
‭Lecture Title and Date‬

‭Lecture 25m8a+b: Supervised Data Mining: Preliminaries + Decision Trees - 02/19/2025‬

‭Objectives of the Lecture‬

‭●‬ ‭By the end of this lecture, students should be able to:‬
‭○‬ ‭Gain exposure to types of machine learning calculations and understand‬

‭generally the goals of machine learning techniques‬
‭○‬ ‭Understand the main considerations in machine learning:‬

‭■‬ ‭Understand the bias-variance tradeoff, including the concept of overfitting,‬
‭and be able to explain its impact on model performance‬

‭■‬ ‭Understand the curse of dimensionality and how complex models with‬
‭many features may lead to a downgrade in performance‬

‭■‬ ‭Understand how these important considerations influence the way we‬
‭design models‬

‭○‬ ‭Understand how to assess the performance of data mining models effectively.‬
‭■‬ ‭Emphasis on evaluating models' ability to generalize beyond training‬

‭data to ensure reliability in practical applications.‬
‭■‬ ‭Understand dataset separation techniques (training/testing sets,‬

‭cross-validation).‬
‭■‬ ‭Understanding model evaluation metrics (True Positives, True‬

‭Negatives, sensitivities, specificities).‬
‭■‬ ‭Utilization of graphical tools like the Receiver Operating Characteristic‬

‭(ROC) curve.‬

‭Key Concepts and Definitions‬

‭●‬ ‭Bias-Variance Tradeoff‬‭:‬
‭○‬ ‭Bias‬‭: occurs when a model is too simple, leading to‬‭underfitting‬
‭○‬ ‭Variance‬‭: occurs when a model is too complex, causing‬‭it to capture noise in the‬

‭training data rather than general trends, leading to overfitting‬
‭○‬ ‭Bias-Variance Tradeoff‬‭describes the balancing of‬‭these two error sources. In a‬

‭model, we aim to minimize both‬
‭●‬ ‭Curse of Dimensionality‬‭:‬

‭The notion that as the number of features/ dimensions increases, our model sees‬
‭decreased model performance if the number of data points does not scale‬
‭accordingly. The takeaway is that simpler models with fewer and well-chosen‬
‭features often see better performance than complex models.‬

‭●‬ ‭Overfitting‬‭: Occurs when a model learns the noise‬‭in the training data instead of‬
‭underlying patterns, leading to poor generalization.‬

‭●‬ ‭Cross-Validation‬‭: A technique for validating model‬‭performance by dividing data‬
‭multiple ways (e.g., leave-one-out) and averaging the results.‬

‭●‬ ‭Accuracy:‬‭Proportion of true results among total cases‬‭examined.‬



‭●‬ ‭Sensitivity:‬‭Proportion of actual positives correctly identified.‬
‭●‬ ‭Specificity:‬‭Proportion of actual negatives correctly identified.‬
‭●‬ ‭Error Rate‬‭: Proportion of incorrect predictions relative to the total predictions.‬
‭●‬ ‭ROC Curve‬‭: A graphical representation to evaluate‬‭the performance of a binary‬

‭classifier. One axis shows sensitivity, and the other shows the false positive rate (1 -‬
‭specificity).‬

‭●‬ ‭Area Under the Curve (AUC)‬‭: Measures the classifier's‬‭ability across different threshold‬
‭settings; values closer to 1 indicate better performance while 0.5 signals random‬
‭predictions.‬

‭Main Content/Topics‬

‭General Overview of Machine Learning (ML):‬

‭●‬ ‭1. What is machine learning?‬

‭The world of ML is complicated and not completely organized. There are groups of‬
‭calculations we can do with ML techniques, such as clustering, classification, regression,‬
‭dimensionality reduction. Clustering and dimension reduction tend to fall into the unsupervised‬
‭category, while classification and regression tend to fall into the supervised category.‬



‭The calculation used also depends on the amount of data, type of data, and‬
‭interpretability. There are a myriad of types of calculations we can do, but a few broad‬
‭distinctions in these calculations we can consider, particularly in supervised learning, are:‬

‭a)‬ ‭Regression vs Classification‬‭– Regression models use‬‭quantitative labels, while‬
‭classification models use categorical labels.‬

‭b)‬ ‭Regularized vs Unregularized‬‭– Regularization techniques‬‭prevent overfitting through‬
‭penalization of complex models, while unregularized models have no penalty and risk of‬
‭overfitting.‬

‭c)‬ ‭Parametric vs Nonparametric‬‭– In parametric models‬‭like linear regression, an explicit‬
‭parametric model is assumed, otherwise the model is non-parametric.‬

‭d)‬ ‭Ensemble vs Non Ensemble‬‭– Ensemble models combine‬‭multiple models to improve‬
‭performance while non-ensemble models rely on a single model.‬

‭When using machine learning techniques, we usually use tables/ matrices to structure‬
‭data, where columns correspond to different coordinates (or features) and rows correspond to‬
‭different instances. An example is representing genomic data with “sites along the genome” as‬
‭our columns and “factors and chromatin modifications (different tissues)” as our rows. One way‬
‭to then visualize our data matrix is by thinking of each row as a point in an abstract,‬
‭high-dimensional space. Revisiting the types of calculations we mentioned earlier, many of them‬
‭have to do with drawing boundaries, clustering, labelling, classifying, and extrapolating points in‬
‭this high-dimensional data space.‬

‭●‬ ‭2. Considerations in ML‬

‭Model dimensionality and Overfitting, CoD‬

‭There are many considerations in ML stemming from how we assess the performance of‬
‭our ML models. Generally to evaluate performance, we divide our datasets into a‬‭training and‬



‭testing set‬‭. We parametrize and build a model on a training set, and test on a testing set‬
‭(discussed further below). This process becomes complicated when data is limited, and people‬
‭also must consider if this split between training and testing is representative or biased. Cross‬
‭validation helps mitigate this issue by performing many potential splits and averaging the‬
‭results. In addition to training the model, when building models there are different levels of‬
‭parameters we need to optimize. Although we train a model on a particular training dataset,‬
‭there are also hyperparameters that we want to fine tune as well. To do this, sometimes we‬
‭further split the dataset into a‬‭validation set‬‭, which‬‭can be used to tune hyperparameters‬
‭before a final evaluation on the testing set.‬

‭Another key consideration when designing ML models is how to avoid overfitting.‬
‭Overfitting‬‭occurs when we introduce so many parameters‬‭into the model that it memorizes the‬
‭data; this becomes an issue when we use it to predict new points, as the model has too much‬
‭variance and is unable to generalize well when introduced to new data. On the other hand, there‬
‭is too much‬‭bias‬‭in our model when there are too few‬‭parameters, causing the model to‬
‭oversimplify the data relationships. Therefore, we need to balance the‬‭bias-variance tradeoff‬‭–‬
‭i.e. choosing a model that is not too simple but also not too sensitive. A related concept is‬
‭Occam’s Razor, which encourages us to “accept the simplest explanation that fits the data.”‬

‭The graph above depicts the bias-variance tradeoff. Observe that initially when the order‬
‭of polynomials is low (i.e. too much bias), the error is higher. As the order of polynomials‬
‭increases (i.e. variance increases), we begin to overfit. Error in the training set continues to‬
‭decrease as the model overfits and memorizes the data, but error in the testing set begins to‬
‭rise since the generalization capabilities of an overfit model is weak.‬



‭An important note is that in addition to overfitting, increasing the number of parameters/‬
‭features in the model may lead to a reduction in performance if the number of datapoints is not‬
‭increased. This is known as the‬‭curse of dimensionality,‬‭which warns that oftentimes simpler‬
‭models perform better than models with too many features.‬

‭■‬ ‭ROC (receiver operating characteristic) plot: graph some notion of error‬
‭rate (i.e. number of false positives/ negatives) versus some notion of‬
‭coverage (how many of the known positives that we cover). We can then‬
‭threshold this score and compare to positive and negative gold standards‬

‭●‬ ‭Example: Breast cancer screening; notion of people that have‬
‭breast cancer, notion of people that don’t have breast cancer‬

‭●‬ ‭Similarly: Screening for terrorists at the airport: small represents‬
‭terrorist, large represents number of normal people‬

‭●‬ ‭Threshold and make prediction; black dots will be called “positive”;‬
‭in the two above examples, sensitivity stays the same BUT‬
‭number of FP dramatically increases; there are more false‬
‭positives than true positives; this is because majority people in the‬
‭population do not have cancer/ terrorist‬

‭●‬ ‭But sensitivity and specificity don’t change → what changes is‬
‭positive predictive value…tricky!‬

‭●‬ ‭TLDR: must consider how balanced the dataset is‬

‭Data Mining Performance Evaluation‬
‭1.‬ ‭Overview of Evaluation‬

‭Evaluating‬ ‭the‬ ‭performance‬ ‭of‬ ‭data‬ ‭mining‬ ‭approaches‬ ‭is‬ ‭crucial‬ ‭for‬ ‭determining‬ ‭their‬
‭effectiveness‬ ‭and‬ ‭practical‬ ‭application.‬ ‭By‬‭measuring‬‭how‬‭well‬‭models‬‭can‬‭generalize‬‭to‬‭new,‬
‭unseen‬ ‭data‬‭,‬ ‭practitioners‬ ‭can‬ ‭ensure‬ ‭that‬ ‭the‬ ‭developed‬ ‭models‬ ‭are‬ ‭reliable‬ ‭in‬ ‭real-world‬
‭scenarios and not merely capturing‬‭noise or overfitting‬‭to a particular dataset.‬

‭A‬ ‭common‬ ‭methodology‬‭involves‬‭splitting‬‭datasets‬‭into‬‭training‬‭and‬‭testing‬‭sets‬‭,‬‭and‬
‭sometimes‬‭also‬‭including‬‭a‬‭validation‬‭set‬‭.‬‭The‬‭training‬‭set‬‭is‬‭used‬‭to‬‭fit‬‭or‬‭"teach"‬‭the‬‭model,‬
‭while‬‭the‬‭testing‬‭set‬‭is‬‭reserved‬‭strictly‬‭for‬‭evaluating‬‭the‬‭final‬‭performance‬‭of‬‭the‬‭trained‬‭model,‬
‭providing‬ ‭an‬ ‭unbiased‬ ‭assessment‬ ‭of‬ ‭how‬ ‭it‬ ‭might‬ ‭perform‬ ‭in‬ ‭practice.‬ ‭When‬ ‭included,‬ ‭the‬
‭validation‬ ‭set‬ ‭allows‬ ‭for‬ ‭further‬ ‭fine-tuning‬ ‭of‬ ‭parameters‬ ‭or‬ ‭hyperparameters‬ ‭without‬
‭compromising the integrity of the testing data.‬

‭In‬‭addition‬‭to‬‭these‬‭splits,‬‭cross-validation‬‭is‬‭widely‬‭adopted‬‭to‬‭gain‬‭a‬‭more‬‭robust‬‭and‬
‭reliable‬ ‭estimation‬ ‭of‬ ‭a‬ ‭model’s‬ ‭performance.‬ ‭Under‬ ‭this‬ ‭method,‬ ‭data‬ ‭is‬ ‭divided‬‭into‬‭multiple‬
‭subsets‬ ‭or‬ ‭"folds."‬ ‭The‬ ‭model‬ ‭is‬ ‭trained‬ ‭on‬ ‭some‬ ‭of‬ ‭these‬ ‭folds‬ ‭and‬ ‭tested‬ ‭on‬ ‭the‬ ‭remaining‬
‭one,‬‭and‬‭this‬‭process‬‭is‬‭rotated‬‭to‬‭ensure‬‭every‬‭fold‬‭serves‬‭as‬‭a‬‭test‬‭set‬‭once.‬‭By‬‭aggregating‬
‭the‬ ‭results‬ ‭across‬ ‭folds,‬‭cross-validation‬‭provides‬‭a‬‭more‬‭comprehensive‬‭view‬‭of‬‭how‬‭well‬‭the‬
‭model might generalize.‬



‭A‬ ‭specialized‬ ‭version‬ ‭of‬ ‭this‬ ‭approach‬ ‭is‬ ‭the‬ ‭Leave-One-Out‬ ‭Method‬‭,‬ ‭where‬‭a‬‭single‬
‭data‬ ‭point‬ ‭is‬ ‭isolated‬ ‭as‬ ‭the‬ ‭test‬ ‭set,‬ ‭and‬ ‭the‬‭remaining‬‭data‬‭points‬‭form‬‭the‬‭training‬‭set.‬‭The‬
‭process‬ ‭repeats‬‭until‬‭every‬‭data‬‭point‬‭in‬‭the‬‭dataset‬‭has‬‭been‬‭used‬‭as‬‭the‬‭test‬‭instance‬‭once.‬
‭While‬‭computationally‬‭more‬‭intensive,‬‭leave-one-out‬‭cross-validation‬‭can‬‭sometimes‬‭yield‬‭more‬
‭precise insights into the model’s performance, especially for smaller datasets.‬

‭2.‬ ‭Model Evaluation Metrics‬
‭a)‬ ‭Definitions‬

‭-‬ ‭True Positives (TP):‬‭The number of positive cases‬‭correctly identified by the‬
‭model.‬

‭-‬ ‭True Negatives (TN)‬‭: The number of negative cases‬‭correctly identified.‬
‭-‬ ‭False Positives (FP)‬‭: The number of negative cases‬‭incorrectly classified as‬

‭positive.‬
‭-‬ ‭False Negatives (FN):‬‭The number of positive cases‬‭incorrectly classified as‬

‭negative.‬
‭b)‬ ‭Key Metrics‬

‭Classification problems‬‭revolve around determining‬‭whether a given instance belongs‬
‭to one category or another, and evaluating their effectiveness relies on a variety of metrics. One‬
‭fundamental measure is Accuracy, which represents the proportion of true results—both true‬
‭positives and true negatives—out of all predictions made. It provides a quick gauge of overall‬
‭performance but can sometimes mask issues with unbalanced data.‬

‭Metrics such as‬‭Sensitivity‬‭and‬‭Specificity‬‭focus‬‭on different types of errors. Sensitivity‬
‭= (TP / (TP + FN)) measures how effectively the model identifies actual positive instances, while‬
‭Specificity = (TN / (TN + FP)) gauges how well the model identifies actual negative instances.‬
‭Another related metric, the‬‭True Positive Rate‬‭= (TP‬‭/ (TP + FN)), indicates how many of the‬
‭genuinely positive are predicted positives. Finally,‬‭Error Rate‬‭captures the proportion of‬
‭incorrect predictions relative to the total predictions, serving as a simple inverse measure to‬
‭accuracy.‬

‭By contrast, regression problems aim to predict continuous values rather than class‬
‭labels. Here, performance is often evaluated using the‬‭sum of squares error‬‭, which quantifies‬
‭how far the predictions deviate from the actual values by summing the squared differences. The‬
‭root mean square error‬‭goes a step further by taking‬‭the square root of the average of the‬
‭squared differences, thus placing the error in the same units as the predicted variable and often‬
‭making it more intuitive to interpret.‬

‭ROC plot:‬



‭A‬‭commonly‬‭used‬‭graphical‬‭technique‬‭for‬‭assessing‬‭a‬‭binary‬‭classifier's‬‭performance‬‭is‬
‭the‬ ‭Receiver‬ ‭Operating‬ ‭Characteristic‬ ‭(ROC)‬ ‭curve,‬ ‭which‬ ‭plots‬ ‭the‬ ‭true‬ ‭positive‬ ‭rate‬
‭(sensitivity)‬‭on‬‭the‬‭y-axis‬‭against‬‭the‬‭false‬‭positive‬‭rate‬‭(1‬‭-‬‭specificity)‬‭on‬‭the‬‭x-axis‬‭for‬‭various‬
‭threshold‬ ‭settings.‬ ‭By‬ ‭examining‬ ‭this‬ ‭curve,‬ ‭one‬ ‭can‬ ‭evaluate‬ ‭how‬ ‭well‬ ‭a‬‭classifier‬‭separates‬
‭positive‬ ‭instances‬ ‭from‬ ‭negative‬‭ones‬‭as‬‭the‬‭decision‬‭threshold‬‭changes.‬‭The‬‭Area‬‭Under‬‭the‬
‭Curve‬ ‭(AUC)‬ ‭then‬ ‭serves‬ ‭as‬ ‭a‬ ‭numerical‬ ‭summary‬ ‭of‬ ‭the‬ ‭classifier's‬ ‭discriminative‬ ‭power‬‭,‬
‭reflecting‬ ‭the‬ ‭likelihood‬ ‭that‬ ‭the‬ ‭classifier‬ ‭will‬ ‭correctly‬ ‭rank‬‭a‬‭random‬‭positive‬‭instance‬‭higher‬
‭than‬ ‭a‬‭random‬‭negative‬‭instance.‬‭An‬‭AUC‬‭of‬‭1.0‬‭signifies‬‭a‬‭perfect‬‭classifier,‬‭while‬‭an‬‭AUC‬‭of‬
‭0.5 indicates performance equivalent to random guessing.‬

‭c)‬ ‭Unbalanced Dataset‬
‭In‬‭the‬‭context‬‭of‬‭unbalanced‬‭datasets‬‭,‬‭where‬‭there‬‭is‬‭a‬‭significant‬‭disparity‬‭in‬‭the‬‭size‬

‭of‬‭positive‬‭and‬‭negative‬‭classes,‬‭interpreting‬‭model‬‭performance‬‭can‬‭become‬‭complex.‬‭A‬‭high‬
‭specificity‬ ‭might‬ ‭coincide‬ ‭with‬ ‭a‬ ‭low‬ ‭positive‬ ‭predictive‬ ‭value‬ ‭if‬ ‭the‬ ‭positive‬ ‭cases‬ ‭are‬ ‭rare‬
‭compared‬ ‭to‬ ‭negatives,‬ ‭which‬ ‭is‬ ‭notably‬ ‭evident‬ ‭in‬ ‭cases‬ ‭such‬‭as‬‭breast‬‭cancer‬‭detection.‬‭In‬
‭situations‬‭where‬‭datasets‬‭are‬‭heavily‬‭imbalanced,‬‭a‬‭model‬‭that‬‭seems‬‭to‬‭perform‬‭poorly‬‭might‬
‭actually be quite effective, provided it is analyzed through the right lens.‬

‭For‬ ‭instance,‬ ‭in‬ ‭breast‬ ‭cancer‬ ‭screening,‬ ‭the‬ ‭population‬ ‭includes‬ ‭both‬ ‭individuals‬‭with‬
‭breast‬ ‭cancer‬ ‭and‬ ‭those‬ ‭without.‬ ‭In‬ ‭this‬ ‭scenario,‬ ‭while‬ ‭the‬ ‭sensitivity‬ ‭(the‬ ‭ability‬ ‭to‬ ‭correctly‬
‭identify‬ ‭actual‬ ‭cases‬ ‭of‬ ‭cancer)‬ ‭remains‬ ‭stable,‬ ‭the‬ ‭number‬ ‭of‬ ‭false‬ ‭positives‬ ‭(individuals‬
‭incorrectly‬ ‭identified‬ ‭as‬ ‭having‬ ‭cancer)‬‭may‬‭substantially‬‭increase.‬‭This‬‭is‬‭largely‬‭because‬‭the‬
‭majority‬‭of‬‭individuals‬‭in‬‭the‬‭population‬‭do‬‭not‬‭have‬‭breast‬‭cancer,‬‭thus‬‭skewing‬‭the‬‭results.‬‭As‬
‭a‬ ‭result,‬ ‭although‬ ‭the‬ ‭model‬ ‭effectively‬ ‭identifies‬ ‭many‬ ‭true‬ ‭positive‬ ‭cases,‬ ‭it‬ ‭also‬ ‭flags‬ ‭a‬
‭significant‬ ‭number‬ ‭of‬ ‭false‬ ‭positives,‬ ‭leading‬ ‭to‬ ‭challenges‬ ‭in‬ ‭interpreting‬ ‭the‬ ‭predictive‬‭value‬
‭accurately.‬



‭Similarly,‬ ‭consider‬ ‭the‬ ‭process‬ ‭of‬ ‭screening‬ ‭for‬ ‭potential‬ ‭terrorists‬ ‭at‬ ‭airports.‬ ‭Here‬
‭again,‬ ‭the‬ ‭majority‬ ‭of‬‭the‬‭population‬‭consists‬‭of‬‭non-threatening‬‭individuals,‬‭while‬‭only‬‭a‬‭small‬
‭fraction‬ ‭may‬ ‭represent‬ ‭actual‬ ‭threats.‬ ‭The‬ ‭concept‬ ‭of‬ ‭a‬ ‭threshold‬ ‭is‬ ‭applied,‬ ‭whereby‬ ‭certain‬
‭indicators‬‭lead‬‭to‬‭predictions‬‭labeled‬‭as‬‭‘positive’‬‭(black‬‭dots).‬‭Although‬‭the‬‭sensitivity‬‭remains‬
‭unchanged,‬ ‭the‬ ‭increase‬ ‭in‬ ‭false‬ ‭positives‬ ‭is‬ ‭notable.‬ ‭Because‬ ‭most‬ ‭people‬ ‭are‬ ‭normal,‬ ‭the‬
‭prevalence‬ ‭of‬ ‭false‬ ‭positives‬ ‭can‬ ‭overshadow‬ ‭the‬ ‭true‬ ‭positives‬ ‭identified‬ ‭by‬ ‭the‬ ‭screening‬
‭process.‬

‭In‬‭instances‬‭where‬‭the‬‭true‬‭number‬‭of‬‭positive‬‭and‬‭negative‬‭cases‬‭remain‬‭uncertain,‬
‭using‬ ‭approximate‬ ‭metrics‬ ‭like‬ ‭positive‬ ‭predictive‬ ‭value‬ ‭becomes‬ ‭crucial‬ ‭for‬ ‭evaluating‬
‭model‬ ‭performance.‬ ‭These‬ ‭metrics‬ ‭provide‬ ‭a‬ ‭means‬ ‭to‬ ‭estimate‬ ‭the‬ ‭model's‬ ‭predictive‬
‭abilities in scenarios with ambiguous ground truth.‬

‭Discussion/Comments‬

‭-‬ ‭Discussion Point: In real-world applications, how can we better mitigate the issue of‬
‭overfitting in our models?‬
‭Possible Answer: One effective approach is to use regularization techniques, such as‬
‭Lasso or Ridge regression, which can help constrain model complexity. Additionally,‬
‭employing cross-validation helps ensure the model’s generalization by evaluating it on‬
‭multiple subsets of data.‬

‭-‬ ‭Question: How can we decide the optimal threshold for our model when analyzing an‬
‭ROC curve?‬
‭Possible Answer: The optimal threshold can be determined based on the specific needs‬
‭of the application, such as whether false positives or false negatives carry higher costs.‬
‭Additionally, one can use the point on the ROC curve that is nearest to the top-left‬
‭corner, which represents the best balance between sensitivity and specificity.‬

‭-‬ ‭Question: In the context of unbalanced datasets, what strategies can be employed to‬
‭improve the predictive value?‬
‭Possible Answer: Some strategies include balancing the dataset through resampling‬
‭techniques like oversampling the minority class or undersampling the majority class, and‬
‭using synthetic data generation methods like SMOTE. Another approach is to adjust the‬
‭classification threshold or use cost-sensitive learning methods that take class imbalance‬
‭into account.‬

‭-‬ ‭Comment: The examples provided about breast cancer screening and airport security‬
‭really highlight the practical implications of these metrics! What are some real-world‬
‭consequences of high false positive rates in these scenarios?‬
‭Possible Answer: High false positive rates can lead to unnecessary anxiety and medical‬
‭procedures in breast cancer screenings, while in airport security, it could result in‬



‭unwarranted detentions and loss of public trust. Thus, it is crucial to strike a balance‬
‭between sensitivity and specificity to minimize adverse effects.‬

‭-‬ ‭Question: How can organizations implement the knowledge gained from this lecture to‬
‭improve data mining efforts?‬
‭Possible Answer: Organizations can create a systematic framework for model evaluation‬
‭that incorporates the discussed metrics, ensuring ongoing training and validation of‬
‭models with fresh data. Additionally, fostering interdisciplinary collaboration can enhance‬
‭understanding of context when interpreting results, ultimately leading to better‬
‭decision-making.‬

‭References ISL/ESL‬

‭ISL:‬

‭○‬ ‭Relative Chapters:‬
‭■‬ ‭Chapter 4 (4.4 mentioned ROC)‬
‭■‬ ‭Chapter 5 Resampling methods  (Cross validation)‬

‭○‬ ‭Chapter 4.4:‬
‭The ROC curve is a popular graphic for simultaneously displaying the two types‬
‭of errors for all possible thresholds. The name “ROC” is historic, ROC curve and‬
‭comes from communications theory. It is an acronym for receiver operating‬
‭characteristics.‬



‭An ideal ROC curve will hug the top left corner, so the larger the area under the‬
‭ROC curve (AUC) the better the classifier.‬

‭○‬ ‭Chapter 5.1 Cross Validation:‬
‭○‬ ‭Mentioned several approaches to perform cross validation:‬

‭■‬ ‭Leave-One-Out Cross-Validation (LOOCV): only pick out one instance as‬
‭test data when splitting training and testing dataset.‬



‭Can be computationally expensive.‬
‭■‬ ‭K-fold cross validation‬



‭■‬ ‭Bias-variance trade off in cross validation‬
‭Bias: LOOCV performs better than k-fold CV‬
‭Variance: k-fold CV performs better than LOOCV‬

‭●‬ ‭ESL:‬
‭○‬ ‭Chapter 7: Model Assessment and Selection (7.3: bias-variance tradeoff)‬

‭○‬

‭○‬


