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Lecture Objectives:

1. Foundations of SVD

• Understand factorization of data matrix A into (U, S, V T ) and the mathematical relationship to
eigendecomposition

• Interpret the meaning of left/right singular vectors and singular values in terms of row/column
spaces

• Explain SVD as an unsupervised learning method for dimensionality reduction in high-throughput/
high dimensional data

2. Applications of SVD

• Apply SVD for data compression via low-rank approximation

• Show how SVD preserves essential information while reducing complexity

3. SVD in Biological Data

• Interpret eigenarrays and eigengenes to identify major expression patterns

• Apply SVD to uncover cyclical biological processes like cell-cycle phases

• Explore real-world applications in gene expression analysis

Key Concepts and Definitions

• Data Matrix (A) A rectangular array of data. Rows and columns often represent different enti-
ties(e.g., genes × samples in our case).

• Singular Value Decomposition (SVD) A matrix factorization technique where a data matrix A is
decomposed into A = USVT . It reveals key ”directions” (patterns) in both row and column spaces.

• Left Singular Vectors (U) The columns of U; form an orthonormal basis for the column space of
A. Interpreted as ”eigen arrays” (if columns are samples/conditions).

• Right Singular Vectors (V) The columns of V; form an orthonormal basis for the row space when
transposed (VT ). Interpreted as ”eigen genes” (if rows are genes).

• Singular Values (S) The diagonal entries in S. They are non-negative numbers sorted in descending
order, indicating the ”importance” (variance captured) of each singular vector pair.

• Rank Represents the dimension of the subspace spanned by the matrix’s rows or columns and the
maximum number of linearly independent rows or columns of the Data Matrix. Also, it’s the number
of non-zero singular values in the SVD of a matrix. The rank is always r ≤ min(m,n), meaning if
m > n, then the matrix can have rank at most n.

• Row Space vs. Column Space
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– Row Space: The space spanned by row vectors of A.

– Column Space: The space spanned by column vectors of A.

• Eigenvectors and Eigenvalues In the context of SVD:

– Eigenvectors (left or right) correspond to directions of maximum variance in row or column
space.

– Eigenvalues relate to the singular values (for ATA or AAT ).

• AAT and ATA

– AAT is used to find eigenvectors in the column space (related to U).

– ATA is used to find eigenvectors in the row space (related to V).

• Dimensionality Reduction The process of representing high-dimensional data with fewer variables
(principal ”directions” or components) while preserving most of the important variation.

• Low-Rank Approximation By truncating SVD to the top k singular values/vectors, one obtains
the ”best” rank-k approximation of A. This is crucial for noise reduction and data compression.

• Principal Component Analysis (PCA) A closely related technique typically applied to covari-
ance/correlation matrices. PCA can be viewed as performing an SVD on mean-centered data, where
the principal components correspond to the singular vectors that capture the most variance.

• Variance Captured Each singular value σi (or σ
2
i in PCA) represents the amount of variance in the

data captured by its corresponding singular vector. Larger singular values indicate more important
patterns in the data.

• Orthonormal Vectors Vectors that are mutually perpendicular and each have unit length (∥u∥ = 1).
The columns in U and V are orthonormal bases.

• Projection Multiplying the data matrix A by a particular singular vector (e.g., vi) to see how the
data ”projects” onto that direction. Used to interpret major trends or groups.

• Eigen Arrays / Eigen Genes Terminology used in genomics for the left and right singular vectors,
showing how genes or samples group/cluster together along principal directions of variation.

• Cell Cycle The series of events that take place in a cell leading to its division and duplication.

• Gene Expression Data Quantification of the activity (expression) of genes under various time frames
or conditions.

1 Main Content

1.1 Introduction to SVD for Dimensionality Reduction

High-dimensional datasets present significant challenges in modern data analysis, particularly in bi-
ological contexts. With numerous features (genes, variables), visualizing and extracting meaningful
structure becomes difficult using standard clustering methods alone. Dimensionality reduction offers a
solution by creating simpler data representations while preserving essential information.

SVD is a fundamental linear algebra technique that decomposes an m × n data matrix A into three
matrices capturing major variation sources in both rows and columns simultaneously. This approach
effectively compresses data and reveals underlying patterns such as time-series progressions or biological
processes (e.g., cell-cycle phases in yeast).
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1.2 The SVD Factorization

At the heart of SVD is the factorization of the data matrix A into three components:

Am×n = Um×m Sm×n V
T
n×n (1)

More explicitly, this can be written as:x11 x12 · · · x1n

...
. . .

...
xm1 · · · · · · xmn


m×n

=

u11 · · · um1

...
. . .

...
u1m · · · umm


m×m


σ1 · · · 0
...

. . .
...

0 · · · σn

0 · · · 0


m×n

v11 · · · v1n
...

. . .
...

vn1 · · · vnn


n×n

(2)

Where:

– A is any rectangular matrix of size m × n (with m ≥ n in our example). In genomics, m might
be the number of genes, and n might be the number of experiments or time points.

∗ Row space: The vector subspace generated by the row vectors of A.

∗ Column space: The vector subspace generated by the column vectors of A.

∗ The dimension of both the row and column space is the rank of matrix A: r (where r ≤ n)

∗ A represents a linear transformation that maps a vector x in row space into vector Ax in
column space.

– U is an ”orthogonal” matrix (m ≥ n) whose columns (u1,u2, . . . ,un) form an orthonormal basis
for the column space of A: UTU = I. Only the first r columns (corresponding to non-zero
singular values) are needed, therefore we have columns indexed up to n.

U =

 | | |
u1 u2 · · · un

| | |

 (3)

∗ The vectors u1, . . . ,un in U are eigenvectors of AAT

∗ AAT = USVTVSUT = US2UT

∗ These are called ”Left singular vectors” and in our genomic example referred to as ”eigen
arrays”

– V is an orthogonal matrix (n× n) whose columns (v1,v2, . . . ,vn) form an orthonormal basis for
the row space of A: VTV = VVT = I.

V =

 | | |
v1 v2 · · · vn

| | |

 (4)

∗ The vectors v1, . . . ,vn in V are eigenvectors of ATA

∗ ATA = VSUTUSVT = VS2VT

∗ These are called ”Right singular vectors” and in our genomic example referred to as ”eigen
genes”

• S is an m× n diagonal matrix containing the singular values (σ1 ≥ σ2 ≥ . . . ≥ σr > 0) in descending
order. The singular values correspond to the magnitude or importance of each principal direction.

– The singular values can be represented as:

√
λ1 √

λ2

. . . √
λr

0

 =


σ1

σ2

. . .

σr

0

 (5)
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– The singular values σi are arranged in descending order: σ1 ≥ σ2 ≥ . . . ≥ σr

– Each singular value σi corresponds to a specific left singular vector ui and right singular vector
vi

– The singular values are the square roots of the eigenvalues (λi) of A
TA or AAT

• Key properties: Both U and V have orthonormal columns, ensuring singular vectors capture unique
directions of variation. Matrix A functions as a linear transformation mapping vector x from row space
to Ax in column space.

1.3 Low-Rank Approximation and Dimensionality Reduction

SVD decomposes a matrix as A = USV T with singular values s1 ≥ s2 ≥ . . . ≥ sn ≥ 0. This outer
product uvT gives a matrix rather than the scalar of the inner product.

The SVD decomposition can be written as:

A = s1u1v
T
1 + s2u2v

T
2 + . . .+ snunv

T
n (6)

The rank-r matrix Â that best approximates A is obtained by truncating this sum:

Â = s1u1v
T
1 + s2u2v

T
2 + . . .+ srurv

T
r (7)

This minimizes the least squares error:

m∑
i=1

n∑
j=1

(Aij − Âij)
2 (8)

When r = 1, this corresponds to a line fit. This approach is very useful for matrix approximation and
data compression.

An important property of SVD relates to how the matrix acts on the singular vectors:

Avi = siui (9)

1.4 Geometry of SVD in Row Space

Geometrically, we can view A as a collection of m row vectors (points) in the row space of A. The
term s1u1v

T
1 + s2u2v

T
2 represents the best rank-2 matrix approximation for A.

In this geometric interpretation:

– Vectors v1 and v2 are the directions of the best approximating rank-2 subspace that passes
through the origin

– s1u1 and s2u2 give coordinates for row vectors in the rank-2 subspace

– v1 and v2 provide coordinates for row space basis vectors in the rank-2 subspace

This is captured by the equations:
Avi = siui (10)

Ivi = vi (11)

1.5 Connection to Principal Component Analysis (PCA)

PCA is typically performed on a covariance matrix (often ATA if rows are mean-centered). Mathe-
matically, PCA is almost the same as SVD applied to the mean-centered data matrix. Both methods
yield principal directions of maximum variance, but SVD is more general because it can be applied
directly to any rectangular matrix, without requiring the explicit covariance calculation.
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From Genes × Arrays to Eigengenes × Eigenarrays

In genome-wide microarray experiments, each element (i, j) of a data matrixA represents the measured
expression level of gene i under experimental condition (or time point) j. In some genomic contexts,
rows represent genes and columns represent experimental conditions (arrays), in this context columns
of U is called ”eigenarrays,” reflecting variation across genes, whereas the columns of V are called
”eigengenes,”. Singular Value Decomposition (SVD) factors this matrix as

A = U︸︷︷︸
(eigenarrays)

S︸︷︷︸
(singular values)

VT︸︷︷︸
(eigengenes)

, (12)

Figure 1: Visualization of SVD applied to gene expression data. The original matrix A is decomposed into
the product of three matrices: U (eigenarrays), S (singular values), and VT (eigengenes). The heatmap
patterns illustrate how the decomposition captures the fundamental structure of the data.

where:

1. U (Eigenarrays) The columns of U form an orthonormal basis for the column space of A. In
the context of gene expression, each column captures a “characteristic” pattern of how all genes
behave together across the experimental conditions; these are often termed eigenarrays because
they reflect common modes of variation in the columns of A.

2. S (Singular Values) This diagonal matrix encodes the strength (magnitude) of each pattern
uncovered by SVD. The largest singular value σ1 corresponds to the strongest or most dominant
axis of variation in the dataset, followed by σ2, and so on.

3. V (Eigengenes) The columns of V form an orthonormal basis for the row space of A (when
transposed, VT maps genes to these “principal directions”). Here, each right singular vector can
be interpreted as a meta-gene or eigengene a weighted combination of the original genes that
captures a distinct expression pattern across samples.

– Eigenarrays group arrays or experimental conditions that share similar global expression re-
sponses.

– Eigengenes cluster genes that share similar response profiles across those conditions.

– Singular values quantify the importance of each pair of eigenarray/eigengene components.

Because U and V are orthonormal, SVD guarantees these derived patterns are non-redundant and
capture uncorrelated sources of variation. In biological analyses, focusing on the top eigengenes (and
eigenarrays) often reveals major biological signals (e.g., cell-cycle phases, disease states, treatment
effects), while lower-rank components may correspond to noise or minor effects. This decomposition
thereby acts as a powerful tool for data reduction, noise filtering, and interpretation of large-scale
genomic experiments.
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1.6 Examples: Yeast Cell-Cycle Analysis

Figure 2: (a) Heatmap shows normalized gene expression data, reordered by each gene’s correlation with the
top two oscillatory eigengenes after removing the steady-state component. These two eigengenes capture
the progression through the cell cycle (M/G1 → G1 → S → S/G2 → G2/M). (b) The corresponding
eigenarrays, which indicate how strongly each array (time point) projects onto these oscillatory modes. (c)
The sine/cosine-like expression patterns have period Z = N − 1 = 5, 980 and phase θ ≈ 2π/13, confirming
the periodic nature of the underlying biological process.

Figure 3: (a) Each array (time point) is plotted by projecting its expression vector onto the top two
eigenarrays, α1 and α2. The horizontal and vertical axes show the correlations (dot products) with α2

and α1, respectively. The radial distance from the origin (dashed circles) indicates how much of the array’s
expression is captured by these two principal SVD modes, while the angular coordinate corresponds to its
“phase” in the cell-cycle progression. The numeric labels are the time points, and the colors denote the
assigned cell-cycle stages. (b) Each gene is likewise placed according to its correlation with the top two
eigengenes, γ1 and γ2, color-coded by the cell-cycle phase in which that gene’s expression peaks. Together,
these panels show that the first two oscillatory modes (after removing the steady-state component) neatly
capture the cyclical behavior of both arrays (time points) and genes, tracing a circular pattern that reveals
the progression through cell phases
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– Data: Matrix A with genes (rows) measured across cell cycle timepoints (columns)

– SVD: A = USVT reveals temporal expression patterns

– Results: Top components typically reveal circular trajectory matching cyclical cell stages, with
co-regulated genes clustering together

Applying SVD

– The decomposition A = USVT separates out core patterns in how genes are expressed over time.
For instance, certain sets of genes ”activate” earlier or later in the cycle, forming distinct clusters
in the projected space.

Visualization

– Plotting the first two singular vectors (or the principal components) often reveals a circular tra-
jectory in the data, matching how the cell cycle proceeds in cyclical stages.

– Genes that are co-regulated cluster together, showing up in the same quadrant or region when
colored by functional annotation.

This example illustrates how SVD can capture the cyclic nature of biological processes and help re-
searchers identify groups of genes with similar temporal expression profiles.

Discussion/Comments

– The slides explains how valuable SVD is at uncovering underlying correlations and patterns in
intricate biological datasets.

– By studying their relationship to the eigenarrays and eigengenes, SVD can be used to understand
genes that are co-regulated or involved in related biological processes.

– It can be especially helpful for researching biological events that occur on a regular basis.

– By reducing the dimensionality of gene expression data, SVD can facilitate analysis and interpre-
tation.

– Here, we use naming convention (i.e., U = eigenarrays, V= eigengenes), so readers should be
aware that different sources may flip this terminology depending on how they label the rows and
columns of the data matrix.

– Leveraging SVD with appropriate visualization methods highlights patterns that are difficult to
observe directly in high-dimensional data.

– The orthonormal structure of the singular vectors ensures each extracted pattern is independent,
making it easier to isolate and interpret specific sources of biological variation.

– Overall, SVD is a robust unsupervised method for denoising, identifying key expression trends,
and guiding hypothesis generation in large-scale biological studies.

References ISL/ESL

This lecture dives deep into the statistical portion of singular value decomposition (SVD) for genome-
wide expression. Here are the following suggested readings that can help solidify the foundational
framework of SVD:

ISL: Chapter 6.3.1 [Up to section on “The principal Components Regression Approach”] provides a
comprehensive overview of principal components analysis (PCA) with specific examples and supporting
figures to understand the concepts. Chapter 12.2 [gives background on PCA/SVD] also provides an
informative overview of PCA with focus on the principal components and its interpretations. I would
suggest looking into chapter 12.3 [missing values and matrix completion] which provide additional
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details on utilizing principal components to impute missing values in the dataset or matrix which is
common in real-world settings.

Another important material is a paper called “Singular value decomposition for genome-wide expression
data processing and modeling” is where most of the materials within the lecture are referenced from.
The paper contains additional information and details within the SVD process for analyzing genome-
wide expression data. Feel free to analyze the paper to gain further insight if any portion of the lecture
is confusing.

Overall, these are great materials to review in support of SVD that was covered in class and may help
in digesting the mathematical framework.

Other suggested references

– For more details of SVD: Mathematical Modeling of Biological Systems, Volume 1: Modeling
and Simulation in Science, Engineering, and Technology portion: https://link.springer.com/
chapter/10.1007/978-0-8176-4558-8_32

– Example within the application of SVD: Pathway level analysis of gene expression using singular
Value decomposition: https://bmcbioinformatics.biomedcentral.com/articles/10.1186/

1471-2105-6-225

– Recent area for SVD: Federated singular value decomposition for high-dimensional data: https:
//link.springer.com/article/10.1007/s10618-023-00983-z
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