Lecture Title and Date

Lecture 25m7 part 2: Genome Annotation (AS, eQTL, GWAS) - 02/19/2025

Objectives of the Lecture

e By the end of this lecture, students should be able to:

o Understand annotation related to an individual’s variants:

m Understand how different versions of alleles present in an individual can
influence TF binding, gene expression, epigenetics, etc.

m Understand how to determine allele-specific gene expression using the
binomial distribution.

m Explain why reference bias occurs and how to mitigate it using personal
diploid genomes.

o Explain that the overarching goal of GWAS is to determine whether variants are
significantly correlated with a particular trait or disease.

o Understand how eQTLs are related to GWAS by linking specific alleles to gene
expression patterns.

o Understand in a broad sense the statistical tests and steps used to complete a
GWAS analysis and the assumptions we make when carrying out such
calculations.

o Understand technical considerations in GWAS, such as accounting for covariates
and multiple testing correction.

m Outline the potential considerations and methods for multiple testing
correction.

Key Concepts and Definitions

e Allele: a version or variant of the nucleotide sequence at a particular location in the
genome. A person inherits one allele from their father and one from their mother.

o If both copies of the allele are the same, the individual is homozygous for that
variant.
o If the copies differ, that individual is heterozygous for the allele.

e Diploid: When a cell contains two copies of each chromosome. For example, in human
somatic cells, there is one set of maternal chromosomes and one set of paternal
chromosomes.

e SNP: Single nucleotide polymorphism - a variant resulting from the substitution of a
single nucleotide compared to the reference.

e Allele-specific event: when there is a measurable difference (ex. In transcription factor
binding, gene expression, etc.) in outcome between different alleles.

e Binomial distribution: the probability distribution describing the number of “successful”
outcomes when performing a series of independent tests with a binary output, success
or failure (ex. A coin toss with possible outcomes of heads or tails).



Reference bias: a bias that can occur when mapping reads to the reference genome
because reads containing non-ref SNPs or variants are less likely to map as well as
reads containing variants matching the reference.

Personal diploid genome: a personal reference genome that separates an individual’s
maternal and paternal variants to improve mapping and mitigate reference bias.

Null expectation/hypothesis: the expected distribution of results given the effect being
studied or tested for does not exist (ex. there is NO true difference between two
populations being tested, such as a case and control), and all variation arises from
random chance or technical errors.

P-value: the probability of seeing a result as extreme or more extreme as the
observation given the null hypothesis.

eQTL: expression quantitative trait loci - loci in the genome with variants influencing the
expression of a gene (or multiple genes).

GWAS: Genome-wide association study - a research method used to link variants in the
genome, typically SNPs, to traits. The trait can be disease-related or not (i.e. height).
Requires genetic information for a large cohort of individuals.

Homoscedasticity: a condition describing data for which the variance of the residuals
or error is consistent throughout the data, i.e. for all independent variables. In contrast,
with heteroscedastic data, the variance will change as the predictor variable changes.
Homoscedasticity is an assumption in linear regression.

Normal distribution: a distribution used to describe a random variable that takes on a
“bell curve” shape. It has an equal mean and median and appears symmetrical.
Ordinary least squares: a method in regression modeling used to estimate the
coefficients, which represent the relationship between the independent variables and a
chosen dependent variable. The goal of the method is to minimize the error between the
predicted values and observed values using the sum of squared errors.

Covariates: independent variables besides the variable of interest that also influence
the study outcome.

Manhattan plot: for GWAS, a plot depicting genomic location on the x-axis and the
negative log of the adjusted p-value on the y-axis. Each point may be a SNP studied in a
GWAS, with statistically significant findings standing out above a certain significance
threshold on the y-axis.

Ancestry Principal Component Analysis (PCA): A dimensionality reduction technique
used in genetics to account for population structure by identifying major axes of genetic
variation, helping to correct for ancestry-related confounding in association studies.
Bonferroni Correction: A statistical method that controls the family-wise error rate by
dividing the significance level by the number of independent tests to reduce false
positives.

Family-wise error rate control: A multiple testing correction approach that limits the
probability of making at least one false positive (Type | error) across all conducted tests.
Polygenic Risk Scores: A metric that aggregates the effects of multiple genetic
variants, weighted by their effect sizes, to estimate an individual's genetic predisposition
to a trait or disease.



Main Content/Topics

Allele-specific Annotation

1. What is an allele-specific event?

To understand allele-specific events, it is useful to consider the binding of a
transcription factor (TF) to the genome. Our genome is diploid, meaning we possess two
copies of each chromosome: one paternal and one maternal. This means that when a TF binds
the genome, it can bind to the maternal or the paternal copy of the TF binding site. Typically, the
degree of TF binding and the resulting gene expression is the same for the maternal and
paternal copies of the genome. However, in some cases, one copy, the maternal copy for
example, could have a variant or epigenetic modification increasing the binding affinity for the
TF. How could we determine this? One method would be to carry out a ChlP-Seq experiment for
that TF. Then, one can use the simple approach of counting how many reads there are for each
variant, as shown in the example below:
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Let’s say the maternal copy contains the T variant in this case. For this ChIP-Seq experiment for
the TF of interest, there are 10 reads containing the T variant and only 2 containing the C
variant, indicating the TF is better able to bind the maternal, T-containing variant in this case.

While the simple counting method gives us an idea of the differences in TF binding
between the maternal and paternal alleles, we can also call allele-specific events using more
robust statistical methods. Say we want to annotate a SNP or variant site on the genome as
being allele-specific. This can manifest as differential activity between the two alleles in a
ChIP-Seq, RNA-Seq, methylation, or Hi-C experiment, for example. Given a read stack at the
locus of interest, the null hypothesis would be that the number of maternal and paternal alleles
should be about even. However, it is unlikely that exactly 50% of the reads will be maternal and
paternal, even with the null expectation. Really, the proportion of maternal/paternal reads will be
sampled from a distribution: the most simple one to consider is the binomial distribution. The
binomial distribution can be used to model a series of tests with two possible outcomes, ex. A
coin flip. The distribution can help calculate the probability of a certain number of “successful”



outcomes in a series of such tests, ex. The probability of seeing 5 heads after 10 independent
coin flips. In the case of read mapping, if you sample 10 reads from your ChlP-Seq experiment,
you would expect to see 5 maternal and 5 paternal alleles. However, you might see another
result from the distribution, like 6 maternal and 4 paternal. An example of the binomial
distribution in the context of calling allele-specific events is illustrated below:
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Here, variants with no allele-specific behavior are shown in red, and those with allele-specific
SNPs are shown in blue. The red therefore corresponds to the null expectation. In the case of
the blue, there are more extreme cases observed in the read stack: ex. 10 Cand 0 T, or 9 C and
1 T. In this case, we may have an allele-specific event, and we can calculate a p-value or
probability of an allele-specific event using the null expectation. In this example, we can
calculate how likely we would see that extreme data point (ex. 9 C and 1 T) or a more extreme
case when sampling from the binomial distribution (i.e. by taking the area under the curve). In
practice, depending on the experimental context, researchers may choose to use a slightly
different distribution to model the null hypothesis, such as a beta-binomial distribution, which
allows for a wider tail.

2. Technical considerations

Imagine you have a set of reads from an experiment like ChIP-Seq: normally, you would
map the reads to the reference genome, getting a read stack, and continue on with your
analysis. However, consider the example below:
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In this case, the paternal allele contains a T variant relative to the maternal allele and the
reference genome, which both contain an A at that locus. Since the paternal allele has a variant
relative to the reference, it will not map as well. For example, imagine a read has both the T
allele and a technical sequencing error downstream. Due to the combination of the error and the
biological variation, reads like this will not map as well. This ultimately results in a preference for
mapping the maternal alleles over the paternal ones. The concept of reads containing
non-reference alleles mapping less well is known as reference bias. This could easily skew
allele-specific event calling, whether we are using the simple counting method or the binomial
distribution. To overcome this limitation, it is useful to build a personal diploid genome for an
individual, and then map reads to the personal diploid genome instead as the reference before
counting.

GWAS
1. Goal of GWAS

The overarching goal of a genome-wide association study (GWAS) is to relate specific
variants to traits or phenotypes. The trait of interest could be a complex trait such as height or a
disease phenotype. It is considered a non-hypothesis-driven (or “hypothesis-free”), exploratory
approach since it involves searching the entire genome to discover risk variants with prior
knowledge of any specific risk regions.

Expression quantitative trait loci (eQTL) are specific locations in the genome that are
associated with the activity of target genes. These loci therefore explain at least some part of
the variation in gene expression. eQTLs can be related to GWAS because by modulating gene
expression, they can also contribute to a resulting phenotype of interest. If eQTLs overlap with
GWAS hits, this can help explain the mechanism behind the GWAS result. However, often only
a small percentage of GWAS hits correspond to eQTLs, as GWAS and eQTL mapping results
are biased for different kinds of hits (ex. GWAS hits tend to be located further from transcription
start sites (TSSs), are enriched near genes with known functional roles, and are under
significant selective constraint, whereas eQTLs are usually clustered more closely to TSSs of
genes without a functional annotation). See here for more details:



Mostafavi, H., Spence, J. P,, Naqvi, S., & Pritchard, J. K. (2023). Systematic differences in
discovery of genetic effects on gene expression and complex traits. Nature Genetics,
55(11), 1866—1875. https://doi.org/10.1038/s41588-023-01529-1

2. Statistical Process

In a GWAS, we consider the entire genome when searching for potential variants. In a
cohort, individuals are genotyped, and then the presence of different variants can be correlated
with traits of interest (i.e. a disease, eye color, etc.). Using statistical tests, we can then
determine which of those correlations is significant. A large cohort size is typically needed to
have sufficient statistical power for a GWAS.

Due to the large scale of GWAS, the statistics can get challenging. Generally, we can
think of GWAS analysis as a multiple linear regression problem. For example, imagine you are
looking for variants influencing a quantitative trait, such as weight. For a given SNP S with
possible alleles allele; = A and allele, = G, there are 3 possible genotypes: AA, AG, and GG.
Now, when analyzing our cohort, we want to answer the following question with GWAS: is there
a statistically significant difference in weight among individuals in each possible genotype group
according to the allele, dosage (ex. Homozygous ref vs. homozygous alt vs. heterozygous)? To
address this question, we can regress weight versus the genomic dosage, giving the following
simple linear regression:

yi=B0+Bl'x1i+€i
In which:

°* represents weight;, or the weight of an individual / (dependent variable)
° BO or b, represents the intercept
* Xx. represents the dosage; or the dosage of allele, in individual j for SNP S (independent

or explanatory variable)
° B1 represents b, or the effect of allele, on the individual’'s weight

€ represents the error or residual for the weight of individual i

The data might look something like this, for example:
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https://doi.org/10.1038/s41588-023-01529-1

Using this model, we can do a simple linear fit or regression. It is important to keep in mind that

when we do a linear regression like this, we are making some assumptions about the data,
notably:

1. We assume there is a linear relationship between the dependent and independent
variables and not some other kind of relationship, ex. Polynomial.

2. The residuals (i.e. error) are homoscedastic, meaning there is constant variance in the
residuals.

3. The residuals are normally distributed.
4. The observations are independent and not correlated.

Using a method like ordinary least squares, we can get a regression line and estimate the
values of the slope and intercept:
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With the ordinary least squares method, this involves determining the values of by, and b, which
minimize the sum of all squared residuals across the cohort. The criterion for ordinary least
squares is as follows:
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3. Complications: Covariates

In our large cohort of individuals, we have shown how to regress weight versus genomic
dosage. However, we haven't yet considered covariates that could also influence weight in
addition to the allele, dosage. In truth, we know there are both genetic and non-genetic factors
at play in determining an individual’s weight. We would like to regress those other covariates out
in our model in order to study the effect of genomic dosage. For example, other factors including
weight could be diet, biological sex, or geographic location. We can compose a regression
model that includes those covariates so we know we are accounting for them:

yi=BO+Bl-x1i+ Bz-x2i+...+[3 + €
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Similar to the previous regression model we looked at, in this case:



i=1...n observations (i.e. individuals or samples_
Y, represents weight;, or the weight of an individual / (dependent variable)

° BO or b, represents the intercept
* x. represents the dosage; or the dosage of allele, in individual / (independent or

explanatory variable), could be 0, 1, or 2
X, to.tx are the covariates for that individual i (ex. Age, gender, diet, location)

(p-1)i
€ represents the error or residual for the weight of individual i

Using this kind of model, we can now both model the relationship between y and all its
predictors x, and we can test if our specific explanatory variable of interest (in this case, the
dosage of allele, at SNP S) has a significant effect on the dependent variable (weight in our
example). Accounting for covariates is critical in a biomedical context because if we ignore
them, our results could be messed up by a confounding factor in the data. In this case, we have
accounted for some number of covariates 2 to p.

Once we have achieved such a model, we can address the fundamental question: is [31

non-zero? The estimated value of B, represented as b, or B, is the estimated effect of the
allele, dosage on weight based on our linear model. If Blis zero, this indicates that genomic

dosage is not significantly related to the trait of interest. Bl = 0 is therefore the null hypothesis.

We can use a simple Student’s t-test to determine whether our predicted value El is significantly

different from the null hypothesis. Since the calculated t-statistic is part of the ¢ distribution, we
can use it to calculate a p-value and determine if the difference is statistically significant based
on a chosen significance threshold (ex. 1%, 5%, 0.01%). If the p-value is below the given
threshold, we can reject the null hypothesis and determine that the gene dosage from SNP S
indeed has a statistically significant effect on an individual’'s weight. However, if the p-value is
above the threshold, we would determine that the SNP does not have a significant effect on
weight. P-values from a GWAS can be represented visually in a Manhattan plot, in which the
genomic loci are plotted on the x-axis and the negative logarithm of the p-values for the tested
SNPs are plotted on the y-axis. The higher a point on the Manhattan plot, therefore, the lower
the p-value.



GWAS (Additional Considerations)

Study Power Downstream Replication
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1. Study Design

When designing a Genome-Wide Association Study (GWAS), it is essential to
determine whether the trait being studied is a quantitative or discrete variable, as this
influences the choice of study design and analysis methods. For discrete traits, such as
disease status, a case-control study is often used, where individuals are categorized into
cases (affected) and controls (unaffected) to identify genetic variants associated with the
condition.

One maijor consideration in GWAS is population stratification, which can introduce
confounding effects. Some single nucleotide polymorphisms (SNPs) may have different
allele frequencies across subpopulations, leading to false associations if not properly
accounted for. For example, if a GWAS were conducted on the trait "uses chopsticks™ without
correcting for ancestry, SNPs more prevalent in East Asian populations might appear
associated with chopstick use, even though the real association is with ancestry rather than
genetics. To address this issue, researchers must include relevant covariates that control for
indirect effects unrelated to the phenotype of interest,

h , , i h.
such as age, sex, and genotyping batc Scores of PCA

A common approach to mitigating population
stratification is Ancestry Principal Component Analysis
(PCA). By analyzing genetic variation, PCA generates Population
principal components that summarize ancestry-related il
differences in genetic data. Typically, the first five or six st
principal components are included as covariates in GWAS i : UK2
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models to correct for ancestry-related confounding. This
ensures that genetic associations identified in the study are
due to the phenotype of interest rather than population

structure. PC1

2. Power Calculations

Power refers to the probability of detecting a true association between a single
nucleotide polymorphism (SNP) and a trait. Statistical significance is assigned to non-zero
beta (B) coefficients, which quantify the effect of a given SNP on the trait and depend on the
sample size (n).



Power in GWAS is influenced by several key factors, including sample size, allele
frequency, and effect size. A larger sample size (n) and a higher minor allele frequency
(MAF, f) improve the accuracy of estimating the SNP effect (B). Additionally, larger absolute
values of B increase the difference from the null model, where no association exists (e.g.,
the mean value of the trait remains the same across genotype groups).

When evaluating whether a significant association exists between a trait and
genotype, it is crucial to perform power calculations. These calculations help determine the
necessary sample size given an expected effect size to ensure the study has enough power
to detect true associations.

3. GWAS

The type of study in Genome-Wide Association Studies (GWAS) determines the
appropriate statistical model used for analysis. If the trait being studied is quantitative (e.g.,
height, blood pressure), linear regression is applied, where beta (B) values represent the
effect size of a given SNP on the trait.

For case-control studies (e.g., disease vs. healthy individuals), logistic regression is
used instead, calculating odds ratios (ORs) to estimate the likelihood of disease presence
based on genetic variation. Choosing the correct statistical model ensures accurate
interpretation of SNP-trait associations.

4. Downstream Analysis

A key assumption in linear regression for GWAS is that all SNPs are independent.
However, in reality, linkage disequilibrium (LD)—the non-random association of alleles—leads
to many SNPs being highly correlated. This can result in a large number of indirect
associations, where significant SNPs may not be causative but instead linked to the true
causal variant. Out of approximately 4 million SNPs in the human genome, only about 0.5 to 1
million are truly independent.

To account for multiple hypothesis testing, multiple-test correction is required. One
common method is Bonferroni correction, which controls the family-wise error rate (FWER)
to maintain an acceptable false positive rate. Given that GWAS tests up to 1 million
independent SNPs, the adjusted significance threshold is calculated as:

a
« FWER = —,
m

* m=# of independent hypotheses
» # of independent common variants = 10°
* FWER =0.05/10° =5-108



This results in a very stringent significance threshold to minimize false positives.
However, Bonferroni correction is considered overly conservative, as it assumes
independence among tests and does not account for the correlation structure introduced by LD.
Other approaches, such as family-wise error rate control and alternative multiple-testing
corrections, may be used to balance false discovery control with statistical power.

Beyond individual SNP associations, researchers construct Polygenic Risk Scores
(PRS) to assess the cumulative genetic contribution to a trait. PRS is a linear combination of
effect sizes (B values) from multiple SNPs, aiming to enhance trait predictability beyond
single-SNP associations. To improve accuracy, PRS models include SNPs below a certain
p-value threshold while ensuring that only low-LD SNPs are retained to maintain independent
signals.

5. Replication Studies

Replication studies are essential in validating GWAS findings and ensuring that
identified SNP-trait associations are robust and reproducible across different populations.
Since GWAS involves millions of statistical tests, false positives are inevitable, making
independent replication a critical step before claiming a true genetic association.

GWAS has evolved

Since the first Genome-Wide Association Study (GWAS) was conducted at Yale by
Robert Kline two decades ago to identify genetic risk factors for macular degeneration,
GWAS has evolved into a powerful and large-scale genomic tool. Today, it is widely used in
both academic research and commercial applications, driving discoveries across numerous
complex traits and diseases.

Modern GWAS is now a global enterprise, with large datasets and biobanks enabling
researchers to identify genetic variants associated with various conditions. Companies like
23andMe use GWAS to offer direct-to-consumer genetic testing, providing individuals with
insights into their genetic predispositions. Additionally, the NHGRI-EBI Catalog of Human
GWAS Studies serves as a comprehensive repository of significant SNPs, consolidating
findings from thousands of GWAS studies worldwide.

Expression Quantitative Trait Loci (eQTL) Analysis

Study Power Downstream Replication
. . GWAS p .
design calculations analysis studies

eQTL analysis extends the principles of Genome-Wide Association Studies (GWAS)
by identifying genetic variants that influence gene expression levels rather than phenotypic
traits like height or weight. eQTL studies regress genetic variants against gene expression
levels instead of regressing against a physical characteristic, typically measured as the number




of RNA sequencing reads for a particular gene. Like GWAS, eQTL studies are conducted at a
population scale and follow similar statistical frameworks for quantitative traits.

Researchers often simplify calculations to manage the computational burden and
multiple testing corrections given the vast number of genetic variants and genes that could be
tested. The majority of eQTL studies focus on cis-eQTLs, where genetic variants are tested for
association only within a predefined genomic window surrounding the gene of interest,
reducing the number of statistical tests and increasing the likelihood of detecting true
associations. However, some studies use trans-eQTLs, where variants located on one
chromosome are tested for their effects on gene expression on a different chromosome.
Trans-eQTL analyses are particularly used for insights into long-range regulatory interactions,
such as transcription factor binding or chromatin looping. However, trans-eQTL are much more
challenging due to the need for extensive multiple testing corrections. As a result, trans-eQTL
studies remain conceptually valuable but are not commonly performed.

Another key challenge in eQTL analysis is the possibility of unaccounted covariates
that may confound results. Researchers often adopt a hierarchical testing approach to
address this challenge and reduce the number of statistical comparisons. Instead of testing
each gene against all possible features independently (which would require correcting for a
massive number of tests), hierarchical approaches first test broader gene-level groupings
(clusters) for significance. If a cluster is found to be significant, researchers then perform
additional tests within the cluster to identify the specific feature driving the association. This
method significantly reduces the burden of multiple testing correction, making eQTL studies
more computationally feasible.

Discussion/Comments

e \When we perform a linear regression, we make a few key assumptions. Which of these
assumptions do you think might be violated in a GWAS? Explain.

o Example answer: we assume that all observations are independent, but we know
this isn’t true because of linkage disequilibrium. Fine-mapping techniques are
needed to find the true causal variants among the correlated variants.

e In previous lectures, we discussed how the genomes of African individuals generally
contain more variants, and therefore more SNPs, relative to the reference. This is due to
founder effects from early human populations leaving Africa at various points, leading to
genetic drift. How would this affect LD for African populations (ex. Would you expect
higher or lower LD compared to individuals of European descent?). How could this
impact a GWAS analysis? For example, if GWAS is done using only individuals of
European descent, do you think the results will apply well to African and
African-American populations? Why or why not?

o Given your answer to the question above, what are the implications for ethical
execution of a GWAS, particularly in a clinical setting?

o Example answer: Because African genomes are more diverse, they will also
have lower LD. This means an analysis done only on European populations
could be missing key SNPs. In a clinical setting, it is critical to use a more diverse



population, otherwise individuals from other populations, like individuals of
African ancestry, will be excluded from the medical benefits of the study findings.
e Say you find a new disease-associated variant for a complex disease using GWAS.

What follow-up experiments could you do to determine the mechanism by which this
variant impacts disease risk? (Example answer: do a type of Hi-C analysis to see which
areas of the genome that locus interacts with. For example 4C-seq allows you to see
which other parts of the genome interact with a region of interest. Then, see if those
interacting regions have a function related to disease, ex. Promoter for a gene involved
in disease mechanism.)

o Say you find 8 SNPs in one region of the genome that are all associated with
disease. Why might this occur? How can you determine which SNP actually
plays a mechanistic role in disease risk?

o Example answer: The SNPs are in LD with each other. Determining the causal
SNP in this case is known as “fine-mapping”, and there are many possible
approaches to this. For example, you could build an in vitro system to
independently test the impact of each SNP on gene expression, i.e. a massive
parallel reporter assay. Using multiple ethnic groups in the analysis with different
LDs can also be advantageous in narrowing down the causal variants in silico,
though this method relies on an assumption that all populations should
theoretically share the disease-causing variant. For more information on
fine-mapping, see this resource:

Wang, Q. S., & Huang, H. (2022). Methods for statistical fine-mapping and their
applications to auto-immune diseases. Seminars in Immunopathology, 44(1), 101-113.
https://doi.org/10.1007/s00281-021-00902-8

References ISL/ESL

ISL (An Introduction to Statistical Learning, with Applications in Python):
e Relevant Chapters:
o Chapter 3: Linear regression: OLS, assumption of linear regression,
o Chapter 4: Classification: Logistic regression, odds ratio
o Chapter 12: Unsupervised learning: Principal Component Analysis
o Chapter 13: Multiple testing: Bonferroni correction, Family-wise error rate
e Chapter 3: Linear regression:
o Simple linear regression:
o It assumes that there is approximately a linear relationship between X and Y .
a very straightforward simple linear approach for predicting a quantitative
response Y on the basis of a single regression predictor variable X.

g - BO + le7
m Estimate betas (OLS):
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The least squares approach chooses Sy and 1 to minimize the RSS. Using
some calculus, one can show that the minimizers are
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m Assessing accuracy of coefficients:

To compute the standard errors associated with beta_0 and beta_1, we
use the following formulas
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m Assessing accuracy a model:

e The residual standard error (RSE) is an estimate of the standard
deviation of the error term. Roughly speaking, it is the average
amount that the response will deviate from the true regression
line.

It is computed using the formula

1 1 n
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Note that RSS was defined in Section 3.1.1, and is given by the formula

RSS =Y (4 — i:)°. (3.16)
=1
e R square:
The R-square statistic provides an alternative measure of fit. It
takes the form of a proportion—the proportion of variance
explained—and so it always takes on a value between 0 and 1.
and is independent of the scale of Y.

To calculate R?, we use the formula

L

R? =1—- ==
TSS TSS
where TSS = Y (y; — 9)? is the total sum of squares,

Multiple linear regression:
Similarly with the simple regression:

j = Bo + Pras + Boza + -+ + Byap.
m Formuaz ¢ o & = By

We choose betas to minimize the sum of squared residuals
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Chapter 4: Classification (4.3 Logistic regression)

o Formula: PX) = o+ A X.

In logistic regression, we use the logistic function,

eﬁoJrBlX
p(X) =7 T PoABX

To fit the model, we use a method called maximum likelihood.

o Log odds:
By taking the logarithm of both sides of (4.3), we arrive at
p(X)
1 — | = X. 4.4
Og(lpm) - =

The left-hand side is called the log odds or logit. We see that the logistic
regression model (4.2) has a logit that is linear in X.
Chapter 12: Unsupervised learning (12.2 Principal Component Analysis)

o Principal components analysis (PCA) refers to the process by which principal
components are computed, and the subsequent use of these components in
understanding the data.

o principal components (PC):

The first principal component of a set of features X, Xo,..., X, is the
normalized linear combination of the features
Zr=¢uXai+¢anXo+ -+ 9p1 X, (12.1)

After the first principal component Z; of the features has been deter-
mined, we can find the second principal component Z5. The second princi-
pal component is the linear combination of Xi,..., X, that has maximal

variance out of all linear combinations that are uncorrelated with Z;. The
second principal component scores 212, 299, . . ., Zno take the form

Ziz = Q12Ti1 + P22ia + -+ + Pp2aip, (12.4)

where ¢9 is the second principal component loading vector, with elements
012,022, -+, Pp2.

] R
And similar for the remaining PCs.
Chapter 13: Multiple testing
o Type | error & Type Il error:



Truth
HO Ha
Type I Error Correct
Correct Type II Error

Reject Hy

Decision Do Not Reject Hy

TABLE 13.1. A summary of the possible scenarios associated with testing the
null hypothesis Ho. Type I errors are also known as false positives, and Type 11
errors as false negatives.

o Family-wise error rate (FWER):
controlling the probability of making at least one Type | error. The family-wise
error rate is given by:

FWER = Pr(V > 1).

FWER(a) = 1-Pr(V=0)
= 1 — Pr(do not falsely reject any null hypotheses)
— 1 Pr (ﬂ7;1 {do not falsely reject Hoj}). (13.4)

o Bonferroni:

(87
FWER(a/m) < m x — = q,
m
Besides Bonferroni, they also discussed other methods to control FWER in this
section: e.g. Holm’s step-down procedure, Tukey’s method and Scheffé’s method
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ESL (The Elements of Statistical Learning, Second Edition):
e Relative Chapter:
o Chapter 3: Linear method for regression: 3.2 Linear Regression Models and
Least Squares
o Chapter 4: Linear Methods for Classification
e Chapter 3: Linear Regression
o Except contents mentioned in ISL, ESL gave the matrix formula of multiple linear
regression of OLS in linear regression:

5 X2 X(X X X

RSS(8) = (y — X8)"(y — X8).



B~ N(B,(XTX)1o?).

e Chapter 4: Classification
o Similarly as mentioned in the ISL:
Actually, all we require is that some monotone transformation of d; or
Pr(G = k|X = x) be linear for the decision boundaries to be linear. For

example, if there are two classes, a popular model for the posterior proba-
bilities is

(G = — ) — exp(fo + BT w)
Pr(@ =1[X =) = 1 —oxp(Go 1 572)

1
Pr(G=2X=2)= T+ oxp(Go 7 572)"

(4.1)

Here the monotone transformation is the logit transformation: log[p/(1—p)],
and in fact we see that

Pr(G=1X=2) T
log = [ B . 4.2
08 Pr(G =2|X =) fotpa (42)
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