
Lecture Title and Date 

Supervised Data Mining – SVMs, 2/24 

Objectives of the Lecture 

● Understand the properties of how support vector machines work as classifiers  
● Understand how to perform feature engineering to make points separable using the 

kernel trick 

Key Concepts and Definitions 

● Support vector machines - A classifier which tries to compute the best decision 
boundary by maximizing the distances between the two closest points along the decision 
boundary.  

● Hyperplane - The optimal decision boundary that best separates the points from each 
other. For SVMs, this means that the hyperplane will maximize the distance closest data 
points from each class.  

● Margin Width - The margin width represents the distance between the decision 
boundary and the nearest data points from either class. Mathematically, this width is 
calculated as 2/||w||, where w represents the weight vector of the classifier. The SVM 
algorithm works by maximizing this margin width, which enhances the classifier's ability 
to generalize to unseen data. 

● Support Vectors - Support vectors are the critical data points that lie closest to the 
decision boundary and directly influence its placement. These points "support" the 
hyperplane by determining its optimal position. The SVM algorithm focuses its 
computational effort on these boundary cases rather than on the entire dataset, which 
contributes to its efficiency. 

● Kernel Trick - Sometimes points are not linearly separable and so we need to do feature 
mapping to transform the points into a space where the hyperplane can separate the 
points. Additionally, rather than mapping the points to this higher-dimensional feature 
space, the kernel trick helps us compute the dot product of the two points in the 
higher-dimensional feature space which makes it easier to compute the hyperplane 
needed for SVM.  

Common Kernel Functions 

● Linear Kernel: K(x, y) = x · y 
● Polynomial Kernel: K(x, y) = (x · y + c)^d 
● Radial Basis Function (RBF/Gaussian) Kernel: K(x, y) = exp(-γ||x - y||²) 
● Sigmoid Kernel: K(x, y) = tanh(α(x · y) + c) 



Main Content/Topics 

 
1. Example of SVM: Leukemia Patient Classification  
This case study demonstrates the application of SVMs in medical diagnosis: 
 

 

- Red dots are patients with ALL: acute lymphoblastic leukemia and the green ones are 
AML: acute myeloid leukemia.  

- We want to build a decision boundary/classifier for determining which leukemia diseases 
that a patient has and so we make a decision boundary to divide the two.  

- For SVMs, the decision boundary is determined by finding the closest point (these are 
the red and green points on the decision ) from each class and then trying to maximize 
the distance between these points and the hyperplane  

 
 
 
 
 



 
 
 
SVM - Hyperplanes 
 

● In cases where there are multiple dimensions (< 2) to the data, we can use a hyperplane 
instead of a line for dividing the two classes when using SVMs.  

● This diagram shows an example of a hyperplane for the classification task when there 
are three different coordinate features.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



SVM - Maximizing Margin Width Between Classes 

The optimal SVM hyperplane/decision boundary is created by: 

1. Assuming that in some high-dimensional space, the points are linearly separable 
2. Finding the hyperplane that maximizes the margin width (the distance between the 

closest points from either class to the decision boundary) 
3. Calculating the margin width as 2/||w||, where w represents the weight vector of the 

classifier 
4. Computing the weights of the classifier to maximize this distance 
5. Identifying support vectors (the points that lie exactly on the margin boundaries) 

 

 
 
 

● This slide provides more detail about how SVM hyperplanes/decision boundaries are 
made. We assume that in some high-dimensional space, the points are linearly 
separable. The best decision boundary is the one where we maximize the margin-width 
which is the distance between the closest points (the blue and green dots on the dotted 
lines) from either class to the decision boundary.  

 
● The margin width between the two sides of the decision boundary for a class is 

computed as 2/||w||. Hence, we compute the weights of the classifier, w, so that we can 
maximize the distance this value. This helps give us the best classifier, w, by the SVM 



definition which maximizes the distance between the two closest points from both 
classes that are on different sides of the decision boundary.  

 
 

Mathematical Formulation of SVMs 

The SVM optimization problem can be formulated as: 

For linear SVMs: 

● Minimize: (1/2)||w||² + C∑ξᵢ 
● Subject to: yᵢ(w·xᵢ + b) ≥ 1 - ξᵢ and ξᵢ ≥ 0 

Where: 

● w is the weight vector 
● b is the bias term 
● C is the regularization parameter 
● ξᵢ are slack variables that allow for misclassifications 
● xᵢ are the input features 
● yᵢ are the class labels (either +1 or -1) 

 
 
 
 
Feature Mapping - Non-linear SVM 

When points are not linearly separable in their original dimensional space: 

1. There is no single line that can divide the green and red points into separate classes 
2. Feature mapping transforms the points into a higher-dimensional space 
3. For example, mapping each point x_i to x_i² can make the data linearly separable 
4. After mapping, a linear separator can effectively divide the classes 
5. The original non-linear boundary in the input space corresponds to a linear boundary in 

the transformed feature space 

 



 
  
 

● Sometimes, the points are not linearly separable by one decision boundary in their 
current dimensions. This can be demonstrated by this slide which shows that there is no 
single line for dividing the green and red points such that they are in separate classes.  

 

  
 

● To solve this problem, you can perform feature mapping by taking the points and then 
mapping them to a higher dimensional subspace. In this case, we map each point x_i to 
the x_i^2. From this, we can make a linear separator dividing the two classes.  



 
 
Kernel Trick 

The kernel trick avoids explicitly computing the coordinates in a higher-dimensional space by: 

1. Defining a kernel function K(x, y) that computes the dot product of two points in the 
feature space 

2. Using this kernel function directly in the SVM algorithm instead of computing the explicit 
mapping 

3. Significantly reducing computational complexity, especially for high-dimensional feature 
spaces 

4. Allowing SVMs to handle non-linear classification efficiently 

 

  
 
 

● For mapping to a higher subspace that is separable by a SVM, we can apply a kernel 
function to map points to a higher space.  

● It should be noted that it is sufficient to compute the dot product of the points in higher 
dimensional space and we don’t need to compute the value of each point in the 
higher-dimensional space when determining the SVM.  

● This figure is showing two different kernel functions which are applied to the points in the 
dataset. We can use the kernel function to identify a linear separator in 
higher-dimensional space and then map the decision-boundary back to the original 
subspace, which will be non-linear.  

 



 
 
A major drawback of using kernel functions is that they can overfit to the data. This is especially 
true when using higher degree polynomials. As shown in figure K, a lower dimensional kernel is 
properly able to separate the data points onto two separate sides. However, when using a 
higher dimensional kernel, figure I shows that we can overfit to the data when making decision 
boundaries that separate within the same group when projecting back to the original subspace. 
Hence, it is important to choose a kernel function that does not overfit to the dataset by making 
very specific decision boundaries over certain points.  
 
 

SVM Advantages and Limitations 

Advantages: 

● Effective in high-dimensional spaces 
● Memory efficient as it uses only a subset of training points (support vectors) 
● Versatile through different kernel functions 
● Robust against overfitting when properly tuned 

Limitations: 

● Computationally intensive for large datasets 
● Requires careful selection of kernel and regularization parameters 
● Not directly suitable for multi-class classification (requires strategies like one-vs-rest) 
● Performance degrades with overlapping classes or noisy data 

 



Discussion/Comments 

I would suggest adding "Pattern Recognition and Machine Learning" by Christopher Bishop 
(Chapter 7) as an additional reference. Bishop provides clear explanations of the probabilistic 
interpretation of SVMs and offers valuable insights on kernel selection strategies for different 
types of data, which complements the current materials nicely. 
 
For students struggling with the mathematical foundations, I recommend: Andrew Ng's machine 
learning course materials on SVMs, which break down the concepts more gradually with helpful 
visualizations and simplified mathematical notation. 
 

List all suggested reading here and please answer: 
Cristianini, Nello, and John Shawe-Taylor. An introduction to support vector machines and other 
kernel-based learning methods. Cambridge university press, 2000. 

 

References ISL/ESL  (if any) 

Chapter 9 - 9.4: Covers SVMs and the math behind them from ISL book 
 

Other Suggest references for many of the key concepts 

● For leaning more about the math behind how the hyperplanes in SVMs are compute 
along with how the kernel functions can help make the optimal SVM: 
https://www.geeksforgeeks.org/support-vector-machine-algorithm/#  

 

https://www.geeksforgeeks.org/support-vector-machine-algorithm/#

	Lecture Title and Date 
	Objectives of the Lecture 
	Key Concepts and Definitions 
	●Support vector machines - A classifier which tries to compute the best decision boundary by maximizing the distances between the two closest points along the decision boundary.  
	Common Kernel Functions 
	Main Content/Topics 
	Mathematical Formulation of SVMs 
	SVM Advantages and Limitations 
	Advantages: 
	Limitations: 

	Discussion/Comments 
	List all suggested reading here and please answer: 
	 
	References ISL/ESL  (if any) 
	Other Suggest references for many of the key concepts 
	●For leaning more about the math behind how the hyperplanes in SVMs are compute along with how the kernel functions can help make the optimal SVM: https://www.geeksforgeeks.org/support-vector-machine-algorithm/#  

