
Lecture Title and Date 

25m10e - Networks - Network Prediction 3/5/2025 

Objectives of the Lecture 

By the end of this lecture, students should: 

1.​ Understand the basic principles of predicting connectivity between nodes in a network 
(interactions) 

2.​ Be able to compare and contrast different methods to assess network interaction 
predictions 

3.​ Understand the naive Bayes’ Rule and its advantages over other prediction strategies 
4.​ Be able to construct a basic Bayesian Network using Bayesian formalism 

Key Concepts and Definitions 

●​ Network assessment terminology: 
○​ Union - if any is TRUE, output is TRUE 
○​ Intersection - if any is FALSE, output is FALSE 
○​ Majority - output is the most common input, FALSE if tied 
○​ Weighted voting/supervised classification - scores are given weights and “voting” 

occurs in weighted fashion (outcome  𝑅 =  𝑤
→

 • 𝑓 
→

+ 𝑤
0

●​ Bayes Rule:  𝑃(𝑌|𝑋) = 𝑃(𝑋|𝑌)*𝑃(𝑌)
𝑃(𝑋)

○​ Prior distribution : probability distribution of parameter Y prior to updating 𝑃(𝑌)
(uniform distribution over range if absolutely no information known about Y) 

○​ Likelihood : probability distribution of observing X if Y is true 𝑃(𝑋|𝑌)
○​ Posterior distribution : probability distribution of parameter Y given 𝑃(𝑌|𝑋)

observations of X 
●​ Naive Bayes: an assumption for a multiple parameter Bayesian model in which all 

parameters are written as independent 
●​ Receiver Operating Characteristic (ROC) Curve: A plot of the true-positive rate or 

sensitivity against the false-positive rate or (1-specificity) 
●​ Directed Acyclic Graph (DAG): a network that defines relationships of influence between 

nodes 
●​ Bayesian Network: a DAG constituting a joint distribution which is the product of 

conditional probabilities for each node 

 



Main Content/Topics 

In order to construct and validate a network, we need to develop methodologies that 
integrate information we collect about the network. For example, if we want to understand how 
the subunits of a protein are interconnected, how do we integrate noisy experimental evidence 
to accurately characterize subunit interactions (Figure 1)? We might think of using an example 
protein, like that of the experimentally solved structure of RNA Polymerase II (RNAPII), to 
validate our proposed network and apply what we learn in this example case to other proteins. 
The information gleaned from RNAPII validation will enable us to identify a method which 
effectively incorporates noisy measurements into an accurate prediction of subunit interaction. 

Let’s say we use multiple experimental approaches to assess the connectivity of RNAPII 
subunits, giving us a list of plausible connections (Figure 2). The approach most likely to identify 
true interactions (without regard to false positives) would be one using a union approach: if any 
method says the subunits interact, then we’ll say they interact. However, this is likely to 
overestimate the true connectivity of the protein. The method most likely to avoid false positives 
would be the opposite to the union approach, or an intersection in which any negative result 
would disqualify any positive result, but this has the opposite problem to the union approach by 
sacrificing true positives. One could instead treat each experiment as providing a “vote” for 
connectivity, creating a case where the predicted result is found by majority rule. This approach 
will help eliminate the effects of outlier experiments, but is vulnerable to highly correlated 
experiments. 

None of the above approaches are particularly well suited to real-life situations in which 
we are often more confident about some experiments over others. A solution to this problem is 
found in applying weights to certain experiments, in an approach known as supervised 
classification (Figure 3). By adding weights to our experimental votes, we now include some 
kind of measure of confidence in our measurements that help us better identify the predictive 
power of each observation. While weights enable us to make more informed predictions, they 
also present another problem, namely how do we identify the weights we should use for each 
experiment? Enter Bayes Rule (Figure 4). Bayes Rule, while a complicated looking formula, is 
actually very simple when broken into its constituent parts. 

The prior distribution  is our starting point for the distribution of our weights. Do we 𝑃(𝑌)
expect each experiment to be equally informative (uniform distribution of weights) or is there 
reason to trust one kind of experiment over another? We multiply the prior by the likelihood 

 divided by  to identify the distribution of outcomes X (in this case regions of RNAPII 𝑃(𝑋|𝑌) 𝑃(𝑋)
that are interacting) we would expect given our weight Y. Taken together, this information tells us 
how we should update our understanding of the distribution of weights given information about 
the outcomes we are likely to observe with those assumptions, creating a posterior 
distribution . Bayes Rules therefore provides a rigorous mathematical approach to 𝑃(𝑌|𝑋)
assess the informativeness of certain experiments, such as those done on RNAPII connectivity.  

The final note on Bayes Rules relevant to our course is on that of parameter 
independence. The simplest assumption one can make about repeated experiments of a 



phenomenon is that those experiments are independent, i.e. one experiment has nothing to do 
with any other experiment. This assumption applied to Bayes Rule gives rise to the naive 
Bayes, a form of Bayes Rule in which all parameters/weights are independent and can be 
assessed individually without consideration of other experiments (Figure 5). This assumption 
allows one to decompose a multiple-parameter Bayesian formula into an addition of multiple 
single-parameter Bayesian formulas, greatly simplifying one’s ability to solve a problem by hand. 
Students should be aware that they may need to add in “dummy counts” for missing data if such 
a case arises (Slide 19). Students can work through the naive Bayes example of RNAPII 
connectivity by following along from slides 21-26. They should notice at the end that the 
Receiver Operating Characteristic (ROC) Curve (Figure 6), a plot of the sensitivity over the 
specificity for our experimental assessments, shows that the Bayesian approach outperforms all 
the other metrics regardless of our selected confidence threshold. 

However, the naive Bayes assumption is quite rare in practice, especially in our RNAPII 
example in which we include repetitions of the same kind of experiment which are likely to be 
highly correlated (slides 28 & 29). While correlation in experiments is not discussed in detail in 
this lecture, students should be aware that in real life situations one may need to construct 
relationships between all experiments/parameters to conduct an accurate assessment of the 
task at hand. 

Finally, networks which follow Bayesian principles are pleasantly known as Bayesian 
Networks, which neatly arrange the organization of parameters and outcomes using a Directed 
Acyclic Graph (DAG) formalism (Figure 7). The DAG formalism is a straightforward network in 
which nodes are connected by edges indicating the direction and weight of interaction. Bayes 
Rules are applied to mathematically describe the relationships between nodes under the rules 
of conditional probability. Bayesian networks can help to drastically simplify more complicated 
networks via filtering for the most informative elements in a network, as exemplified by gene 
co-expression networks (Figure 8). Filtering based on Bayesian probabilities can help remove 
uninteresting nodes and preserve only the most important edges, helping one to draw 
meaningful predictions from otherwise cumbersome or “busy” networks.  



 

Figure 1: Slide 3 
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Figure 2: Slide 12 



 

Figure 3: Slide 15 

 

Figure 4: Slide 16 

 

Figure 5: Slide 18 



 

 

 

Figure 6: Slide 26 

 

Figure 7: Slide 33 



 

Figure 8: Slide 34 

List all suggested reading here: 

James, Gareth, Witten, Daniela, Hastie, Trevor, Tibshirani, Robert​
An Introduction to Statistical Learning: with Applications in R  ​
[ ISLR (2nd edition) ]​
https://www.amazon.com/Introduction-Statistical-Learning-Applications-Statistics/dp/107161417
7/  +  https://www.statlearning.com​
(Chapter 4.4.4 and 4.7.5 gives background on Naive Bayes.) 

Edwards et al. (2002). Trends in Genetics, 18(10), 529–536. ​
Bridging structural biology and genomics: assessing protein interaction data with known 
complexes. ​
https://doi.org/10.1016/s0168-9525(02)02763-4​
(Relates to the worked example.) 

Notes: ISLR 4.4.4 is a good description of how naive Bayes classification compares to other 
approaches in classification and helps to hammer home the points made in the lecture. 
However, for a fuller understanding of classification, students should read the full chapter as this 
will prepare them better for applications in the real world. Students would also benefit from 
reading the Edwards et al. 2002 paper, as it covers RNAPII mapping directly relates to practical 
considerations of networks in bioinformatics. 

 



References ISL/ESL  (if any) 

ISL: 4.4.4 and 4.7.5; ESL 6.6.3 

Other Suggest references for many of the key concepts 

Students should watch this 3blue1brown video on explaining Bayes Theorem to familiarize 
themselves with the topic and its applications: 
https://www.youtube.com/watch?v=HZGCoVF3YvM  

 

https://www.youtube.com/watch?v=HZGCoVF3YvM
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