
Lecture Title and Date 

Deep Learning Fundamentals I: Artificial Neural Network, 2/24 

Objectives of the Lecture 

●​ Understand what is “deep learning” and what is an artificial neural network (NNs) 
○​ Know applications of deep learning 

●​ Describe the structure of a deep neural network 
○​ Explain how an output is generated from a neural network 

●​ Understand how MLPs and NNs are trained through backward propagation 
●​ Describe advantages, limitations, and key considerations (i.e. how many hidden layers to 

use) in designing and using deep NNs. 

Key Concepts and Definitions 

●​ Neural network - refers to a machine learning model designed to mimic artificial 
neurons that are interconnected and process information to arrive at some conclusion. 
Every neural network consists of layers of nodes, or artificial neurons—an input layer, 
one or more hidden layers, and an output layer. Each node connects to others, and has 
its own associated weight and threshold.  

●​ Multilayer perceptron - a type of neural network with multiple layers of neurons, 
including an input layer, one or more hidden layers, and an output layer, allowing it to 
learn complex non-linear relationships, while a "single layer perceptron" only has one 
layer of neurons, limiting its ability to learn only simple linear patterns; essentially, an 
MLP is a more powerful model due to its additional hidden layers.  

(a)​= single-layer perceptron (b) multi-layer perceptron 

 
●​ Bias - measure of ease in firing the perceptron. Correspond to the intercept in a linear 

model of the weighted inputs. 
●​ Gradient descent - standard optimization algorithm that facilitates the search of 

parameters values that minimize the cost function towards a local minimum or optimal 
accuracy by calculating the gradient of a differentiable function and moving in the 
opposite direction of the gradient (i,e, backpropagation). 

●​ Backpropagation - mechanism by which components that influence the output of a 
neuron (bias, weights, activations) are iteratively adjusted to reduce the cost function. 



The backpropagation’s operations calculate the partial derivative of the cost 
function with respect to the weights, biases, and previous layer activations to 
identify which values affect the gradient of the cost function. 

●​ Learning rate -a hyperparameter chosen during model training that governs how much 
a machine learning model adjusts its parameters at each step of its optimization 
algorithm. It helps ensure that a model learns enough from training to make meaningful 
adjustments to its parameters while also not overcorrecting. 

 
●​ Dropout - regularization technique designed to reduce overfitting in neural networks by 

randomly “dropping” a fraction of neurons during each training iteration. This is supposed 
to force the network to learn more robust features and not be overly reliant on any single 
neuron. 

●​ Convolutional neural network (CNN) - a specific type of neural network that is 
particularly well-suited for analyzing visual data like images, where it leverages a 
process called "convolution" to extract features from the input data by focusing on a 
small region of the input, being the receptive field. 

 

Main Content/Topics 

A brief history on deep learning: 
●​ (1997) Deep Blue - “artificial intelligence,” 1997 IBM supercomputer that defeated chess 

world champion Garry Kasparov. The key difference between Deep Blue and modern 
artificial intelligence is that Deep Blue’s parameters were all pre-defined by humans. 
Thus, Deep Blue just memorized millions of openings and end games, stored in a huge 
database, and computed positional combinations to beat Kasparov. 

●​ (2016) AlphaGo - modern artificial intelligence computer that defeated Weiqi (Go) world 
champions Lee Sedol and Ke Jie.Rather than memorize positions and endgames, 
AlphaGo uses deep neural networks, reinforcement learning, plus a decision search tree 
to actually learn how to play Go. AlphaZero - iteration of AlphaGo that doesn’t require 
human knowledge; Took just 3 days to train and only 3 weeks to beat the Go world 
champion. AlphaStar - deep learning model that can play StarCraft 



●​ In the biomedical field: AlphaFold. The idea underlying AlphaFold was postulated first 
by Afinsen (1972): a proteins’ amino acid sequence should fully determine its structure. 
However, there was a problem with us, best described by Levinthal’s paradox: “It would 
take longer than the age of the known universe to enumerate all possible configurations 
of a typical protein by brute force. Yet in nature, proteins fold spontaneously and some 
within milliseconds” In other words, computing all possible configurations of an average 
protein would require huge computational resources & time. Using deep learning and 
improving from AlphaFold2, AlphaFold3 demonstrated more accurate single protein 
structures, protein complexes, and the effect of covalent modifications on protein 
structure. Note that complexes include protein-RNA interactions and protein-DNA 
interactions and covalent modifications include bonded ligands, glycosylation, modified 
protein residues, nucleic acid bases.  

○​ The AlphaFold3 architecture comprises: 
■​ Core component: Pairformer (Self-attention & Transformer) 
■​ Diffusion-based (generative modeling) approach 
■​ Replaces the ReLu activation function in the 48 transition blocks with 

SwiGLU 
1. KEY Q: What is an artificial neural network? 
Conceptual background: 
1.1. McCulloch-Pitts neuron (1943) 

 
 

●​ Briefly, the structure and signaling process: dendrites receive input > soma integrates 
and processes signal (decides whether to activate) > axon transmits and outputs the 
signal > downstream neurons. A mathematical representation of these components 
looks like: x = input matrix; w = weight matrix, y = o (omega) = sum of the weighted 
inputs 

●​ How is an output generated? 
○​ (1) Multiply each binary input by its weight 
○​ (2) Sum all weighted inputs 
○​ (3) Compare sum with the threshold 
○​ (4) Output binary (1 or 0) representing whether the neuron is fired 



●​ Example: Deciding whether to attend a cheese festival 

 

Note: Since we hate bad weather, we place higher weight on the “rainy” binary input. In this 
case, if the weather is good (i.e. x1 = 1), then the sum of weighted x’s (x1*w1 + x2*w2 + x3*w3) 
will be greater than the threshold value even if we don’t have a friend to go with (x2 = 0) and the 
festival is far away (x3 = 0). 

○​ Math: x1*w1 + x2*w2 + x3*w3 = 6 + 0 + 0 = 6. 6 > threshold of 5 → “neuron 
fires”, i.e. we go to the cheese festival 

If the weather is bad (i.e. x1=0) even if we have a friend to go with (x2=1) and the festival is 
close (x3=1), the weighted sum will not be > threshold of 5, so we will not go to the festival. 

Example #2: Threshold=3. In this case, even if the weather is not good (x1=0), we still have a 
chance of exceeding the threshold and going to the festival if x2=1 and x3=1. 

1.2 Perceptron (Rosenblatt, 1958) 

The perceptron was a new version of the artificial neuron that replaces threshold with a 
perceptron bias b = -threshold. 

 

The perception thus has a new training method, which is very similar to that of a modern NN. 

●​ (1) Initialization - start with random weights and bias 
●​ (2) Prediction - compute the perceptron output for each input 



●​ (3) Update rule - based on loss function and learning rate 

○​  
●​ (4) Repeat - iterate over the dataset until the perceptron converges or maximum number 

of epochs reached. 

1.3 The XOR Problem 

The main issue with single-layer perceptions is that they are only capable of learning linearly 
separable patterns since they compute a linear decision boundary. For example, XOR 
(“exclusive or”) is a logical operator that compares 2 inputs and returns true if only one of them 
is true. However, XOR’s True/False outputs can’t be separated by a single, linear decision 
boundary, as shown in the figure below. 

 

 

The solution? Add nonlinearity and more layers. 

2. Multi-Layer Perceptron (MLP): 

2.1 Modern MLP Structure 

●​ Input layer takes raw data as input and has the same number of neurons as the number 
of input features. The second component are the Hidden layers (potentially many). 
Hidden layers extract features using weighted connections and apply activation functions 
(e.g. sigmoid, ReLU) to the weighted inputs, which adds nonlinearity to the output. 
Finally, the output layer produces predictions (e.g. 1 for regression, n for classification). 
The number of neurons is defined as the number of output classes. 

KEY Q: How do we train a deep NN?  

2.2 Backward propagation 



●​ The purpose of backward propagation is to minimize prediction error by adjusting 
weights. To do so, we efficiently compute gradients using the chain rule. 

●​ The Process: 
○​ (1) Forward propagation - compute predictions starting from input 
○​ (2) Error/loss calculation - compare predictions to the true labels (e.g. error = 

difference between predictions and actual values) 
■​ Ex: mean squared error = ½(prediction - actual)^2 

○​ (3) Backward propagation - calculate gradients of the loss function wrt weights 
■​ Gradient descent: for each step, calculate the gradient at that point 
■​ As go further back, need to take partial derivatives and use the chain rule 
■​ Step size determined by learning rate 

■​  
○​ (4) Weight update - adjust weights using gradient descent 

There are millions of weights (i.e. parameters) that are trained in modern NNs. 

○​ Note: No nonlinearity or activation applied yet 
●​ See reference “Neural Networks  Pt 2: Backpropagation Main Ideas” for more details. 

2.3 Activation function 

●​ Activation function - analogous to the rate of action potential firing in a neuron. Applies 
a nonlinearity to the weighted inputs, allowing the model to use nonlinear decision 
boundaries for regression / classification. The simplest activation function is binary (i.e. 
step function). Modern activation functions introduce a region of uncertainty and are 
differentiable (important for using the chain rule in backpropagation). For example, the 
Sigmoid function is great because it’s derivative is easy to calculate & thus makes the 
chain rule easy to compute: 

 



Common activation functions enable efficient optimization of gradient-based methods: 

 

2.4 Key Concepts 

●​ Learning rate: When the learning rate (which defines step size in gradient descent 
algorithm) is too low, gradient descent requires too many updates / time before reaching 
the minimum (of the loss function). On the other hand, if the learning rate is too high, we 
risk the model jumping around the minimum and possibly never converging. Ideally, the 
learning rate allows the model to swiftly reach the minimum point. 

●​ Dropout is a regularization technique designed to reduce overfitting in neural networks. 
How it works is that for each training iteration (“mini-batch"), we randomly “drop” (set to 
zero) a fraction of the neurons. This forces the network to NOT rely on a few or a single 
neuron, but rather, to actually learn underlying features of the inputs. 

●​ Convolutional neural networks (CNN) use a convolutional layer to automatically learn 
and extract features form input data. CNNs are commonly used for image data, which 
are represented by a large grid of pixels, with each pixel grayscale value representing an 
input with range (0,255). CNNs focus on the receptive field, a small region of the input. 
The convolutional layer gradually “slides” through each receptive field -> represents in its 
own pixel / input neuron -> generate features 

2.5 KEY Q: What is deep learning? 

●​ TL;DR: A rebranding of NNs 
●​ “Deep” indicates a multi-layer structure (i.e. having 2+ hidden layers), and modern 

networks commonly have > 10 hidden layers. Deep learning models use learning 
algorithms to automatically learn weights and biases, and are trained via Stochastic 
gradient descent (SGD) and backpropagation. Deep learning models have been shown 
to perform better for many problems than single-hidden layer (“shallow”) NNs. 

2.6 Caveats 



There are important limitations or disadvantages to deep NNs. First, they require lots of 
training data. Second, deep networks contain lot of parameters, making design and 
optimization difficult. Because the NN takes blackbox approach to training, hence the “hidden” 
aspect of “hidden layers”, it can be hard to interpret the output and/or how the NN arrived at 
that output. Finally, there are important considerations needed for choosing the number of 
hidden layers and the number of neurons in each hidden layer. The general consensus is that 
one hidden layer is sufficient for most problems, as the performance improvement from 
adding > 2 hidden layers is very small. As for the number of neurons, there is general 
consensus on the optimal size of hidden layer being typically between the size of input and size 
of output layers. Indeed, “Intro to Neural Networks in Java” author Jeff Heaton suggests using 
the mean of the number of neurons in input and output layers as the number of neurons in the 
hidden layer(s). 

Discussion/Comments 

●​ Artificial Neural Networks (ANNs) are machine learning models inspired by the structure 
and function of biological neural networks. 

●​ Their ability to learn complex patterns from large datasets without explicit programming 
allows them to solve problems that traditional algorithms struggle with 

●​ The main initial innovation is their capacity to detect nonlinear relationships in 
high-dimensional and complex data. 

●​ They haven used to analyze high-dimensional biological data, predict protein structures, 
classify tumors from histopathological images, and identify potential drug targets by 
modeling molecular interactions. 

 
 

List all suggested reading here and please answer: 
Are the readings for the class useful? If so, are the specific subsections useful or would change.  
If not, are there other references you could suggest? Please suggest one. 

●​ Free online books 
○​ The Nature of Code by Daniel Shiffman - 10. Neural Networks (easy to read): 

http://natureofcode.com/book/chapter-10-neural-networks/ 
○​ Neural Networks and Deep Learning by Michael Nielsen: 

http://neuralnetworksanddeeplearning.com/index.html 
●​ Review articles 

○​ Yann LeCun, Yoshua Bengio, Geoffrey Hinton. Deep learning. Nature 521, 
436–444 (28 May 2015) 

References ISL/ESL  (if any) 

●​ An Introduction to Statistical Learning, Chapter 10, Deep learning: 
https://www.statlearning.com/ 

https://www.statlearning.com/


The ISL reference on deep learning is especially useful, as it breaks down the architecture of 
NNs starting with single-layer, then multi-layer networks, then CNNs. The text also gives 
students a more in-depth mathematical background on how output is generated in MLPs and 
goes beyond the lecture content starting from approx. section 10.4. 

Other Suggest references for many of the key concepts 

 The Essential Main Ideas of Neural Networks

 Neural Networks Pt. 2: Backpropagation Main Ideas

 

 

https://www.youtube.com/watch?v=CqOfi41LfDw
https://www.youtube.com/watch?v=IN2XmBhILt4
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