of points, applied to study the distribution of atoms in a protein core and its 
 packing efficiency. 

 Main Content / Topics 

 Overview of Protein Structure: 
 Proteins are made of amino acids, with the same backbone but different side chains. Each 
 residue has three backbone torsions (φ, ψ, ω) and additional χ angles for side chains, which 
 can be considered the degrees of freedom of a protein. Proteins generally have a central core 
 region and a surface which interacts with water. Side chains on the surface are rotameric but 
 not fixed, while in the core they are constrained and have definite values. 



 Ramachandran Plots: 
 These provide a graphical representation for formalising valid conformations of protein structure. 
 The plot is a probability density function used to determine steric clashes. By plotting the φ (phi) 
 and ψ (psi) dihedral angles on the horizontal and vertical axes respectively, regions that are 
 populated represent common secondary structures. For example, regions for right- and 
 left-handed alpha helices and beta structures (either single-stranded or as a linked beta sheet) 
 can be observed. The plot can be theoretical based on ‘toy’ models or can be what actually 
 happens with analysis of real protein data. Note that variation between these can be explained 
 from the size of atoms used in modelling. For example, if the atoms were considered to be 
 points, the whole diagram would be open due to no steric clashes. 

 A model Ramachandran plot 

 Rotamers: 
 These are different spatial arrangements of specific side chains based on rotation about their 
 internal bonds. The smallest side chains have only one dihedral angle (χ  1  ), but the largest 
 chains could have up to five. There are three frequently occurring possibilities for side chain 
 angles. The number of possible rotamers of a side chain is equal to the square of its number of 
 dihedral angles. For example, isoleucine (χ  2  ) has  3  2  =9 rotamers, and their frequency can be 
 plotted in a 2D grid for proteins of known structure. 

 Side-chain recovery: 
 This is a method to determine the rotameric form of a particular side chain. It involves removing 
 side chains from the backbone and guessing where they go based on surrounding interactions. 
 The lowest energy form is your rotameric prediction. Note that there are different levels of 
 ‘forgetting’ when trying to insert the side chain - for example, forgetting the specific amino acid 
 makes reinserting the ‘puzzle piece’ much more difficult because structural conformations must 
 also be tried. In general, methionine is difficult to predict because it is χ  3  and has low electron 
 density, while serine is challenging because it hydrogen bonds with adjacent amino acids to 
 localise conformation. 



 Energy Functions: 
 These are key to computational protein design software, which sample all possible 
 conformations for dihedral angles, calculate the energy then find the lowest value. They include 
 many terms with differing importance, but often the best method is to simply look at the 
 experimental Ramachandran plot. Terms of an energy function include: 

 - Stereochemistry: Potentials that enforce equilibrium bond lengths and angles derived from 
 small molecule crystal functions (very important) 
 - Repulsive / attractive Van der Waals atomic interactions (useful) 
 - Hydrogen bonding (generally good) 
 - Electrostatics and desolvation energies (more important for surface interactions) 
 - Disulfide bond energies (not very useful) 

 Hard Sphere Interactions: 
 This is an assumption for atomic interaction that assumes atoms are hard (ie non-overlapping) 
 spheres. The contact distance is the sum of the radii of the interacting atoms. If the separation 
 between centres is greater than the contact distance, the energy is zero, otherwise it can be 
 calculated using the hard sphere potential equation. This can be turned into a probability using a 
 Boltzmann weight. Note that this yields a good approximation but does not account for 
 surrounding (inter) contacts between amino acids. 

 Atom Size Assumptions: 
 In order to have accurate modelling, we need a good approximation of atomic size. From 
 experimental data, we have ballpark values but need to consider deviations in our simulations. 
 Thus, the best option is to try many different values within a reasonable range. For side chain 
 analysis, use the atomic sizes that show rotamers. 

 The range of experimental values for atomic radii 

 Hard Sphere Protein Environment: 
 This is a technique that applies the hard sphere interaction assumption to the side chain 
 recovery problem. It gives a more precise answer than hard sphere dipeptide modelling, and 
 gives agreement with real data to within a percentage. This can be used to optimise energy 
 functions using machine learning methods by finding the deviation. 



 Experimental versus predicted rotameric probability for isoleucine 

 Packing Fraction: 
 This is the proportion of space ‘occupied’ inside a protein (assuming each atom is sized 
 consistently with observed dihedral angles). In general, ordered arrangements fill better than 
 disordered ones, and the most optimal spherical packing arrangement (face-centred cubic 
 lattice) fills ~74% of 3D space. Protein cores have high packing densities and low 
 compressibility. 

 Voronoi Partition and Tessellation: 
 These are methods to calculate global packing fractions. For a Voronoi partition, shape is 
 ignored and only centres are considered. The intersections of perpendicular bisectors between 
 all pairwise points partition space, meaning that points inside polygons are closer to the centre 
 of their own polygon than any other. Local packing fractions can be calculated from the area of 
 the disc divided by the area of the polygon, and their average gives the global packing fraction. 
 A Voronoi tessellation extends this to 3D using an agglomeration of overlapping spheres. 

 An example of a 2D Voronoi partition 



 Discussion / Comments 

 This lecture focused on understanding how protein cores are packed and how physical models, 
 especially hard-sphere models, can help explain and predict the structure of these densely 
 packed regions. Protein cores are made up of tightly packed side chains, and unlike the more 
 flexible surface regions, they are highly constrained. This makes them a good system for 
 applying simplified physical models. 

 One key approach discussed was modeling atoms as hard spheres that can’t overlap, which 
 allows researchers to study side-chain conformations and predict rotamer states based on steric 
 hindrance. Tools like Ramachandran plots help visualize backbone angles, while rotamer grids 
 show the preferred side-chain orientations. 

 The lecture also covered how side-chain recovery tests how well different methods can predict 
 where side chains belong after being removed. Energy functions used in protein design 
 software were introduced, showing how different terms—like bond lengths, van der Waals 
 interactions, and hydrogen bonding—are weighted to find the lowest energy conformation. 

 A major theme was packing efficiency, measured by the packing fraction, which tells us how 
 much of the available space is actually filled by atoms. While perfect packing (like in crystals) 
 reaches about 74%, protein cores usually pack closer to 56%, indicating a balance between 
 tight packing and necessary flexibility. 

 Lastly, Voronoi tessellation was introduced as a method to calculate local and global packing 
 based on how space is divided between atoms. Overall, the lecture showed how combining 
 structural data and physical models can help us better understand the organization of protein 
 interiors. 

 Suggested readings: 

 2021 “Artificial intelligence powers protein-folding predictions” 
 -  This Nature article is accessible and does a good job of summarizing the significance of 

 the AlphaFold2 for a general scientific audience. 
 -  This article discusses the transformative impact of AI-based tools like AlphaFold2 and 

 RoseTTAFold in predicting protein structures. It highlights how these deep-learning 
 algorithms can accurately determine a protein’s 3D shape from its amino acid sequence, 
 a significant advancement for structural biology. Understanding these tools provides 
 context for how computational methods are revolutionizing our ability to model protein 
 structures, which is directly relevant to the lecture's focus on protein core packing. 

 -  Useful subsections: 
 -  The discussion on AlphaFold2’s performance and its impact on protein modeling 

 is especially relevant. However, since it’s more of a high-level overview, it could 



 be complemented with more technical content for students with a stronger 
 background in structural biology. 

 2021 “Computed structures of core eukaryotic protein complexes” 
 -  This Science article dives a little deeper into methodology and results, showing how 

 deep learning was used to model thousands of protein-protein interactions. This actually 
 aligned nicely with the lecturer's focus on protein packing and interaction predictions 

 -  Useful subsections: 
 -  The Methods and Results sections are especially relevant. The way the authors 

 use coevolutionary signals and integrate AlphaFold for interaction prediction 
 connects well with the lecture’s emphasis on side-chain packing, rotamers, and 
 computational modeling accuracy. 

 References ISL/ESL 

 There are not a lot of direct references to ISL/ESL in the content of the lecture. However, some 
 concepts are related to those presented in the textbooks. Methods like side-chain recovery and 
 rotamer prediction are related to supervised learning approaches (ESL and ISL Ch 2.) 
 Unsupervised learning approaches from ISL Ch. 12 are also applicable. Protein modeling uses 
 energy minimization in a way that is analogous to regression analysis (ESL Ch. 3 and ISL Ch. 
 6). Energy functions are parametrized and constrained, which mirrors the concept of 
 regularization (ESL Ch. 5 and ISL Ch. 6). In addition, principles for model assessment and 
 selection from ESL Ch. 7 are applied to protein structure prediction models. Protein structure 
 prediction problems are generally high-dimensional, where the number of parameters exceeds 
 the number of data points. Dealing with this issue is discussed in ESL Ch. 18. 
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