
Lecture Title and Date

Deep Learning Fundamentals I: Artificial Neural Network, 2/24

Objectives of the Lecture

●​ Understand what is “deep learning” and what is an artificial neural network (NNs)
○​ Know applications of deep learning

●​ Describe the structure of a deep neural network
○​ Explain how an output is generated from a neural network

●​ Understand how MLPs and NNs are trained through backward propagation
●​ Describe advantages, limitations, and key considerations (i.e. how many hidden layers to

use) in designing and using deep NNs.

Key Concepts and Definitions

●​ Neural network - refers to a machine learning model designed to mimic artificial
neurons that are interconnected and process information to arrive at some conclusion.
Every neural network consists of layers of nodes, or artificial neurons—an input layer,
one or more hidden layers, and an output layer. Each node connects to others, and has
its own associated weight and threshold.

●​ Multilayer perceptron - a type of neural network with multiple layers of neurons,
including an input layer, one or more hidden layers, and an output layer, allowing it to
learn complex non-linear relationships, while a "single layer perceptron" only has one
layer of neurons, limiting its ability to learn only simple linear patterns; essentially, an
MLP is a more powerful model due to its additional hidden layers.

(a)​= single-layer perceptron (b) multi-layer perceptron

●​ Bias - measure of ease in firing the perceptron. Correspond to the intercept in a linear

model of the weighted inputs.
●​ Gradient descent - standard optimization algorithm that facilitates the search of

parameters values that minimize the cost function towards a local minimum or optimal
accuracy by calculating the gradient of a differentiable function and moving in the
opposite direction of the gradient (i,e, backpropagation).

●​ Backpropagation - mechanism by which components that influence the output of a
neuron (bias, weights, activations) are iteratively adjusted to reduce the cost function.

The backpropagation’s operations calculate the partial derivative of the cost
function with respect to the weights, biases, and previous layer activations to
identify which values affect the gradient of the cost function.

●​ Learning rate -a hyperparameter chosen during model training that governs how much
a machine learning model adjusts its parameters at each step of its optimization
algorithm. It helps ensure that a model learns enough from training to make meaningful
adjustments to its parameters while also not overcorrecting.

●​ Dropout - regularization technique designed to reduce overfitting in neural networks by

randomly “dropping” a fraction of neurons during each training iteration. This is supposed
to force the network to learn more robust features and not be overly reliant on any single
neuron.

●​ Convolutional neural network (CNN) - a specific type of neural network that is
particularly well-suited for analyzing visual data like images, where it leverages a
process called "convolution" to extract features from the input data by focusing on a
small region of the input, being the receptive field.

Main Content/Topics

A brief history on deep learning:
●​ (1997) Deep Blue - “artificial intelligence,” 1997 IBM supercomputer that defeated chess

world champion Garry Kasparov. The key difference between Deep Blue and modern
artificial intelligence is that Deep Blue’s parameters were all pre-defined by humans.
Thus, Deep Blue just memorized millions of openings and end games, stored in a huge
database, and computed positional combinations to beat Kasparov.

●​ (2016) AlphaGo - modern artificial intelligence computer that defeated Weiqi (Go) world
champions Lee Sedol and Ke Jie.Rather than memorize positions and endgames,
AlphaGo uses deep neural networks, reinforcement learning, plus a decision search tree
to actually learn how to play Go. AlphaZero - iteration of AlphaGo that doesn’t require
human knowledge; Took just 3 days to train and only 3 weeks to beat the Go world
champion. AlphaStar - deep learning model that can play StarCraft

●​ In the biomedical field: AlphaFold. The idea underlying AlphaFold was postulated first
by Afinsen (1972): a proteins’ amino acid sequence should fully determine its structure.
However, there was a problem with us, best described by Levinthal’s paradox: “It would
take longer than the age of the known universe to enumerate all possible configurations
of a typical protein by brute force. Yet in nature, proteins fold spontaneously and some
within milliseconds” In other words, computing all possible configurations of an average
protein would require huge computational resources & time. Using deep learning and
improving from AlphaFold2, AlphaFold3 demonstrated more accurate single protein
structures, protein complexes, and the effect of covalent modifications on protein
structure. Note that complexes include protein-RNA interactions and protein-DNA
interactions and covalent modifications include bonded ligands, glycosylation, modified
protein residues, nucleic acid bases.

○​ The AlphaFold3 architecture comprises:
■​ Core component: Pairformer (Self-attention & Transformer)
■​ Diffusion-based (generative modeling) approach
■​ Replaces the ReLu activation function in the 48 transition blocks with

SwiGLU
1. KEY Q: What is an artificial neural network?
Conceptual background:
1.1. McCulloch-Pitts neuron (1943)

●​ Briefly, the structure and signaling process: dendrites receive input > soma integrates
and processes signal (decides whether to activate) > axon transmits and outputs the
signal > downstream neurons. A mathematical representation of these components
looks like: x = input matrix; w = weight matrix, y = o (omega) = sum of the weighted
inputs

●​ How is an output generated?
○​ (1) Multiply each binary input by its weight
○​ (2) Sum all weighted inputs
○​ (3) Compare sum with the threshold
○​ (4) Output binary (1 or 0) representing whether the neuron is fired

●​ Example: Deciding whether to attend a cheese festival

Note: Since we hate bad weather, we place higher weight on the “rainy” binary input. In this
case, if the weather is good (i.e. x1 = 1), then the sum of weighted x’s (x1*w1 + x2*w2 + x3*w3)
will be greater than the threshold value even if we don’t have a friend to go with (x2 = 0) and the
festival is far away (x3 = 0).

○​ Math: x1*w1 + x2*w2 + x3*w3 = 6 + 0 + 0 = 6. 6 > threshold of 5 → “neuron
fires”, i.e. we go to the cheese festival

If the weather is bad (i.e. x1=0) even if we have a friend to go with (x2=1) and the festival is
close (x3=1), the weighted sum will not be > threshold of 5, so we will not go to the festival.

Example #2: Threshold=3. In this case, even if the weather is not good (x1=0), we still have a
chance of exceeding the threshold and going to the festival if x2=1 and x3=1.

1.2 Perceptron (Rosenblatt, 1958)

The perceptron was a new version of the artificial neuron that replaces threshold with a
perceptron bias b = -threshold.

The perception thus has a new training method, which is very similar to that of a modern NN.

●​ (1) Initialization - start with random weights and bias
●​ (2) Prediction - compute the perceptron output for each input

●​ (3) Update rule - based on loss function and learning rate

○​
●​ (4) Repeat - iterate over the dataset until the perceptron converges or maximum number

of epochs reached.

1.3 The XOR Problem

The main issue with single-layer perceptions is that they are only capable of learning linearly
separable patterns since they compute a linear decision boundary. For example, XOR
(“exclusive or”) is a logical operator that compares 2 inputs and returns true if only one of them
is true. However, XOR’s True/False outputs can’t be separated by a single, linear decision
boundary, as shown in the figure below.

The solution? Add nonlinearity and more layers.

2. Multi-Layer Perceptron (MLP):

2.1 Modern MLP Structure

●​ Input layer takes raw data as input and has the same number of neurons as the number
of input features. The second component are the Hidden layers (potentially many).
Hidden layers extract features using weighted connections and apply activation functions
(e.g. sigmoid, ReLU) to the weighted inputs, which adds nonlinearity to the output.
Finally, the output layer produces predictions (e.g. 1 for regression, n for classification).
The number of neurons is defined as the number of output classes.

KEY Q: How do we train a deep NN?

2.2 Backward propagation

●​ The purpose of backward propagation is to minimize prediction error by adjusting
weights. To do so, we efficiently compute gradients using the chain rule.

●​ The Process:
○​ (1) Forward propagation - compute predictions starting from input
○​ (2) Error/loss calculation - compare predictions to the true labels (e.g. error =

difference between predictions and actual values)
■​ Ex: mean squared error = ½(prediction - actual)^2

○​ (3) Backward propagation - calculate gradients of the loss function wrt weights
■​ Gradient descent: for each step, calculate the gradient at that point
■​ As go further back, need to take partial derivatives and use the chain rule
■​ Step size determined by learning rate

■​
○​ (4) Weight update - adjust weights using gradient descent

There are millions of weights (i.e. parameters) that are trained in modern NNs.

○​ Note: No nonlinearity or activation applied yet
●​ See reference “Neural Networks Pt 2: Backpropagation Main Ideas” for more details.

2.3 Activation function

●​ Activation function - analogous to the rate of action potential firing in a neuron. Applies
a nonlinearity to the weighted inputs, allowing the model to use nonlinear decision
boundaries for regression / classification. The simplest activation function is binary (i.e.
step function). Modern activation functions introduce a region of uncertainty and are
differentiable (important for using the chain rule in backpropagation). For example, the
Sigmoid function is great because it’s derivative is easy to calculate & thus makes the
chain rule easy to compute:

Common activation functions enable efficient optimization of gradient-based methods:

2.4 Key Concepts

●​ Learning rate: When the learning rate (which defines step size in gradient descent
algorithm) is too low, gradient descent requires too many updates / time before reaching
the minimum (of the loss function). On the other hand, if the learning rate is too high, we
risk the model jumping around the minimum and possibly never converging. Ideally, the
learning rate allows the model to swiftly reach the minimum point.

●​ Dropout is a regularization technique designed to reduce overfitting in neural networks.
How it works is that for each training iteration (“mini-batch"), we randomly “drop” (set to
zero) a fraction of the neurons. This forces the network to NOT rely on a few or a single
neuron, but rather, to actually learn underlying features of the inputs.

●​ Convolutional neural networks (CNN) use a convolutional layer to automatically learn
and extract features form input data. CNNs are commonly used for image data, which
are represented by a large grid of pixels, with each pixel grayscale value representing an
input with range (0,255). CNNs focus on the receptive field, a small region of the input.
The convolutional layer gradually “slides” through each receptive field -> represents in its
own pixel / input neuron -> generate features

2.5 KEY Q: What is deep learning?

●​ TL;DR: A rebranding of NNs
●​ “Deep” indicates a multi-layer structure (i.e. having 2+ hidden layers), and modern

networks commonly have > 10 hidden layers. Deep learning models use learning
algorithms to automatically learn weights and biases, and are trained via Stochastic
gradient descent (SGD) and backpropagation. Deep learning models have been shown
to perform better for many problems than single-hidden layer (“shallow”) NNs.

2.6 Caveats

There are important limitations or disadvantages to deep NNs. First, they require lots of
training data. Second, deep networks contain lot of parameters, making design and
optimization difficult. Because the NN takes blackbox approach to training, hence the “hidden”
aspect of “hidden layers”, it can be hard to interpret the output and/or how the NN arrived at
that output. Finally, there are important considerations needed for choosing the number of
hidden layers and the number of neurons in each hidden layer. The general consensus is that
one hidden layer is sufficient for most problems, as the performance improvement from
adding > 2 hidden layers is very small. As for the number of neurons, there is general
consensus on the optimal size of hidden layer being typically between the size of input and size
of output layers. Indeed, “Intro to Neural Networks in Java” author Jeff Heaton suggests using
the mean of the number of neurons in input and output layers as the number of neurons in the
hidden layer(s).

Discussion/Comments

●​ Artificial Neural Networks (ANNs) are machine learning models inspired by the structure
and function of biological neural networks.

●​ Their ability to learn complex patterns from large datasets without explicit programming
allows them to solve problems that traditional algorithms struggle with

●​ The main initial innovation is their capacity to detect nonlinear relationships in
high-dimensional and complex data.

●​ They haven used to analyze high-dimensional biological data, predict protein structures,
classify tumors from histopathological images, and identify potential drug targets by
modeling molecular interactions.

List all suggested reading here and please answer:
Are the readings for the class useful? If so, are the specific subsections useful or would change.
If not, are there other references you could suggest? Please suggest one.

●​ Free online books
○​ The Nature of Code by Daniel Shiffman - 10. Neural Networks (easy to read):

http://natureofcode.com/book/chapter-10-neural-networks/
○​ Neural Networks and Deep Learning by Michael Nielsen:

http://neuralnetworksanddeeplearning.com/index.html
●​ Review articles

○​ Yann LeCun, Yoshua Bengio, Geoffrey Hinton. Deep learning. Nature 521,
436–444 (28 May 2015)

References ISL/ESL (if any)

●​ An Introduction to Statistical Learning, Chapter 10, Deep learning:
https://www.statlearning.com/

https://www.statlearning.com/

The ISL reference on deep learning is especially useful, as it breaks down the architecture of
NNs starting with single-layer, then multi-layer networks, then CNNs. The text also gives
students a more in-depth mathematical background on how output is generated in MLPs and
goes beyond the lecture content starting from approx. section 10.4.

Other Suggest references for many of the key concepts

 The Essential Main Ideas of Neural Networks

 Neural Networks Pt. 2: Backpropagation Main Ideas

https://www.youtube.com/watch?v=CqOfi41LfDw
https://www.youtube.com/watch?v=IN2XmBhILt4

	Lecture Title and Date
	Objectives of the Lecture
	Key Concepts and Definitions
	
	Main Content/Topics
	Discussion/Comments
	List all suggested reading here and please answer:
	References ISL/ESL (if any)
	Other Suggest references for many of the key concepts
	The Essential Main Ideas of Neural Networks
	

