
 Lecture Title and Date 

 Lecture 25m7 part 2: Genome Annotation (AS, eQTL, GWAS) - 02/19/2025 

 Objectives of the Lecture 

 ●  By the end of this lecture, students should be able to: 
 ○  Understand annotation related to an individual’s variants: 

 ■  Understand how different versions of alleles present in an individual can 
 influence TF binding, gene expression, epigenetics, etc. 

 ■  Understand how to determine allele-specific gene expression using the 
 binomial distribution. 

 ■  Explain why reference bias occurs and how to mitigate it using personal 
 diploid genomes. 

 ○  Explain that the overarching goal of GWAS is to determine whether variants are 
 significantly correlated with a particular trait or disease. 

 ○  Understand how eQTLs are related to GWAS by linking specific alleles to gene 
 expression patterns. 

 ○  Understand in a broad sense the statistical tests and steps used to complete a 
 GWAS analysis and the assumptions we make when carrying out such 
 calculations. 

 ○  Understand technical considerations in GWAS, such as accounting for covariates 
 and multiple testing correction. 

 ■  Outline the potential considerations and methods for multiple testing 
 correction. 

 Key Concepts and Definitions 

 ●  Allele:  a version or variant of the nucleotide sequence  at a particular location in the 
 genome. A person inherits one allele from their father and one from their mother. 

 ○  If both copies of the allele are the same, the individual is  homozygous  for that 
 variant. 

 ○  If the copies differ, that individual is  heterozygous  for the allele. 
 ●  Diploid:  When a cell contains two copies of each chromosome.  For example, in human 

 somatic cells, there is one set of maternal chromosomes and one set of paternal 
 chromosomes. 

 ●  SNP:  Single nucleotide polymorphism - a variant resulting  from the substitution of a 
 single nucleotide compared to the reference. 

 ●  Allele-specific event:  when there is a measurable  difference (ex. In transcription factor 
 binding, gene expression, etc.) in outcome between different alleles. 

 ●  Binomial distribution:  the probability distribution  describing the number of “successful” 
 outcomes when performing a series of independent tests with a binary output, success 
 or failure (ex. A coin toss with possible outcomes of heads or tails). 



 ●  Reference bias:  a bias that can occur when mapping reads to the reference genome 
 because reads containing non-ref SNPs or variants are less likely to map as well as 
 reads containing variants matching the reference. 

 ●  Personal diploid genome:  a personal reference genome  that separates an individual’s 
 maternal and paternal variants to improve mapping and mitigate reference bias. 

 ●  Null expectation/hypothesis:  the expected distribution  of results given the effect being 
 studied or tested for does not exist (ex. there is NO true difference between two 
 populations being tested, such as a case and control), and all variation arises from 
 random chance or technical errors. 

 ●  P-value:  the probability of seeing a result as extreme  or  more extreme as the 
 observation given the null hypothesis. 

 ●  eQTL:  expression quantitative trait loci - loci in  the genome with variants influencing the 
 expression of a gene (or multiple genes). 

 ●  GWAS:  Genome-wide association study - a research method  used to link variants in the 
 genome, typically SNPs, to traits. The trait can be disease-related or not (i.e. height). 
 Requires genetic information for a large cohort of individuals. 

 ●  Homoscedasticity:  a condition describing data for  which the variance of the residuals 
 or error is consistent throughout the data, i.e. for all independent variables. In contrast, 
 with heteroscedastic data, the variance will change as the predictor variable changes. 
 Homoscedasticity is an assumption in linear regression. 

 ●  Normal distribution:  a distribution used to describe  a random variable that takes on a 
 “bell curve” shape. It has an equal mean and median and appears symmetrical. 

 ●  Ordinary least squares:  a method in regression modeling  used to estimate the 
 coefficients, which represent the relationship between the independent variables and a 
 chosen dependent variable. The goal of the method is to minimize the error between the 
 predicted values and observed values using the sum of squared errors. 

 ●  Covariates:  independent  variables besides the variable  of interest that also influence 
 the study outcome. 

 ●  Manhattan plot:  for GWAS, a plot depicting genomic  location on the x-axis and the 
 negative log of the adjusted p-value on the y-axis. Each point may be a SNP studied in a 
 GWAS, with statistically significant findings standing out above a certain significance 
 threshold on the y-axis. 

 ●  Ancestry Principal Component Analysis (PCA):  A dimensionality  reduction technique 
 used in genetics to account for population structure by identifying major axes of genetic 
 variation, helping to correct for ancestry-related confounding in association studies. 

 ●  Bonferroni Correction:  A statistical method that controls  the family-wise error rate by 
 dividing the significance level by the number of independent tests to reduce false 
 positives. 

 ●  Family-wise error rate control:  A multiple testing  correction approach that limits the 
 probability of making at least one false positive (Type I error) across all conducted tests. 

 ●  Polygenic Risk Scores:  A metric that aggregates the  effects of multiple genetic 
 variants, weighted by their effect sizes, to estimate an individual's genetic predisposition 
 to a trait or disease. 



 Main Content/Topics 

 Allele-specific Annotation 

 1.  What is an allele-specific event? 

 To understand  allele-specific events  , it is useful  to consider the binding of a 
 transcription factor (TF) to the genome. Our genome is  diploid  , meaning we possess two 
 copies of each chromosome: one paternal and one maternal. This means that when a TF binds 
 the genome, it can bind to the maternal or the paternal copy of the TF binding site. Typically, the 
 degree of TF binding and the resulting gene expression is the same for the maternal and 
 paternal copies of the genome. However, in some cases, one copy, the maternal copy for 
 example, could have a variant or epigenetic modification increasing the binding affinity for the 
 TF. How could we determine this? One method would be to carry out a ChIP-Seq experiment for 
 that TF. Then, one can use the simple approach of counting how many reads there are for each 
 variant, as shown in the example below: 

 Let’s say the maternal copy contains the T variant in this case. For this ChIP-Seq experiment for 
 the TF of interest, there are 10 reads containing the T variant and only 2 containing the C 
 variant, indicating the TF is better able to bind the maternal, T-containing variant in this case. 

 While the simple counting method gives us an idea of the differences in TF binding 
 between the maternal and paternal alleles, we can also call allele-specific events using more 
 robust statistical methods. Say we want to annotate a SNP or variant site on the genome as 
 being allele-specific. This can manifest as differential activity between the two alleles in a 
 ChIP-Seq, RNA-Seq, methylation, or Hi-C experiment, for example. Given a read stack at the 
 locus of interest, the  null hypothesis  would be that  the number of maternal and paternal alleles 
 should be about even. However, it is unlikely that  exactly  50% of the reads will be maternal and 
 paternal, even with the null expectation. Really, the proportion of maternal/paternal reads will be 
 sampled from a distribution: the most simple one to consider is the  binomial distribution  . The 
 binomial distribution can be used to model a series of tests with two possible outcomes, ex. A 
 coin flip. The distribution can help calculate the probability of a certain number of “successful” 



 outcomes in a series of such tests, ex. The probability of seeing 5 heads after 10 independent 
 coin flips. In the case of read mapping, if you sample 10 reads from your ChIP-Seq experiment, 
 you would expect to see 5 maternal and 5 paternal alleles. However, you might see another 
 result from the distribution, like 6 maternal and 4 paternal. An example of the binomial 
 distribution in the context of calling allele-specific events is illustrated below: 

 Here, variants with no allele-specific behavior are shown in red, and those with allele-specific 
 SNPs are shown in blue. The red therefore corresponds to the null expectation. In the case of 
 the blue, there are more extreme cases observed in the read stack: ex. 10 C and 0 T, or 9 C and 
 1 T. In this case, we may have an allele-specific event, and we can calculate a  p-value  or 
 probability of an allele-specific event using the null expectation. In this example, we can 
 calculate how likely we would see that extreme data point (ex. 9 C and 1 T) or a more extreme 
 case when sampling from the binomial distribution (i.e. by taking the area under the curve). In 
 practice, depending on the experimental context, researchers may choose to use a slightly 
 different distribution to model the null hypothesis, such as a beta-binomial distribution, which 
 allows for a wider tail. 

 2.  Technical considerations 

 Imagine you have a set of reads from an experiment like ChIP-Seq: normally, you would 
 map the reads to the reference genome, getting a read stack, and continue on with your 
 analysis. However, consider the example below: 



 In this case, the paternal allele contains a T variant relative to the maternal allele and the 
 reference genome, which both contain an A at that locus. Since the paternal allele has a variant 
 relative to the reference, it will not map as well. For example, imagine a read has both the T 
 allele and a technical sequencing error downstream. Due to the combination of the error and the 
 biological variation, reads like this will not map as well. This ultimately results in a preference for 
 mapping the maternal alleles over the paternal ones. The concept of reads containing 
 non-reference alleles mapping less well is known as  reference bias  . This could easily skew 
 allele-specific event calling, whether we are using the simple counting method or the binomial 
 distribution. To overcome this limitation, it is useful to build a  personal diploid genome  for an 
 individual, and then map reads to the personal diploid genome instead as the reference before 
 counting. 

 GWAS 

 1.  Goal of GWAS 

 The overarching goal of a  genome-wide association  study (GWAS)  is to relate specific 
 variants to traits or phenotypes. The trait of interest could be a complex trait such as height or a 
 disease phenotype. It is considered a non-hypothesis-driven (or “hypothesis-free”), exploratory 
 approach since it involves searching the entire genome to discover risk variants with prior 
 knowledge of any specific risk regions. 

 Expression quantitative trait loci (eQTL)  are specific  locations in the genome that are 
 associated with the activity of target genes. These loci therefore explain at least some part of 
 the variation in gene expression. eQTLs can be related to GWAS because by modulating gene 
 expression, they can also contribute to a resulting phenotype of interest. If eQTLs overlap with 
 GWAS hits, this can help explain the mechanism behind the GWAS result. However, often only 
 a small percentage of GWAS hits correspond to eQTLs, as GWAS and eQTL mapping results 
 are biased for different kinds of hits (ex. GWAS hits tend to be located further from transcription 
 start sites (TSSs), are enriched near genes with known functional roles, and are under 
 significant selective constraint, whereas eQTLs are usually clustered more closely to TSSs of 
 genes without a functional annotation). See here for more details: 



 Mostafavi, H., Spence, J. P., Naqvi, S., & Pritchard, J. K. (2023). Systematic differences in 
 discovery of genetic effects on gene expression and complex traits.  Nature Genetics  , 
 55  (11), 1866–1875.  https://doi.org/10.1038/s41588-023-01529-1 

 2.  Statistical Process 

 In a GWAS, we consider the entire genome when searching for potential variants. In a 
 cohort, individuals are genotyped, and then the presence of different variants can be correlated 
 with traits of interest (i.e. a disease, eye color, etc.). Using statistical tests, we can then 
 determine which of those correlations is significant. A large cohort size is typically needed to 
 have sufficient statistical power for a GWAS. 

 Due to the large scale of GWAS, the statistics can get challenging. Generally, we can 
 think of GWAS analysis as a multiple linear regression problem. For example, imagine you are 
 looking for variants influencing a quantitative trait, such as weight. For a given SNP  S  with 
 possible alleles allele  1  = A and allele  2  = G, there  are 3 possible genotypes: AA, AG, and GG. 
 Now, when analyzing our cohort, we want to answer the following question with GWAS: is there 
 a statistically significant difference in weight among individuals in each possible genotype group 
 according to the allele  2  dosage (ex. Homozygous ref  vs. homozygous alt vs. heterozygous)? To 
 address this question, we can regress weight versus the genomic dosage, giving the following 
 simple linear regression: 
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 The data might look something like this, for example: 

https://doi.org/10.1038/s41588-023-01529-1


 Using this model, we can do a simple linear fit or regression. It is important to keep in mind that 
 when we do a linear regression like this, we are making some assumptions about the data, 
 notably: 

 1.  We assume there is a linear relationship between the dependent and independent 
 variables and not some other kind of relationship, ex. Polynomial. 

 2.  The residuals (i.e. error) are  homoscedastic  , meaning  there is constant variance in the 
 residuals. 

 3.  The residuals are  normally distributed  . 
 4.  The observations are independent and not correlated. 

 Using a method like  ordinary least squares  , we can  get a regression line and estimate the 
 values of the slope and intercept: 

 With the ordinary least squares method, this involves determining the values of b  0  and b  1  which 
 minimize the sum of all squared residuals across the cohort. The criterion for ordinary least 
 squares is as follows: 
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 3.  Complications: Covariates 

 In our large cohort of individuals, we have shown how to regress weight versus genomic 
 dosage. However, we haven’t yet considered  covariates  that could also influence weight in 
 addition to the allele  2  dosage. In truth, we know  there are both genetic and non-genetic factors 
 at play in determining an individual’s weight. We would like to regress those other covariates out 
 in our model in order to study the effect of genomic dosage. For example, other factors including 
 weight could be diet, biological sex, or geographic location. We can compose a regression 
 model that includes those covariates so we know we are accounting for them: 
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 Similar to the previous regression model we looked at, in this case: 
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 Using this kind of model, we can now both model the relationship between y and all its 
 predictors x, and we can test if our  specific  explanatory  variable of interest (in this case, the 
 dosage of allele  2  at SNP  S  ) has a significant effect  on the dependent variable (weight in our 
 example). Accounting for covariates is critical in a biomedical context because if we ignore 
 them, our results could be messed up by a confounding factor in the data. In this case, we have 
 accounted for some number of covariates 2 to p. 

 Once we have achieved such a model, we can address the fundamental question: is β
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 allele  2  dosage on weight based on our linear model.  If  is zero, this indicates that genomic β
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 1 

=  0 

 We can use a simple Student’s t-test to determine whether our predicted value  is significantly β
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 different from the null hypothesis. Since the calculated  t  -statistic is part of the  t  distribution, we 
 can use it to calculate a p-value and determine if the difference is statistically significant based 
 on a chosen significance threshold (ex. 1%, 5%, 0.01%). If the p-value is below the given 
 threshold, we can reject the null hypothesis and determine that the gene dosage from SNP  S 
 indeed has a statistically significant effect on an individual’s weight. However, if the p-value is 
 above the threshold, we would determine that the SNP does not have a significant effect on 
 weight. P-values from a GWAS can be represented visually in a  Manhattan plot  , in which the 
 genomic loci are plotted on the x-axis and the negative logarithm of the p-values for the tested 
 SNPs are plotted on the y-axis. The higher a point on the Manhattan plot, therefore, the lower 
 the p-value. 



 GWAS (Additional Considerations) 

 1.  Study Design 

 When designing a  Genome-Wide Association Study (GWAS)  ,  it is essential to 
 determine whether the trait being studied is a  quantitative  or  discrete variable  , as this 
 influences the choice of study design and analysis methods. For  discrete traits  , such as 
 disease status, a  case-control study  is often used,  where individuals are categorized into 
 cases (affected)  and  controls (unaffected)  to identify  genetic variants associated with the 
 condition. 

 One major consideration in GWAS is  population stratification  ,  which can introduce 
 confounding effects  . Some  single nucleotide polymorphisms  (SNPs)  may have different 
 allele frequencies  across  subpopulations  , leading  to  false associations  if not properly 
 accounted for. For example, if a GWAS were conducted on the trait  "uses chopsticks"  without 
 correcting for  ancestry  , SNPs more prevalent in  East  Asian populations  might appear 
 associated with chopstick use, even though the real association is with ancestry rather than 
 genetics. To address this issue, researchers must include relevant  covariates  that control for 
 indirect effects  unrelated to the  phenotype of interest  , 
 such as  age, sex, and genotyping batch  . 

 A common approach to mitigating  population 
 stratification  is  Ancestry Principal Component Analysis 
 (PCA)  . By analyzing  genetic variation  , PCA generates 
 principal components  that summarize  ancestry-related 
 differences  in genetic data. Typically, the  first  five or six 
 principal components  are included as  covariates  in  GWAS 
 models  to correct for  ancestry-related confounding  .  This 
 ensures that  genetic associations  identified in the  study are 
 due to the  phenotype of interest  rather than  population 
 structure  . 

 2.  Power Calculations 

 Power  refers to the probability of detecting a true  association between a  single 
 nucleotide polymorphism (SNP)  and a  trait  . Statistical  significance  is assigned to  non-zero 
 beta (β) coefficients  , which quantify the effect of  a given SNP on the trait and depend on the 
 sample size (n)  . 



 Power in GWAS is influenced by several key factors, including  sample size, allele 
 frequency, and effect size  . A  larger sample size (n)  and a  higher minor allele frequency 
 (MAF, f)  improve the accuracy of estimating the SNP  effect (  β  ). Additionally, larger  absolute 
 values of β  increase the  difference from the null  model  , where no association exists (e.g., 
 the mean value of the trait remains the same across genotype groups). 

 When evaluating whether a significant  association  exists between a  trait  and 
 genotype  , it is crucial to perform  power calculations  .  These calculations help determine the 
 necessary  sample size  given an expected  effect size  to ensure the study has enough  power 
 to detect true associations. 

 3.  GWAS 

 The  type of study  in  Genome-Wide Association Studies  (GWAS)  determines the 
 appropriate  statistical model  used for analysis. If  the trait being studied is  quantitative  (e.g., 
 height, blood pressure),  linear regression  is applied,  where  beta (β) values  represent the 
 effect size of a given SNP on the trait. 

 For  case-control studies  (e.g., disease vs. healthy  individuals),  logistic regression  is 
 used instead, calculating  odds ratios (ORs)  to estimate  the likelihood of disease presence 
 based on genetic variation. Choosing the correct statistical model ensures accurate 
 interpretation of  SNP-trait associations  . 

 4.  Downstream Analysis 

 A key assumption in  linear regression for GWAS  is  that all SNPs are  independent  . 
 However, in reality,  linkage disequilibrium (LD)  —the  non-random association of alleles—leads 
 to many SNPs being highly correlated. This can result in a large number of  indirect 
 associations  , where significant SNPs may not be causative  but instead linked to the true 
 causal variant. Out of approximately  4 million SNPs  in the human genome, only about  0.5 to 1 
 million  are truly independent. 

 To account for multiple hypothesis testing,  multiple-test  correction  is required. One 
 common method is  Bonferroni correction  , which controls  the  family-wise error rate (FWER) 
 to maintain an acceptable false positive rate. Given that GWAS tests up to  1 million 
 independent SNPs  , the adjusted significance threshold  is calculated as: 



 This results in a  very stringent significance threshold  to minimize false positives. 
 However,  Bonferroni correction  is considered overly  conservative, as it assumes 
 independence among tests and does not account for the correlation structure introduced by LD. 
 Other approaches, such as  family-wise error rate control  and alternative multiple-testing 
 corrections, may be used to balance false discovery control with statistical power. 

 Beyond individual SNP associations, researchers construct  Polygenic Risk Scores 
 (PRS)  to assess the cumulative genetic contribution  to a trait. PRS is a  linear combination of 
 effect sizes (β values) from multiple SNPs  , aiming  to enhance  trait predictability  beyond 
 single-SNP associations. To improve accuracy, PRS models include  SNPs below a certain 
 p-value threshold  while ensuring that only  low-LD  SNPs  are retained to maintain independent 
 signals. 

 5.  Replication Studies 

 Replication studies are essential in  validating GWAS  findings  and ensuring that 
 identified SNP-trait associations are  robust and reproducible  across different populations. 
 Since  GWAS involves millions of statistical tests  ,  false positives are inevitable, making 
 independent replication a critical step before claiming a true genetic association. 

 GWAS has evolved 
 Since the first  Genome-Wide Association Study (GWAS)  was conducted at  Yale by 

 Robert Kline  two decades ago to identify genetic risk  factors for  macular degeneration  , 
 GWAS has evolved into a  powerful and large-scale genomic  tool  . Today, it is widely used in 
 both  academic research and commercial applications  ,  driving discoveries across numerous 
 complex traits and diseases. 

 Modern GWAS is now a  global enterprise  , with large  datasets and  biobanks  enabling 
 researchers to identify genetic variants associated with various conditions.  Companies like 
 23andMe  use GWAS to offer  direct-to-consumer genetic  testing  , providing individuals with 
 insights into their genetic predispositions. Additionally, the  NHGRI-EBI Catalog of Human 
 GWAS Studies  serves as a comprehensive  repository  of significant SNPs  , consolidating 
 findings from thousands of GWAS studies worldwide. 

 Expression Quantitative Trait Loci (eQTL) Analysis 

 eQTL analysis extends the principles of  Genome-Wide  Association Studies (GWAS) 
 by identifying genetic variants that influence  gene  expression levels  rather than phenotypic 
 traits like height or weight. eQTL studies regress  genetic variants against gene expression 
 levels  instead of regressing against a physical characteristic,  typically measured as the number 



 of RNA sequencing reads for a particular gene. Like GWAS, eQTL studies are conducted at a 
 population scale  and follow similar statistical frameworks  for quantitative traits. 

 Researchers often  simplify calculations  to manage  the computational burden and 
 multiple testing corrections given the vast number of genetic variants and genes that could be 
 tested. The majority of eQTL studies focus on  cis-eQTLs  ,  where genetic variants are tested for 
 association  only within a predefined genomic window  surrounding the gene of interest, 
 reducing the number of statistical tests and increasing the likelihood of detecting true 
 associations. However, some studies use  trans-eQTLs  ,  where variants located on  one 
 chromosome  are tested for their effects on gene expression  on  a different chromosome  . 
 Trans-eQTL analyses are particularly used for insights into long-range regulatory interactions, 
 such as transcription factor binding or chromatin looping. However, trans-eQTL are much more 
 challenging due to the need for extensive multiple testing corrections. As a result,  trans-eQTL 
 studies remain conceptually valuable but are not commonly performed  . 

 Another key challenge in eQTL analysis is the possibility of  unaccounted covariates 
 that may confound results. Researchers often adopt a  hierarchical testing approach  to 
 address this challenge and reduce the number of statistical comparisons. Instead of testing 
 each gene against all possible features independently (which would require correcting for a 
 massive number of tests), hierarchical approaches  first test broader gene-level groupings 
 (clusters) for significance  . If a cluster is found  to be significant, researchers then perform 
 additional tests within the cluster to identify the specific feature driving the association. This 
 method significantly reduces the burden of  multiple  testing correction  , making eQTL studies 
 more computationally feasible. 

 Discussion/Comments 

 ●  When we perform a linear regression, we make a few key assumptions. Which of these 
 assumptions do you think might be violated in a GWAS? Explain. 

 ○  Example answer: we assume that all observations are independent, but we know 
 this isn’t true because of linkage disequilibrium. Fine-mapping techniques are 
 needed to find the true causal variants among the correlated variants. 

 ●  In previous lectures, we discussed how the genomes of African individuals generally 
 contain more variants, and therefore more SNPs, relative to the reference. This is due to 
 founder effects from early human populations leaving Africa at various points, leading to 
 genetic drift. How would this affect LD for African populations (ex. Would you expect 
 higher or lower LD compared to individuals of European descent?). How could this 
 impact a GWAS analysis? For example, if GWAS is done using only individuals of 
 European descent, do you think the results will apply well to African and 
 African-American populations? Why or why not? 

 ○  Given your answer to the question above, what are the implications for ethical 
 execution of a GWAS, particularly in a clinical setting? 

 ○  Example answer: Because African genomes are more diverse, they will also 
 have lower LD. This means an analysis done only on European populations 
 could be missing key SNPs. In a clinical setting, it is critical to use a more diverse 



 population, otherwise individuals from other populations, like individuals of 
 African ancestry, will be excluded from the medical benefits of the study findings. 

 ●  Say you find a new disease-associated variant for a complex disease using GWAS. 
 What follow-up experiments could you do to determine the mechanism by which this 
 variant impacts disease risk? (Example answer: do a type of Hi-C analysis to see which 
 areas of the genome that locus interacts with. For example 4C-seq allows you to see 
 which other parts of the genome interact with a region of interest. Then, see if those 
 interacting regions have a function related to disease, ex. Promoter for a gene involved 
 in disease mechanism.) 

 ○  Say you find 8 SNPs in one region of the genome that are all associated with 
 disease. Why might this occur? How can you determine which SNP actually 
 plays a mechanistic role in disease risk? 

 ○  Example answer: The SNPs are in LD with each other. Determining the causal 
 SNP in this case is known as “fine-mapping”, and there are many possible 
 approaches to this. For example, you could build an  in vitro  system to 
 independently test the impact of each SNP on gene expression, i.e. a massive 
 parallel reporter assay. Using multiple ethnic groups in the analysis with different 
 LDs can also be advantageous in narrowing down the causal variants  in silico  , 
 though this method relies on an assumption that all populations should 
 theoretically share the disease-causing variant. For more information on 
 fine-mapping, see this resource: 

 Wang, Q. S., & Huang, H. (2022). Methods for statistical fine-mapping and their 
 applications to auto-immune diseases.  Seminars in  Immunopathology  ,  44  (1), 101–113. 
 https://doi.org/10.1007/s00281-021-00902-8 

 References ISL/ESL 

 ISL (An Introduction to Statistical Learning, with Applications in Python): 
 ●  Relevant Chapters: 

 ○  Chapter 3: Linear regression: OLS, assumption of linear regression, 
 ○  Chapter 4: Classification: Logistic regression, odds ratio 
 ○  Chapter 12: Unsupervised learning: Principal Component Analysis 
 ○  Chapter 13: Multiple testing: Bonferroni correction, Family-wise error rate 

 ●  Chapter 3: Linear regression: 
 ○  Simple linear regression: 
 ○  It assumes that there is approximately a linear relationship between X and Y . 

 a very straightforward simple linear approach for predicting a quantitative 
 response Y on the basis of a single regression predictor variable X. 

 ■ 
 ■  Estimate betas (OLS): 

https://doi.org/10.1007/s00281-021-00902-8
https://doi.org/10.1007/s00281-021-00902-8


 ■  Assessing accuracy of coefficients: 
 To compute the standard errors associated with beta_0 and beta_1, we 
 use the following formulas 

 ■  Assessing accuracy a model: 
 ●  The residual standard error (RSE) is an estimate of the standard 

 deviation of the error term. Roughly speaking, it is the average 
 amount that the response will deviate from the true regression 
 line. 
 It is computed using the formula 

 ●  R square: 
 The R-square statistic provides an alternative measure of fit. It 
 takes the form of a proportion—the proportion of variance 
 explained—and so it always takes on a value between 0 and 1. 
 and is independent of the scale of  Y. 

 ○  Multiple linear regression: 
 Similarly with the simple regression: 

 ■  Formula: 
 We choose betas to minimize the sum of squared residuals 



 ●  Chapter 4: Classification (4.3 Logistic regression) 

 ○  Formula: 

 To fit the model, we use a method called maximum likelihood. 
 ○  Log odds: 

 ●  Chapter 12: Unsupervised learning (12.2 Principal Component Analysis) 
 ○  Principal components analysis (PCA) refers to the process by which principal 

 components are computed, and the subsequent use of these components in 
 understanding the data. 

 ○  principal components (PC): 

 ○ 
 And similar for the remaining PCs. 

 ●  Chapter 13: Multiple testing 
 ○  Type I error & Type II error: 



 ○  Family-wise error rate (FWER): 
 controlling the probability of making at least one Type I error. The family-wise 
 error rate is given by: 

 ○  Bonferroni: 

 Besides Bonferroni, they also discussed other methods to control FWER in this 
 section: e.g. Holm’s step-down procedure, Tukey’s method and Scheffé’s method 

 Citation: 
 James, G., Witten, D., Hastie, T., & Tibshirani, R. (2023). An Introduction to Statistical Learning: 
 With Applications in Python. Chapter 10 – Deep Learning. First Printing, Springer. 

 ESL (The Elements of Statistical Learning, Second Edition): 
 ●  Relative Chapter: 

 ○  Chapter 3: Linear method for regression: 3.2 Linear Regression Models and 
 Least Squares 

 ○  Chapter 4: Linear Methods for Classification 
 ●  Chapter 3: Linear Regression 

 ○  Except contents mentioned in ISL, ESL gave the matrix formula of multiple linear 
 regression of OLS in linear regression: 



 ●  Chapter 4: Classification 
 ○  Similarly as mentioned in the ISL: 

 ○ 

 Citation: 
 Hastie, T., Tibshirani, R., & Friedman, J. (2017). The Elements of Statistical Learning: Data 
 Mining, Inference, and Prediction. Chapter 11 – Neural Networks. Corrected 12th Printing, 
 Second Edition, Springer. 

 Other Suggest references 

 A reference about power calculation: 
 Serdar CC, Cihan M, Yücel D, Serdar MA. Sample size, power and effect size revisited: 
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 A reference about model assumption and diagnostics: 
 Shatz I. Assumption-checking rather than (just) testing: The importance of visualization and 
 effect size in statistical diagnostics. Behav Res Methods. 2024 Feb;56(2):826-845. doi: 
 10.3758/s13428-023-02072-x. Epub 2023 Mar 3. PMID: 36869217; PMCID: PMC10830673. 


