
‭Lecture Title and Date‬

‭Lecture 25m7 part 2: Genome Annotation (AS, eQTL, GWAS) - 02/19/2025‬

‭Objectives of the Lecture‬

‭●‬ ‭By the end of this lecture, students should be able to:‬
‭○‬ ‭Understand annotation related to an individual’s variants:‬

‭■‬ ‭Understand how different versions of alleles present in an individual can‬
‭influence TF binding, gene expression, epigenetics, etc.‬

‭■‬ ‭Understand how to determine allele-specific gene expression using the‬
‭binomial distribution.‬

‭■‬ ‭Explain why reference bias occurs and how to mitigate it using personal‬
‭diploid genomes.‬

‭○‬ ‭Explain that the overarching goal of GWAS is to determine whether variants are‬
‭significantly correlated with a particular trait or disease.‬

‭○‬ ‭Understand how eQTLs are related to GWAS by linking specific alleles to gene‬
‭expression patterns.‬

‭○‬ ‭Understand in a broad sense the statistical tests and steps used to complete a‬
‭GWAS analysis and the assumptions we make when carrying out such‬
‭calculations.‬

‭○‬ ‭Understand technical considerations in GWAS, such as accounting for covariates‬
‭and multiple testing correction.‬

‭■‬ ‭Outline the potential considerations and methods for multiple testing‬
‭correction.‬

‭Key Concepts and Definitions‬

‭●‬ ‭Allele:‬‭a version or variant of the nucleotide sequence‬‭at a particular location in the‬
‭genome. A person inherits one allele from their father and one from their mother.‬

‭○‬ ‭If both copies of the allele are the same, the individual is‬‭homozygous‬‭for that‬
‭variant.‬

‭○‬ ‭If the copies differ, that individual is‬‭heterozygous‬‭for the allele.‬
‭●‬ ‭Diploid:‬‭When a cell contains two copies of each chromosome.‬‭For example, in human‬

‭somatic cells, there is one set of maternal chromosomes and one set of paternal‬
‭chromosomes.‬

‭●‬ ‭SNP:‬‭Single nucleotide polymorphism - a variant resulting‬‭from the substitution of a‬
‭single nucleotide compared to the reference.‬

‭●‬ ‭Allele-specific event:‬‭when there is a measurable‬‭difference (ex. In transcription factor‬
‭binding, gene expression, etc.) in outcome between different alleles.‬

‭●‬ ‭Binomial distribution:‬‭the probability distribution‬‭describing the number of “successful”‬
‭outcomes when performing a series of independent tests with a binary output, success‬
‭or failure (ex. A coin toss with possible outcomes of heads or tails).‬



‭●‬ ‭Reference bias:‬‭a bias that can occur when mapping reads to the reference genome‬
‭because reads containing non-ref SNPs or variants are less likely to map as well as‬
‭reads containing variants matching the reference.‬

‭●‬ ‭Personal diploid genome:‬‭a personal reference genome‬‭that separates an individual’s‬
‭maternal and paternal variants to improve mapping and mitigate reference bias.‬

‭●‬ ‭Null expectation/hypothesis:‬‭the expected distribution‬‭of results given the effect being‬
‭studied or tested for does not exist (ex. there is NO true difference between two‬
‭populations being tested, such as a case and control), and all variation arises from‬
‭random chance or technical errors.‬

‭●‬ ‭P-value:‬‭the probability of seeing a result as extreme‬‭or‬‭more extreme as the‬
‭observation given the null hypothesis.‬

‭●‬ ‭eQTL:‬‭expression quantitative trait loci - loci in‬‭the genome with variants influencing the‬
‭expression of a gene (or multiple genes).‬

‭●‬ ‭GWAS:‬‭Genome-wide association study - a research method‬‭used to link variants in the‬
‭genome, typically SNPs, to traits. The trait can be disease-related or not (i.e. height).‬
‭Requires genetic information for a large cohort of individuals.‬

‭●‬ ‭Homoscedasticity:‬‭a condition describing data for‬‭which the variance of the residuals‬
‭or error is consistent throughout the data, i.e. for all independent variables. In contrast,‬
‭with heteroscedastic data, the variance will change as the predictor variable changes.‬
‭Homoscedasticity is an assumption in linear regression.‬

‭●‬ ‭Normal distribution:‬‭a distribution used to describe‬‭a random variable that takes on a‬
‭“bell curve” shape. It has an equal mean and median and appears symmetrical.‬

‭●‬ ‭Ordinary least squares:‬‭a method in regression modeling‬‭used to estimate the‬
‭coefficients, which represent the relationship between the independent variables and a‬
‭chosen dependent variable. The goal of the method is to minimize the error between the‬
‭predicted values and observed values using the sum of squared errors.‬

‭●‬ ‭Covariates:‬‭independent‬‭variables besides the variable‬‭of interest that also influence‬
‭the study outcome.‬

‭●‬ ‭Manhattan plot:‬‭for GWAS, a plot depicting genomic‬‭location on the x-axis and the‬
‭negative log of the adjusted p-value on the y-axis. Each point may be a SNP studied in a‬
‭GWAS, with statistically significant findings standing out above a certain significance‬
‭threshold on the y-axis.‬

‭●‬ ‭Ancestry Principal Component Analysis (PCA):‬‭A dimensionality‬‭reduction technique‬
‭used in genetics to account for population structure by identifying major axes of genetic‬
‭variation, helping to correct for ancestry-related confounding in association studies.‬

‭●‬ ‭Bonferroni Correction:‬‭A statistical method that controls‬‭the family-wise error rate by‬
‭dividing the significance level by the number of independent tests to reduce false‬
‭positives.‬

‭●‬ ‭Family-wise error rate control:‬‭A multiple testing‬‭correction approach that limits the‬
‭probability of making at least one false positive (Type I error) across all conducted tests.‬

‭●‬ ‭Polygenic Risk Scores:‬‭A metric that aggregates the‬‭effects of multiple genetic‬
‭variants, weighted by their effect sizes, to estimate an individual's genetic predisposition‬
‭to a trait or disease.‬



‭Main Content/Topics‬

‭Allele-specific Annotation‬

‭1.‬ ‭What is an allele-specific event?‬

‭To understand‬‭allele-specific events‬‭, it is useful‬‭to consider the binding of a‬
‭transcription factor (TF) to the genome. Our genome is‬‭diploid‬‭, meaning we possess two‬
‭copies of each chromosome: one paternal and one maternal. This means that when a TF binds‬
‭the genome, it can bind to the maternal or the paternal copy of the TF binding site. Typically, the‬
‭degree of TF binding and the resulting gene expression is the same for the maternal and‬
‭paternal copies of the genome. However, in some cases, one copy, the maternal copy for‬
‭example, could have a variant or epigenetic modification increasing the binding affinity for the‬
‭TF. How could we determine this? One method would be to carry out a ChIP-Seq experiment for‬
‭that TF. Then, one can use the simple approach of counting how many reads there are for each‬
‭variant, as shown in the example below:‬

‭Let’s say the maternal copy contains the T variant in this case. For this ChIP-Seq experiment for‬
‭the TF of interest, there are 10 reads containing the T variant and only 2 containing the C‬
‭variant, indicating the TF is better able to bind the maternal, T-containing variant in this case.‬

‭While the simple counting method gives us an idea of the differences in TF binding‬
‭between the maternal and paternal alleles, we can also call allele-specific events using more‬
‭robust statistical methods. Say we want to annotate a SNP or variant site on the genome as‬
‭being allele-specific. This can manifest as differential activity between the two alleles in a‬
‭ChIP-Seq, RNA-Seq, methylation, or Hi-C experiment, for example. Given a read stack at the‬
‭locus of interest, the‬‭null hypothesis‬‭would be that‬‭the number of maternal and paternal alleles‬
‭should be about even. However, it is unlikely that‬‭exactly‬‭50% of the reads will be maternal and‬
‭paternal, even with the null expectation. Really, the proportion of maternal/paternal reads will be‬
‭sampled from a distribution: the most simple one to consider is the‬‭binomial distribution‬‭. The‬
‭binomial distribution can be used to model a series of tests with two possible outcomes, ex. A‬
‭coin flip. The distribution can help calculate the probability of a certain number of “successful”‬



‭outcomes in a series of such tests, ex. The probability of seeing 5 heads after 10 independent‬
‭coin flips. In the case of read mapping, if you sample 10 reads from your ChIP-Seq experiment,‬
‭you would expect to see 5 maternal and 5 paternal alleles. However, you might see another‬
‭result from the distribution, like 6 maternal and 4 paternal. An example of the binomial‬
‭distribution in the context of calling allele-specific events is illustrated below:‬

‭Here, variants with no allele-specific behavior are shown in red, and those with allele-specific‬
‭SNPs are shown in blue. The red therefore corresponds to the null expectation. In the case of‬
‭the blue, there are more extreme cases observed in the read stack: ex. 10 C and 0 T, or 9 C and‬
‭1 T. In this case, we may have an allele-specific event, and we can calculate a‬‭p-value‬‭or‬
‭probability of an allele-specific event using the null expectation. In this example, we can‬
‭calculate how likely we would see that extreme data point (ex. 9 C and 1 T) or a more extreme‬
‭case when sampling from the binomial distribution (i.e. by taking the area under the curve). In‬
‭practice, depending on the experimental context, researchers may choose to use a slightly‬
‭different distribution to model the null hypothesis, such as a beta-binomial distribution, which‬
‭allows for a wider tail.‬

‭2.‬ ‭Technical considerations‬

‭Imagine you have a set of reads from an experiment like ChIP-Seq: normally, you would‬
‭map the reads to the reference genome, getting a read stack, and continue on with your‬
‭analysis. However, consider the example below:‬



‭In this case, the paternal allele contains a T variant relative to the maternal allele and the‬
‭reference genome, which both contain an A at that locus. Since the paternal allele has a variant‬
‭relative to the reference, it will not map as well. For example, imagine a read has both the T‬
‭allele and a technical sequencing error downstream. Due to the combination of the error and the‬
‭biological variation, reads like this will not map as well. This ultimately results in a preference for‬
‭mapping the maternal alleles over the paternal ones. The concept of reads containing‬
‭non-reference alleles mapping less well is known as‬‭reference bias‬‭. This could easily skew‬
‭allele-specific event calling, whether we are using the simple counting method or the binomial‬
‭distribution. To overcome this limitation, it is useful to build a‬‭personal diploid genome‬‭for an‬
‭individual, and then map reads to the personal diploid genome instead as the reference before‬
‭counting.‬

‭GWAS‬

‭1.‬ ‭Goal of GWAS‬

‭The overarching goal of a‬‭genome-wide association‬‭study (GWAS)‬‭is to relate specific‬
‭variants to traits or phenotypes. The trait of interest could be a complex trait such as height or a‬
‭disease phenotype. It is considered a non-hypothesis-driven (or “hypothesis-free”), exploratory‬
‭approach since it involves searching the entire genome to discover risk variants with prior‬
‭knowledge of any specific risk regions.‬

‭Expression quantitative trait loci (eQTL)‬‭are specific‬‭locations in the genome that are‬
‭associated with the activity of target genes. These loci therefore explain at least some part of‬
‭the variation in gene expression. eQTLs can be related to GWAS because by modulating gene‬
‭expression, they can also contribute to a resulting phenotype of interest. If eQTLs overlap with‬
‭GWAS hits, this can help explain the mechanism behind the GWAS result. However, often only‬
‭a small percentage of GWAS hits correspond to eQTLs, as GWAS and eQTL mapping results‬
‭are biased for different kinds of hits (ex. GWAS hits tend to be located further from transcription‬
‭start sites (TSSs), are enriched near genes with known functional roles, and are under‬
‭significant selective constraint, whereas eQTLs are usually clustered more closely to TSSs of‬
‭genes without a functional annotation). See here for more details:‬



‭Mostafavi, H., Spence, J. P., Naqvi, S., & Pritchard, J. K. (2023). Systematic differences in‬
‭discovery of genetic effects on gene expression and complex traits.‬‭Nature Genetics‬‭,‬
‭55‬‭(11), 1866–1875.‬‭https://doi.org/10.1038/s41588-023-01529-1‬

‭2.‬ ‭Statistical Process‬

‭In a GWAS, we consider the entire genome when searching for potential variants. In a‬
‭cohort, individuals are genotyped, and then the presence of different variants can be correlated‬
‭with traits of interest (i.e. a disease, eye color, etc.). Using statistical tests, we can then‬
‭determine which of those correlations is significant. A large cohort size is typically needed to‬
‭have sufficient statistical power for a GWAS.‬

‭Due to the large scale of GWAS, the statistics can get challenging. Generally, we can‬
‭think of GWAS analysis as a multiple linear regression problem. For example, imagine you are‬
‭looking for variants influencing a quantitative trait, such as weight. For a given SNP‬‭S‬‭with‬
‭possible alleles allele‬‭1‬ ‭= A and allele‬‭2‬ ‭= G, there‬‭are 3 possible genotypes: AA, AG, and GG.‬
‭Now, when analyzing our cohort, we want to answer the following question with GWAS: is there‬
‭a statistically significant difference in weight among individuals in each possible genotype group‬
‭according to the allele‬‭2‬ ‭dosage (ex. Homozygous ref‬‭vs. homozygous alt vs. heterozygous)? To‬
‭address this question, we can regress weight versus the genomic dosage, giving the following‬
‭simple linear regression:‬

‭𝑦‬
‭𝑖‬

= β
‭0‬

+ β
‭1‬

· ‭𝑥‬
‭1‬‭𝑖‬

+ ε
‭𝑖‬

‭In which:‬

‭●‬ ‭represents weight‬‭i‬‭, or the weight of an individual‬‭i‬‭(‬‭dependent‬‭variable)‬‭𝑦‬
‭𝑖‬

‭●‬ ‭or b‬‭0‬ ‭represents the intercept‬β
‭0‬

‭●‬ ‭represents the dosage‬‭i‬ ‭or the dosage of allele‬‭2‬ ‭in individual‬‭i‬‭for SNP‬‭S‬‭(‬‭independent‬‭𝑥‬
‭1‬‭𝑖‬

‭or explanatory variable)‬
‭●‬ ‭represents b‬‭1‬ ‭or the effect of allele‬‭2‬ ‭on‬‭the individual’s weight‬β

‭1‬

‭●‬ ‭represents the error or residual for the weight‬‭of individual‬‭i‬ε
‭𝑖‬

‭The data might look something like this, for example:‬

https://doi.org/10.1038/s41588-023-01529-1


‭Using this model, we can do a simple linear fit or regression. It is important to keep in mind that‬
‭when we do a linear regression like this, we are making some assumptions about the data,‬
‭notably:‬

‭1.‬ ‭We assume there is a linear relationship between the dependent and independent‬
‭variables and not some other kind of relationship, ex. Polynomial.‬

‭2.‬ ‭The residuals (i.e. error) are‬‭homoscedastic‬‭, meaning‬‭there is constant variance in the‬
‭residuals.‬

‭3.‬ ‭The residuals are‬‭normally distributed‬‭.‬
‭4.‬ ‭The observations are independent and not correlated.‬

‭Using a method like‬‭ordinary least squares‬‭, we can‬‭get a regression line and estimate the‬
‭values of the slope and intercept:‬

‭With the ordinary least squares method, this involves determining the values of b‬‭0‬ ‭and b‬‭1‬ ‭which‬
‭minimize the sum of all squared residuals across the cohort. The criterion for ordinary least‬
‭squares is as follows:‬
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‭3.‬ ‭Complications: Covariates‬

‭In our large cohort of individuals, we have shown how to regress weight versus genomic‬
‭dosage. However, we haven’t yet considered‬‭covariates‬‭that could also influence weight in‬
‭addition to the allele‬‭2‬ ‭dosage. In truth, we know‬‭there are both genetic and non-genetic factors‬
‭at play in determining an individual’s weight. We would like to regress those other covariates out‬
‭in our model in order to study the effect of genomic dosage. For example, other factors including‬
‭weight could be diet, biological sex, or geographic location. We can compose a regression‬
‭model that includes those covariates so we know we are accounting for them:‬

‭𝑦‬
‭𝑖‬

= β
‭0‬

+ β
‭1‬

· ‭𝑥‬
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‭Similar to the previous regression model we looked at, in this case:‬



‭●‬ ‭i‬‭= 1…n observations (i.e. individuals or samples_‬
‭●‬ ‭represents weight‬‭i‬‭, or the weight of an individual‬‭i‬‭(‬‭dependent‬‭variable)‬‭𝑦‬

‭𝑖‬

‭●‬ ‭or b‬‭0‬ ‭represents the intercept‬β
‭0‬

‭●‬ ‭represents the dosage‬‭i‬ ‭or the dosage of allele‬‭2‬ ‭in individual‬‭i‬‭(‬‭independent‬‭or‬‭𝑥‬
‭1‬‭𝑖‬

‭explanatory variable), could be 0, 1, or 2‬
‭●‬ ‭are the covariates for that‬‭individual‬‭i‬‭(ex. Age, gender, diet, location)‬‭𝑥‬

‭2‬‭𝑖‬
+... + ‭𝑥‬

(‭𝑝‬−‭1‬)‭𝑖‬

‭●‬ ‭represents the error or residual for the weight‬‭of individual‬‭i‬ε
‭𝑖‬

‭Using this kind of model, we can now both model the relationship between y and all its‬
‭predictors x, and we can test if our‬‭specific‬‭explanatory‬‭variable of interest (in this case, the‬
‭dosage of allele‬‭2‬ ‭at SNP‬‭S‬‭) has a significant effect‬‭on the dependent variable (weight in our‬
‭example). Accounting for covariates is critical in a biomedical context because if we ignore‬
‭them, our results could be messed up by a confounding factor in the data. In this case, we have‬
‭accounted for some number of covariates 2 to p.‬

‭Once we have achieved such a model, we can address the fundamental question: is‬β
‭1‬

‭non-zero? The estimated value of‬ ‭, represented‬‭as b‬‭1‬ ‭or‬ ‭, is the estimated effect of the‬β
‭1‬

β
‭1‬

‭allele‬‭2‬ ‭dosage on weight based on our linear model.‬‭If‬ ‭is zero, this indicates that genomic‬β
‭1‬

‭dosage is not significantly related to the trait of interest.‬ ‭is therefore the null hypothesis.‬β
‭1‬

= ‭0‬

‭We can use a simple Student’s t-test to determine whether our predicted value‬ ‭is significantly‬β
‭1‬

‭different from the null hypothesis. Since the calculated‬‭t‬‭-statistic is part of the‬‭t‬‭distribution, we‬
‭can use it to calculate a p-value and determine if the difference is statistically significant based‬
‭on a chosen significance threshold (ex. 1%, 5%, 0.01%). If the p-value is below the given‬
‭threshold, we can reject the null hypothesis and determine that the gene dosage from SNP‬‭S‬
‭indeed has a statistically significant effect on an individual’s weight. However, if the p-value is‬
‭above the threshold, we would determine that the SNP does not have a significant effect on‬
‭weight. P-values from a GWAS can be represented visually in a‬‭Manhattan plot‬‭, in which the‬
‭genomic loci are plotted on the x-axis and the negative logarithm of the p-values for the tested‬
‭SNPs are plotted on the y-axis. The higher a point on the Manhattan plot, therefore, the lower‬
‭the p-value.‬



‭GWAS (Additional Considerations)‬

‭1.‬ ‭Study Design‬

‭When designing a‬‭Genome-Wide Association Study (GWAS)‬‭,‬‭it is essential to‬
‭determine whether the trait being studied is a‬‭quantitative‬‭or‬‭discrete variable‬‭, as this‬
‭influences the choice of study design and analysis methods. For‬‭discrete traits‬‭, such as‬
‭disease status, a‬‭case-control study‬‭is often used,‬‭where individuals are categorized into‬
‭cases (affected)‬‭and‬‭controls (unaffected)‬‭to identify‬‭genetic variants associated with the‬
‭condition.‬

‭One major consideration in GWAS is‬‭population stratification‬‭,‬‭which can introduce‬
‭confounding effects‬‭. Some‬‭single nucleotide polymorphisms‬‭(SNPs)‬‭may have different‬
‭allele frequencies‬‭across‬‭subpopulations‬‭, leading‬‭to‬‭false associations‬‭if not properly‬
‭accounted for. For example, if a GWAS were conducted on the trait‬‭"uses chopsticks"‬‭without‬
‭correcting for‬‭ancestry‬‭, SNPs more prevalent in‬‭East‬‭Asian populations‬‭might appear‬
‭associated with chopstick use, even though the real association is with ancestry rather than‬
‭genetics. To address this issue, researchers must include relevant‬‭covariates‬‭that control for‬
‭indirect effects‬‭unrelated to the‬‭phenotype of interest‬‭,‬
‭such as‬‭age, sex, and genotyping batch‬‭.‬

‭A common approach to mitigating‬‭population‬
‭stratification‬‭is‬‭Ancestry Principal Component Analysis‬
‭(PCA)‬‭. By analyzing‬‭genetic variation‬‭, PCA generates‬
‭principal components‬‭that summarize‬‭ancestry-related‬
‭differences‬‭in genetic data. Typically, the‬‭first‬‭five or six‬
‭principal components‬‭are included as‬‭covariates‬‭in‬‭GWAS‬
‭models‬‭to correct for‬‭ancestry-related confounding‬‭.‬‭This‬
‭ensures that‬‭genetic associations‬‭identified in the‬‭study are‬
‭due to the‬‭phenotype of interest‬‭rather than‬‭population‬
‭structure‬‭.‬

‭2.‬ ‭Power Calculations‬

‭Power‬‭refers to the probability of detecting a true‬‭association between a‬‭single‬
‭nucleotide polymorphism (SNP)‬‭and a‬‭trait‬‭. Statistical‬‭significance‬‭is assigned to‬‭non-zero‬
‭beta (β) coefficients‬‭, which quantify the effect of‬‭a given SNP on the trait and depend on the‬
‭sample size (n)‬‭.‬



‭Power in GWAS is influenced by several key factors, including‬‭sample size, allele‬
‭frequency, and effect size‬‭. A‬‭larger sample size (n)‬‭and a‬‭higher minor allele frequency‬
‭(MAF, f)‬‭improve the accuracy of estimating the SNP‬‭effect (‬‭β‬‭). Additionally, larger‬‭absolute‬
‭values of β‬‭increase the‬‭difference from the null‬‭model‬‭, where no association exists (e.g.,‬
‭the mean value of the trait remains the same across genotype groups).‬

‭When evaluating whether a significant‬‭association‬‭exists between a‬‭trait‬‭and‬
‭genotype‬‭, it is crucial to perform‬‭power calculations‬‭.‬‭These calculations help determine the‬
‭necessary‬‭sample size‬‭given an expected‬‭effect size‬‭to ensure the study has enough‬‭power‬
‭to detect true associations.‬

‭3.‬ ‭GWAS‬

‭The‬‭type of study‬‭in‬‭Genome-Wide Association Studies‬‭(GWAS)‬‭determines the‬
‭appropriate‬‭statistical model‬‭used for analysis. If‬‭the trait being studied is‬‭quantitative‬‭(e.g.,‬
‭height, blood pressure),‬‭linear regression‬‭is applied,‬‭where‬‭beta (β) values‬‭represent the‬
‭effect size of a given SNP on the trait.‬

‭For‬‭case-control studies‬‭(e.g., disease vs. healthy‬‭individuals),‬‭logistic regression‬‭is‬
‭used instead, calculating‬‭odds ratios (ORs)‬‭to estimate‬‭the likelihood of disease presence‬
‭based on genetic variation. Choosing the correct statistical model ensures accurate‬
‭interpretation of‬‭SNP-trait associations‬‭.‬

‭4.‬ ‭Downstream Analysis‬

‭A key assumption in‬‭linear regression for GWAS‬‭is‬‭that all SNPs are‬‭independent‬‭.‬
‭However, in reality,‬‭linkage disequilibrium (LD)‬‭—the‬‭non-random association of alleles—leads‬
‭to many SNPs being highly correlated. This can result in a large number of‬‭indirect‬
‭associations‬‭, where significant SNPs may not be causative‬‭but instead linked to the true‬
‭causal variant. Out of approximately‬‭4 million SNPs‬‭in the human genome, only about‬‭0.5 to 1‬
‭million‬‭are truly independent.‬

‭To account for multiple hypothesis testing,‬‭multiple-test‬‭correction‬‭is required. One‬
‭common method is‬‭Bonferroni correction‬‭, which controls‬‭the‬‭family-wise error rate (FWER)‬
‭to maintain an acceptable false positive rate. Given that GWAS tests up to‬‭1 million‬
‭independent SNPs‬‭, the adjusted significance threshold‬‭is calculated as:‬



‭This results in a‬‭very stringent significance threshold‬‭to minimize false positives.‬
‭However,‬‭Bonferroni correction‬‭is considered overly‬‭conservative, as it assumes‬
‭independence among tests and does not account for the correlation structure introduced by LD.‬
‭Other approaches, such as‬‭family-wise error rate control‬‭and alternative multiple-testing‬
‭corrections, may be used to balance false discovery control with statistical power.‬

‭Beyond individual SNP associations, researchers construct‬‭Polygenic Risk Scores‬
‭(PRS)‬‭to assess the cumulative genetic contribution‬‭to a trait. PRS is a‬‭linear combination of‬
‭effect sizes (β values) from multiple SNPs‬‭, aiming‬‭to enhance‬‭trait predictability‬‭beyond‬
‭single-SNP associations. To improve accuracy, PRS models include‬‭SNPs below a certain‬
‭p-value threshold‬‭while ensuring that only‬‭low-LD‬‭SNPs‬‭are retained to maintain independent‬
‭signals.‬

‭5.‬ ‭Replication Studies‬

‭Replication studies are essential in‬‭validating GWAS‬‭findings‬‭and ensuring that‬
‭identified SNP-trait associations are‬‭robust and reproducible‬‭across different populations.‬
‭Since‬‭GWAS involves millions of statistical tests‬‭,‬‭false positives are inevitable, making‬
‭independent replication a critical step before claiming a true genetic association.‬

‭GWAS has evolved‬
‭Since the first‬‭Genome-Wide Association Study (GWAS)‬‭was conducted at‬‭Yale by‬

‭Robert Kline‬‭two decades ago to identify genetic risk‬‭factors for‬‭macular degeneration‬‭,‬
‭GWAS has evolved into a‬‭powerful and large-scale genomic‬‭tool‬‭. Today, it is widely used in‬
‭both‬‭academic research and commercial applications‬‭,‬‭driving discoveries across numerous‬
‭complex traits and diseases.‬

‭Modern GWAS is now a‬‭global enterprise‬‭, with large‬‭datasets and‬‭biobanks‬‭enabling‬
‭researchers to identify genetic variants associated with various conditions.‬‭Companies like‬
‭23andMe‬‭use GWAS to offer‬‭direct-to-consumer genetic‬‭testing‬‭, providing individuals with‬
‭insights into their genetic predispositions. Additionally, the‬‭NHGRI-EBI Catalog of Human‬
‭GWAS Studies‬‭serves as a comprehensive‬‭repository‬‭of significant SNPs‬‭, consolidating‬
‭findings from thousands of GWAS studies worldwide.‬

‭Expression Quantitative Trait Loci (eQTL) Analysis‬

‭eQTL analysis extends the principles of‬‭Genome-Wide‬‭Association Studies (GWAS)‬
‭by identifying genetic variants that influence‬‭gene‬‭expression levels‬‭rather than phenotypic‬
‭traits like height or weight. eQTL studies regress‬‭genetic variants against gene expression‬
‭levels‬‭instead of regressing against a physical characteristic,‬‭typically measured as the number‬



‭of RNA sequencing reads for a particular gene. Like GWAS, eQTL studies are conducted at a‬
‭population scale‬‭and follow similar statistical frameworks‬‭for quantitative traits.‬

‭Researchers often‬‭simplify calculations‬‭to manage‬‭the computational burden and‬
‭multiple testing corrections given the vast number of genetic variants and genes that could be‬
‭tested. The majority of eQTL studies focus on‬‭cis-eQTLs‬‭,‬‭where genetic variants are tested for‬
‭association‬‭only within a predefined genomic window‬‭surrounding the gene of interest,‬
‭reducing the number of statistical tests and increasing the likelihood of detecting true‬
‭associations. However, some studies use‬‭trans-eQTLs‬‭,‬‭where variants located on‬‭one‬
‭chromosome‬‭are tested for their effects on gene expression‬‭on‬‭a different chromosome‬‭.‬
‭Trans-eQTL analyses are particularly used for insights into long-range regulatory interactions,‬
‭such as transcription factor binding or chromatin looping. However, trans-eQTL are much more‬
‭challenging due to the need for extensive multiple testing corrections. As a result,‬‭trans-eQTL‬
‭studies remain conceptually valuable but are not commonly performed‬‭.‬

‭Another key challenge in eQTL analysis is the possibility of‬‭unaccounted covariates‬
‭that may confound results. Researchers often adopt a‬‭hierarchical testing approach‬‭to‬
‭address this challenge and reduce the number of statistical comparisons. Instead of testing‬
‭each gene against all possible features independently (which would require correcting for a‬
‭massive number of tests), hierarchical approaches‬‭first test broader gene-level groupings‬
‭(clusters) for significance‬‭. If a cluster is found‬‭to be significant, researchers then perform‬
‭additional tests within the cluster to identify the specific feature driving the association. This‬
‭method significantly reduces the burden of‬‭multiple‬‭testing correction‬‭, making eQTL studies‬
‭more computationally feasible.‬

‭Discussion/Comments‬

‭●‬ ‭When we perform a linear regression, we make a few key assumptions. Which of these‬
‭assumptions do you think might be violated in a GWAS? Explain.‬

‭○‬ ‭Example answer: we assume that all observations are independent, but we know‬
‭this isn’t true because of linkage disequilibrium. Fine-mapping techniques are‬
‭needed to find the true causal variants among the correlated variants.‬

‭●‬ ‭In previous lectures, we discussed how the genomes of African individuals generally‬
‭contain more variants, and therefore more SNPs, relative to the reference. This is due to‬
‭founder effects from early human populations leaving Africa at various points, leading to‬
‭genetic drift. How would this affect LD for African populations (ex. Would you expect‬
‭higher or lower LD compared to individuals of European descent?). How could this‬
‭impact a GWAS analysis? For example, if GWAS is done using only individuals of‬
‭European descent, do you think the results will apply well to African and‬
‭African-American populations? Why or why not?‬

‭○‬ ‭Given your answer to the question above, what are the implications for ethical‬
‭execution of a GWAS, particularly in a clinical setting?‬

‭○‬ ‭Example answer: Because African genomes are more diverse, they will also‬
‭have lower LD. This means an analysis done only on European populations‬
‭could be missing key SNPs. In a clinical setting, it is critical to use a more diverse‬



‭population, otherwise individuals from other populations, like individuals of‬
‭African ancestry, will be excluded from the medical benefits of the study findings.‬

‭●‬ ‭Say you find a new disease-associated variant for a complex disease using GWAS.‬
‭What follow-up experiments could you do to determine the mechanism by which this‬
‭variant impacts disease risk? (Example answer: do a type of Hi-C analysis to see which‬
‭areas of the genome that locus interacts with. For example 4C-seq allows you to see‬
‭which other parts of the genome interact with a region of interest. Then, see if those‬
‭interacting regions have a function related to disease, ex. Promoter for a gene involved‬
‭in disease mechanism.)‬

‭○‬ ‭Say you find 8 SNPs in one region of the genome that are all associated with‬
‭disease. Why might this occur? How can you determine which SNP actually‬
‭plays a mechanistic role in disease risk?‬

‭○‬ ‭Example answer: The SNPs are in LD with each other. Determining the causal‬
‭SNP in this case is known as “fine-mapping”, and there are many possible‬
‭approaches to this. For example, you could build an‬‭in vitro‬‭system to‬
‭independently test the impact of each SNP on gene expression, i.e. a massive‬
‭parallel reporter assay. Using multiple ethnic groups in the analysis with different‬
‭LDs can also be advantageous in narrowing down the causal variants‬‭in silico‬‭,‬
‭though this method relies on an assumption that all populations should‬
‭theoretically share the disease-causing variant. For more information on‬
‭fine-mapping, see this resource:‬

‭Wang, Q. S., & Huang, H. (2022). Methods for statistical fine-mapping and their‬
‭applications to auto-immune diseases.‬‭Seminars in‬‭Immunopathology‬‭,‬‭44‬‭(1), 101–113.‬
‭https://doi.org/10.1007/s00281-021-00902-8‬

‭References ISL/ESL‬

‭ISL (An Introduction to Statistical Learning, with Applications in Python):‬
‭●‬ ‭Relevant Chapters:‬

‭○‬ ‭Chapter 3: Linear regression: OLS, assumption of linear regression,‬
‭○‬ ‭Chapter 4: Classification: Logistic regression, odds ratio‬
‭○‬ ‭Chapter 12: Unsupervised learning: Principal Component Analysis‬
‭○‬ ‭Chapter 13: Multiple testing: Bonferroni correction, Family-wise error rate‬

‭●‬ ‭Chapter 3: Linear regression:‬
‭○‬ ‭Simple linear regression:‬
‭○‬ ‭It assumes that there is approximately a linear relationship between X and Y .‬

‭a very straightforward simple linear approach for predicting a quantitative‬
‭response Y on the basis of a single regression predictor variable X.‬

‭■‬
‭■‬ ‭Estimate betas (OLS):‬

https://doi.org/10.1007/s00281-021-00902-8
https://doi.org/10.1007/s00281-021-00902-8


‭■‬ ‭Assessing accuracy of coefficients:‬
‭To compute the standard errors associated with beta_0 and beta_1, we‬
‭use the following formulas‬

‭■‬ ‭Assessing accuracy a model:‬
‭●‬ ‭The residual standard error (RSE) is an estimate of the standard‬

‭deviation of the error term. Roughly speaking, it is the average‬
‭amount that the response will deviate from the true regression‬
‭line.‬
‭It is computed using the formula‬

‭●‬ ‭R square:‬
‭The R-square statistic provides an alternative measure of fit. It‬
‭takes the form of a proportion—the proportion of variance‬
‭explained—and so it always takes on a value between 0 and 1.‬
‭and is independent of the scale of  Y.‬

‭○‬ ‭Multiple linear regression:‬
‭Similarly with the simple regression:‬

‭■‬ ‭Formula:‬
‭We choose betas to minimize the sum of squared residuals‬



‭●‬ ‭Chapter 4: Classification (4.3 Logistic regression)‬

‭○‬ ‭Formula:‬

‭To fit the model, we use a method called maximum likelihood.‬
‭○‬ ‭Log odds:‬

‭●‬ ‭Chapter 12: Unsupervised learning (12.2 Principal Component Analysis)‬
‭○‬ ‭Principal components analysis (PCA) refers to the process by which principal‬

‭components are computed, and the subsequent use of these components in‬
‭understanding the data.‬

‭○‬ ‭principal components (PC):‬

‭○‬
‭And similar for the remaining PCs.‬

‭●‬ ‭Chapter 13: Multiple testing‬
‭○‬ ‭Type I error & Type II error:‬



‭○‬ ‭Family-wise error rate (FWER):‬
‭controlling the probability of making at least one Type I error. The family-wise‬
‭error rate is given by:‬

‭○‬ ‭Bonferroni:‬

‭Besides Bonferroni, they also discussed other methods to control FWER in this‬
‭section: e.g. Holm’s step-down procedure, Tukey’s method and Scheffé’s method‬

‭Citation:‬
‭James, G., Witten, D., Hastie, T., & Tibshirani, R. (2023). An Introduction to Statistical Learning:‬
‭With Applications in Python. Chapter 10 – Deep Learning. First Printing, Springer.‬

‭ESL (The Elements of Statistical Learning, Second Edition):‬
‭●‬ ‭Relative Chapter:‬

‭○‬ ‭Chapter 3: Linear method for regression: 3.2 Linear Regression Models and‬
‭Least Squares‬

‭○‬ ‭Chapter 4: Linear Methods for Classification‬
‭●‬ ‭Chapter 3: Linear Regression‬

‭○‬ ‭Except contents mentioned in ISL, ESL gave the matrix formula of multiple linear‬
‭regression of OLS in linear regression:‬



‭●‬ ‭Chapter 4: Classification‬
‭○‬ ‭Similarly as mentioned in the ISL:‬

‭○‬

‭Citation:‬
‭Hastie, T., Tibshirani, R., & Friedman, J. (2017). The Elements of Statistical Learning: Data‬
‭Mining, Inference, and Prediction. Chapter 11 – Neural Networks. Corrected 12th Printing,‬
‭Second Edition, Springer.‬

‭Other Suggest references‬

‭A reference about power calculation:‬
‭Serdar CC, Cihan M, Yücel D, Serdar MA. Sample size, power and effect size revisited:‬
‭simplified and practical approaches in pre-clinical, clinical and laboratory studies. Biochem Med‬
‭(Zagreb). 2021 Feb 15;31(1):010502. doi: 10.11613/BM.2021.010502. Epub 2020 Dec 15.‬
‭PMID: 33380887; PMCID: PMC7745163.‬

‭A reference about model assumption and diagnostics:‬
‭Shatz I. Assumption-checking rather than (just) testing: The importance of visualization and‬
‭effect size in statistical diagnostics. Behav Res Methods. 2024 Feb;56(2):826-845. doi:‬
‭10.3758/s13428-023-02072-x. Epub 2023 Mar 3. PMID: 36869217; PMCID: PMC10830673.‬


