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What are Generative Models

Generative models are probabilistic models of high-dimensional data such as
text, image, video, audio, and biological sequences.

Generative models are used to perform density estimation, anomaly
detection, representation learning, dimensionality reduction, data translation,
and data generation.

Generative Models
o Latent Variable Models such as Variational Autoencoders and Probabilistic Diffusion Models

o Generative Adversarial Networks

o  Autoregressive models such as LLMs



Energy-Based Model: Undirected Probabilistic Generative Models with Latent Variables
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Directed Probabilistic Generative Models with Latent Variables

We want to train a directed generative model p

generative network inference network

p(x,h) = p(x|h1)p(hi[h2)...p(h)
q(h|x) = g(h1|x)g(hz|h1)...q(h.|h,_1)

e Our goal is to learn the model parameters to maximize the log-probability of data x
o Learning: learn the model parameters maximizing log p(x)
o Inference: infer the hidden states from p(h | x)



How a Directed Probabilistic Generative Model

with Latent Variables Generates Data

We generate data in two sequential

steps: hidden

— First pick the hidden states from
their prior distribution.

— Then pick the visible states from
their conditional distribution given
the hidden states.

The probability of generating a visible

vector, v, is computed by summing _

over all possible hidden states. Each p(V) - ZP(h)p(V | h)
hidden state is an “explanation” of v. h

visible




Variational Autoencoder

The type of directed graphical model under consideration. Solid lines denote the generative
model pg(z)pe(x|z), dashed lines denote the variational approximation ¢y (z|x) to the intractable
posterior pg(z|x). The variational parameters ¢ are learned jointly with the generative model pa-
rameters 6.

Kingma and Welling, Auto-Encoding Variational Bayes. ICLR 2014 7



Variational Autoencoder with an Isotropic Multivariate Gaussian Prior
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The Reparameterization Trick Using a Deterministic Function Mapping

z ~ q5|x?) = N(z; @, 6>
Zz=p+06 Qe wheree ~ N(0,I)
Original form Reparameterised form

I | I
I | |
I | |
I I I
I I I
~q@ex) = 96X, |
S |
¥y 3 L 10f/0g; @ ~ple) |
1= 9L/dg, :
o e e I '\ |
: Deterministic node {gingma,22001133]]
engio,
‘ . Baridbrifcds [Kingma and Welling 2014]

[Rezende et al 2014]
Kingma and Welling, Auto-Encoding Variational Bayes. ICLR 2014



Variational Inference with the Reparameterization Trick
10gp9 (X(l)a t aX(N)) — fo\il 1ng9(x(2))

log pe(x'") = Drc1.(40(z[x")|pe(2x')) + L(8, ¢; x'*))

log pe(x\V) > L£(0, ¢;xV) = Ey, (s [~ 10g ¢4 (2]x) + log pe(x, 2)]

ELBO:

L(6, ¢;X(i)) = —DKL(Q¢(Z|X(i))||P9(Z)) + ]Eq¢(z|x(i)) [10gp0(x(i)|z)]

Kingma and Welling, Auto-Encoding Variational Bayes. ICLR 2014 10



Variational Autoencoder with an Isotropic Multivariate Gaussian Prior

L£(8,¢;x") = —Dk1(q4(2xV)||pe(2)) + E, (zx) [logpe(x“)lz)]

p(z) = N(0,1)
p(z|z) = N(f(2),cl) feF c>0

f* = argmaxE, . (log p(z|2))
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where z") = pu + @ ©e® and €Y ~ N(0,1)

Kingma and Welling, Auto-Encoding Variational Bayes. ICLR 2014 11



Training VAE Using Mini-batch Variational Inference with the
Reparameterization Trick

Algorithm 1 Minibatch version of the Auto-Encoding VB (AEVB) algorithm. Either of the two
SGVB estimators in section 2.3|can be used. We use settings A/ = 100 and L = 1 in experiments.

0, ¢ < Initialize parameters
repeat
XM « Random minibatch of M datapoints (drawn from full dataset)
€ < Random samples from noise distribution p(€)
g « Vo.oLM (0, p; XM €) (Gradients of minibatch estimator (8))
0, ¢ < Update parameters using gradients g (e.g. SGD or Adagrad [DHS10])
until convergence of parameters (6, ¢)
return 0, ¢

Kingma and Welling, Auto-Encoding Variational Bayes. ICLR 2014 12



VAE for Generating MNIST Digits
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Picture Credit: http://kvfrans.com/variational-autoencoders-explained/
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VAE with Convolutional Neural Networks as Encoder and Decoder
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Picture Credit; http://kvfrans.com/variational-autoencoders-explained/
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Autoencoder vs. Variational Autoencoder
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Picture Credit: https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73




Autoencoder vs. Variational Autoencoder
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Picture Credit: https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
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Autoencoder vs. Variational Autoencoder
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Picture Credit: https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73




Autoencoder vs. Variational Autoencoder
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Picture Credit: https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73




Autoencoder vs. Variational Autoencoder
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Autoencoder vs. Variational Autoencoder

),

what can happen without regularisation x V what we want to obtain with regularisation

Picture Credit: https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
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Autoencoder vs. Variational Autoencoder

Picture Credit: https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73




Problems of VAE: Overlapping Latent Space

Picture Credit: https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73




Conditional VAE

KLIN (u(Y, X).S(Y, X))|N(0.1)] | Decoder
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Figure 6: Left: a training-time conditional variational autoencoder imple-
mented as a feedforward neural network, following the same notation as
Figure 4. Right: the same model at test time, when we want to sample from

P(Y|X).

Picture Credit: https://arxiv.ora/pdf/1606.05908.pdf
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Conditional VAE

log po(y|x) > —KL (¢4(2x,Y)llpe(2|x)) + Eq, (ax,y) [ log po (y]x, )]
and the empirical lower bound is written as:

L

~ 1
LCVAE(xa y; 97 ¢) = —KL (q¢ (Z|X, y) ||p9(Z|X)) . & Z Z 10gp9 (y|X, Z(l))a
=1

z() = g4(x,y,eY), €V ~ N(0,I) and L is the number of samples.

25
Sohn et al., Learning Structured Output Representation using Deep Conditional Generative Models. NIPS 2015.



The Reparameterization Trick in VAE

p(z) = N(0,I)
p(z|2) = N(f(2),cl) feF c>0

Let’s forget about variational inference for maximizing log p(x) but focus on the
probability distribution of p(x|z) itself, we can easily sample from p(x|z), which leads
to a nice GENERATIVE model and transforms a simple Gaussian distribution to a
complex data distribution p4(x) through a one-to-one mapping f: z — x

A direct approach to aligning our generated data distribution p,(x) with real data
distribution p.(x) is to perform moment matching, for e.g., minimizing maximum

mean discrepancy in a high-dimensional feature space induced by a kernel (kernel
MMD).

26



Generative Moment Matching Networks
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Picture Credit:https://towardsdatascience.com/understanding-generative-adversarial-networks-gans-cd6e4651a29
Li et al., Generative Moment Matching Networks. ICML 2015.
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An Indirect Approach for Comparing Distributions

p(z) = N(0,1)
p(z|z) = N(f(2),cl) feF c>0

e Transform a simple Uniform/Gaussian distribution p(z) to a complex data
distribution py(x) through a one-to-one mapping f: z — x

e An indirect approach is to assume that we have an oracle discriminator that can
perfectly discriminates whether or not a data point is from the real data
distribution. We can make use of this oracle discriminator to improve our
generative network such that our generated data distribution perfectly aligns
with the real data distribution.

e In practice, we don’t have this oracle discriminator, but we can treat it as a deep
neural network and learn it from data. 28



Generative Adversarial Network (GAN)

e The goal of the discriminator D is to discriminate whether a sample comes from
the real data distribution (training data) or the generated data distribution
(generated data).

e The goal of the generator G is to transform a simple (e.g., Gaussian, Uniform)
distribution to a real data distribution such that the generated sample will fool
the discriminator.

e This is a minmax two-player game. In a global optimum, D will output 72
everywhere and pg(X) = py(X)

Goodfellow et al., Generative Adversarial Nets. NIPS 2014.
29



Generative Adversarial Network (GAN)
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Picture Credit:https://towardsdatascience.com/understanding-generative-adversarial-networks-gans-cd6e4651a29
Goodfellow et al., Generative Adversarial Nets. NIPS 2014. 30




Generative Adversarial Network (GAN)
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Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) p, from those of the generative distribution p4 (G) (green, solid line). The lower horizontal line is
the domain from which 2z is sampled, in this case uniformly. The horizontal line above is part of the domain
of . The upward arrows show how the mapping @ = (G(z) imposes the non-uniform distribution p, on
transformed samples. G contracts in regions of high density and expands in regions of low density of py. (a)
Consider an adversarial pair near convergence: p, is similar to pgaa and D is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D* (x) =

—Paa(®)___(c) After an update to G, gradient of D has guided G(z) to flow to regions that are more likely

Pdaa(T) +pPg () °
to be clas;iﬁed as data. (d) After several steps of training, if G and D have enough capacity, they will reach a

point at which both cannot improve because p; = paaa. The discriminator is unable to differentiate between
the two distributions, i.e. D(z) = 3.

Goodfellow et al., Generative Adversarial Nets. NIPS 2014.
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Optimal D of Generative Adversarial Networks
minmax V(D, G) = Egnpy () 108 D(@)] + Eznp. (2 log(1 — D(G(2)))].

y = alog(y) + blog(l - y)

if y=alog(y) + blog(l — y),the optimal y is y=2- 1
y
= y* = K > a_ b
a+ y 1=y
¥ 2
Optimize D(x) = p,(x) log D(x) + p,(x) log(1 — D(x)), we get "’ i &
— D*(x) - pr(x) y* Z
pr(x) + Pg(x) Y= Y

Goodfellow et al., Generative Adversarial Nets. NIPS 2014.

Find optimal y* by setting y’ = 0.
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Optimal Solution of Generative Adversarial Networks

minmax V (D, G) = Egpu(a)l0g D(®)] + E,up, (2)[log(l — D(G(2)))].

G D

With p = q, the optimal value for D and V is

D=L -1
ptqg 2

. ) 1 1
min max V(D, G) = E,np (n[log 5] + Ezep g llog(1 — 5)]
= —2log2

Goodfellow et al., Generative Adversarial Nets. NIPS 2014.
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Training Algorithm of GAN

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our
experiments.

for number of training iterations do
for k steps do

e Sample minibatch of m noise samples {z1), ..., 2(™)} from noise prior p,(z).
e Sample minibatch of m examples {xz(!),...,2(™} from data generating distribution
Pdata (w)

e Update the discriminator by ascending its stochastic gradient:

Vo, 3 [iog D (a) +10g (1- D ( (=9)))].

end for

e Sample minibatch of m noise samples {z(1), ..., z(™)} from noise prior p,(2).
e Update the generator by descending its stochastic gradient:

Vo, 3108 (10 (6 (=9))).

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

Goodfellow et al., Generative Adversarial Nets. NIPS 2014.
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Deep Convolutional GAN (DCGAN): CNN Generator

G(2)

DCGAN generator used for LSUN scene modeling. A 100 dimensional uniform distribu-
tion Z is projected to a small spatial extent convolutional representation with many feature maps.
A series of four fractionally-strided convolutions (in some recent papers, these are wrongly called

deconvolutions) then convert this high level representation into a 64 x 64 pixel image. Notably, no
fully connected or pooling layers are used.

Radford et al., UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE
ADVERSARIAL NETWORKS. ICLR 2016
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Generated Samples of DCGAN
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Generated bedrooms after five epochs of training. There appears to be evidence of visual

under-fitting via repeated noise textures across multiple samples such as the base boards of some of
the beds.
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Latent Vector (z) Manipulation Results of DCGAN
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Conditional GAN
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https://arxiv.org/pdf/1411.1784.pdf
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Domain Adaptation
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Picture Credit: Tzeng et al., Adversarial Discriminative Domain Adaptation, CVPR 2017.

We have a lot of (labeled) training data in a
source domain, and we plan to deploy our
learned model in the source domain to a target
domain that has a different data distribution
from the one in the source domain.
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Adversarial Feature Learning for Domain Adaptation

Pre-training Adversarial Adaptation Testing
4 h source images ([ )
source images
+ labels
o target image ~._ ."""':
o o . I Tss s
= class o S— domain | Target ! | s%_—j | class
© label | | target images E balaes  CNN T 2 ' label
O S | = -
2 bmaal
Target [a)
CNN
N g\, A\ .

An overview of our proposed Adversarial Discriminative Domain Adaptation (ADDA) approach. We first pre-train
a source encoder CNN using labeled source image examples. Next, we perform adversarial adaptation by learning a target
encoder CNN such that a discriminator that sees encoded source and target examples cannot reliably predict their domain
label. During testing, target images are mapped with the target encoder to the shared feature space and classified by the source
classifier. Dashed lines indicate fixed network parameters.

Tzeng et al., Adversarial Discriminative Domain Adaptation, CVPR 2017. 10



CycleGAN
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(@) Our model contains two mapping functions G : X — Y and F' : Y — X, and associated adversarial
discriminators Dy and Dx. Dy encourages G to translate X into outputs indistinguishable from domain Y, and vice versa
for Dx and F'. To further regularize the mappings, we introduce two cycle consistency losses that capture the intuition that if
we translate from one domain to the other and back again we should arrive at where we started: (b) forward cycle-consistency
loss: z — G(z) — F(G(z)) = z, and (c) backward cycle-consistency loss: y — F(y) = G(F(y)) = y

Zhu et al., Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. ICCV 2017.
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CycleGAN Results

Monet <_ Photos Zebras Horses

zebra —) horse ‘

horse —> zebra

Summer _ Winter

Photograph Monet Van Gogh Cezanne

Ukiyo-e

Given any two unordered image collections X and Y, our algorithm learns to automatically “translate” an image
from one into the other and vice versa: (left) Monet paintings and landscape photos from Flickr; (center) zebras and horses
from ImageNet; (right) summer and winter Yosemite photos from Flickr. Example application (bottom): using a collection
of paintings of famous artists, our method learns to render natural photographs into the respective styles.

Zhu et al., Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. ICCV 2017.
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GAN Minimizes JS-Divergence to Update G

P(x)
Q(x)

for VAE
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Picture Credit: https://medium.com/@jonathan hui/gan-wasserstein-gan-wgan-gp-6ala2aa1b490 43




Real Image/Video Data is often Supported in a Low-D

Manifold
For e.g. MNIST digits, ImageNet Images, Videos, although the pixel space is very

high-dimensional.

It's easy to find a perfect discriminator to separate high-dimensional data
supported in low-dimensional space.

44
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Picture Credit:https://lilianweng.qgithub.io/lil-log/2017/08/20/from-GAN-to-WGAN.html




Problems of GAN

The minmax training of GAN doesn’t necessarily converge in practice:

If we have a perfect discriminator in the beginning, the gradient of the loss function
with respect to generator parameters is close to zero and the learning is very slow

If we have a very bad discriminator, we don’t get much useful feedback from the
discriminator.

Training can be unstable.

Mode collapse: the generator only generates a subset of training data distribution
modes to fool the discriminator and fails to explore other modes.

45



Wasserstein Distance

The Wasserstein distance of p and q is the minimum cost of transporting mass in
converting the shape of a data distribution g to the shape of a data distribution p. It is also

called Optimal Transport Cost or Earth Mover Distance.

3
2 6 6
14|65 1 5
1 2 3 7 8 9 |10
3 (6+6+6+6+2x9=42) 7:8:9:i10
R SR A
2 s Ak, e e
SN N
1 2 3 7 8 9 10 3] 0io0iz2io0
fromret (6+6+6+8+9+7=42)
5 7:8:i9:i10
2 6 2|3 1]1i0i1iA1
L4l 1] 4 6
1{4:5 5 & Y, 2]|0i1i0i0
1 2 3 7 8 9 10 3] 0:0: 1 4

Picture Credit: https://medium.com/@jonathan

hui/gan-wasserstein-gan-wgan-gp-6a1a2aa1b490
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Wasserstein Distance

The Wasserstein distance of p and q is the minimum cost of transporting mass in
converting the shape of a data distribution g to the shape of a data distribution p. It is also
called Optimal Transport Cost or Earth Mover Distance.
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Picture Credit: https://medium.com/@jonathan hui/gan-wasserstein-gan-wgan-gp-6a1a2aaib490
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Comparing Wasserstein Distance with KLD and JSD

Vix,y)e P,x=0andy ~ U0, 1)
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Picture Credit:https://lilianweng.qithub.io/lil-log/2017/08/20/from-GAN-to-WGAN. html
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Wasserstein GAN (WGAN) Minimizing Wasserstein Distance
between pyand p,

Using the Kantorovich-Rubinstein duality, we can simplify the calculation to

W (P, Pg) = ”fS”up< IEMDT [f(z)] — Ez~p, [f ()]

[f(z1) = fz2)| < |21 — 2.

Arjovsky et al., Wasserstein Generative Adversarial Networks. ICML 2017.
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GAN

WGAN

WGAN vs. GAN

Discriminator/Critic Generator
wdii 1og D (29) +1og (1- D (G (2)))] }i:; og (D (G ()
Va3 [£@) - f(e (z9))] Vo3 f(e(0))

In WGAN, we have a critic with a scalar output without log
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WGAN vs. GAN

1.0 - - - T T r T
— Density of real

08| — Density of fake |
—— GAN Discriminator
——  WGAN Critic

0.6 R

Vanishing gradients 1
in regular GAN

2 4 6 8

Arjovsky et al., Wasserstein Generative Adversarial Networks. ICML 2017.
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Training Algorithm of WGAN

Algorithm 1 WGAN, our proposed algorithm. All experiments in the paper used
the default values a = 0.00005, ¢ = 0.01, m = 64, ncritic = 9.

Require: : «, the learning rate. ¢, the clipping parameter. m, the batch size.
Neritic; the number of iterations of the critic per generator iteration.
Require: : wy, initial critic parameters. 6, initial generator’s parameters.
1: while 6 has not converged do
for t = O, «eey Neritic do
Sample {z(!)}™ , ~ P, a batch from the real data.
Sample {z(®}™  ~ p(z) a batch of prior samples.
Guw + Vi [ Tics ful@®) — L2, fulge(2?))]
w < w + a - RMSProp(w, gu)
w <« clip(w, —¢, ¢)
end for
Sample {z()}™, ~ p(z) a batch of prior samples.
96 <~V >ivy fu(gs(2™))
11: 6 < 6 — a - RMSProp(0, gg)
12: end while 52
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Text2Video: Goals and Challenges

Build a conditional generative model to generate videos from text capturing
different contextual semantics of natural language descriptions

Capable of capturing both static content and dynamic motion features of
videos

Challenges
— It’s hard to condition on text, a big gap

— It is hard to build powerful video generator
— No publicly available dataset

How? Integrating VAE and GAN
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Model Overview

 We introduce an intermediate step called ‘Gist’” Generation.

e The model is trained end-to-end.

Noise Noise

Text input :> VAE |:> Generated Gist |:> Video GAN |:> Generated

ﬁ Video

Text input

Gist Generation Video Generation
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Generated Video Samples

Play golf on grass

Play golf on snow g i !E !! !I

Play golf on water
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Generated Videos

People
swimming in the
pool

Play golf on
grass

A boat sailing
in the sea

Li et al. Previous
(2018) Model

Play golf on
grass
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Media Reports from Science, MIT Technology Review,
Communications of ACM, etc.

SClellCC Home News Journals Topics Careers

§ FRONTIERS OF ‘:/A Nomination period now
8 Fundacién BBVA N open for the 11th edition

SHARE

©:00

Artificial intelligence is moving into movie production. SHAREGRID/UNSPLASH

New algorithm can create movies from just a
few snippets of text

By Matthew Hutson | Feb. 23,2018, 4:35 PM

Li, Min, et al., AAAI 2018



Disentangled Wasserstein Autoencoder for T-Cell Receptor Engineering (NeurlPS 2023)

. Functional pattern: defines the function (e.g. binding specificity)
Viral infection or tumor , i o o .
. Structural pattern: defines the structural backbone, required to maintain the validity of the protein

\i_Q Functional
* peptide Structural

TCR

‘ z Dataset

peptld / Template protein Engineered protein

=, Ligand or binding partner

Pattern learning & == Modification of ﬂ

disentanglement iy functional pattern

> \ >

. Positive: known TCR-peptide interaction pairs from databases (VDJdb and McPAS-TCR)
. Negative: randomly shuffled TCR-peptide pairs

/TCRa TCRB

Objective: modify the binding specificity given a TCR CDR3 and a target peptide, by only altering its functional pattern.



Training Optimization

Zg Zs
Input ) Reconstructed O, ‘Pl:li
sequence S sequence

, ,H r »E ,

xr Gaussian¢ r x' x x
T *

0y ‘ﬁ *ﬂ_ CASSPGTGKAGELFF H I:l CASSPGEGNQDTQYF

P
z ¥ U (non-binder template) Modified er u (generated binder)
f yé
Interaction TR N t - ssyrrPvG
_ ( positive | |
»  Reconstruction 108s L,¢con (x,x") \_  bindersto / (target)

 Classification loss L;s (Y(u, z¢),y) N SSYRRPVGI 7
« Wasserstein loss L,,4ss ((2zf,25), N(0,1))



Input sequence x

One-hot
encoding

20

Functional
encoder

Linear
embedding

Transformer
encoder

mxun < »w > 0

L
CASSYRFFF==n1m F__C A S

Reconstructed sequence x’

' SRS,
 —— = Lreconte =
2 Ls™ || LsT™ || LsT™m
I 1 i NS W Lok
’ ol
Structural ’I
. encoder
T ] o 0 ~
] i e o
sl e o el il
ol ] ol 1
—I— 2
—
- A
V
u

\l MatMul

wL
| o e e e | e e 5
Eemmmman | <
EEEEEEEE | y & === L
Interaction
classifier

z,: structure embedding
z¢: function embedding

u : peptide embedding

LSTM
decoder



Disentanglement analysis

zr of positive sequences

zs of positive sequences

20 1 20 CTPYDINQM
15 A ° TTPESANL
SSYRRPVGI
’ 104 . .
10 A . f N FRDYVDRFYKTLRAEQASQE
51 O e
. 0 o'
0 ¥ ¢
sl - S, 0%,
-10- o o
¥ oo,
-15 % _204 s
-20 0 20 -10 0 10
SSYRRPVGI FRDYVDRFYKTLRAEQASQE
2 (true) 2z, (true) Zf (true) Zs (true)
5 1 )l.;“:;‘:" 5 1 s . g ':':; ¥ . 5 1 o < "x :. ’
) e ¢ % o4 ) : X
0 1 3
. 01 0
=51 r -5+ % -54
5 _g e 2 , :
0 10 0 10 0 10 -10 0
TTPESANL CTPYDINQM
Zf (true) z; (true) Z¢ (true) Z (true)
sl wma KIS £
..'-,'_:‘7.3' .8 B4 ;“.‘:} e 5
0 . 04
5 b i i
=24 * b " BT b
-104 ¢ -104~ 1042 =
= -5 0 5 5 0 5 0 10

TCR engineering results

Yovalid #mut/len Yopositive valid 1
TCR-dWAE 0.61£0.06  0.49+0.05 | 0.2310.02'
TCR-dVAE 0.64+0.05 0.4+0.02  0.16x0.01
greedy 0.02+0.0  0.34+0.0  0.02+0.0
genetic 0.02+£0.0 NA 0.02+0.0
naive rm 0.03+0.0 0.35+0.01 0.0+£0.0
MCTS 0.0+0.0 NA 0.0+0.0
TCR-dWAE (null) 0.85+0.01 0.45+0.07 0.04+0.03
original 0.92 NA 0.01

5

0
-5+

Miyazawa-Jerningen energy

CTPYDINQM TTPESANL Template  Generated pos
(pval = 4.49e-144) (pval = 4.47e-265)
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Learning Disentangled Equivariant Representation for Explicitly Controllable 3D Molecule
Generation (AAAI 2025)

zp Predlctlon Head(s) ’Hpmp
Property Encoder ©,
—_—> —>» Property —>» Regression Loss
E(3)-Equwar|ant \
GNN
ﬁ\}
"8 E(3)-Equivariant Q"
f o’f’ (?NN Reconstruction Loss
3. \
¢ ,)OJ Decoder Dy
3D E(3)-Equivariant ) Reconstructed Molecule
Molecular ' GNN
Graph Wassersteln Loss @ Combine
Structure Encoder @

+ Reconstruction 10ss L,¢con (X, X") = Lysgerype + Leage + Lcooras
« Classification loss L;s (Y(z,),y)
« Wasserstein loss L,,4ss ((2p,25), N(0,1))



3D molecule x Reconstructed 3D molecule x’
V: node type (atom), _
E: edge type (bond)

I———P Liecon & = 4

R: 3D coordinate d
Node Initialization Pop Focus Node Edge Selection
Molecule @ - @
fragment graph
o9 > ® © ® |, ®
e “ e “ [ N

Property Structural Node Update Predict Coordinates ~ Y€S
encode Q encoder = ) - Hit Stop Node
Equivariant Q_ O ® v < ® N o
GNN P o
Q Zg 4= = Lyass |

‘ Focus Node
(z,y,2) @ Stop Node

O xN

Molecule
fragment
decoder

Oﬁ;"o

y‘-_-['cls

Property
classifier

=S
(j=



Algorithm 1: 3D Molecule Graph Reconstruction in E3WAE Node Initialization Pop Focus Node Edge Selection

1: Input: Latent variables z;,, z, v it =

2: Initialize: ® @ ' po® 0% L0 09
{zi}i=1,....n < NodeTypes(z, z,) P o @
Queue Q « 0
Q.push(RandomSelect({1,---,n ode Undate redict Coordinates Y
3DGraphg={V,S,R{},where{))eﬂ,f,'(—(D,Re@ NdUpdt . dtc.d = L

3: while Q # () do

4: f « Q.pop() ® ? « ? ® e o

5: Add node f to graph G ¢ P @ Focus Node

6:  isStopNode < False | ) ® Sopnote

T while not isStopNode do

8: (i,isStopNode) < PredictEdge(f, G)

9: if not isStopNode and FirstLink(z) then

10: ry = (Tu, Yu, 2u) < PredictCoords(i)

11: V+VU{i},€E+« EU{(f, 1)},

12: R+ RU({r;}

13: Q.push(z)

14: end if

15: MarkVisited( f)

16: end while

17: end while

18: Return: Reconstructed G = (V,€,R)




Property-guided generation

Ligand
Asphericity QED SAS logP
Vina MSE MAE Vina MSE MAE Vina MSE MAE Vina MSE MAE
HierDiff 4253 0125 0296 -4429 0.113 0275 5053 2364 1620 -4293 5938 1855
TargetDiff -5.742 0.117 0288 -5706 0.112 0307 -3479 3369 1604 5501 4509 1946
Ours -5.891 0102 0.271 -5866 0.086 0.247 -5940 2358 1.529 -5827 4376 1.794

Isolated molecule
Asphericity QED SAS logP
MSE/MAE MSE/MAE MSE/MAE MSE/MAE
EDM 0.626/0.455 0.113/0.285 12.395/3.385 5.704/1.903
GEOM HierDiff 0.176/0.406 0.120/0.289 2.618/1.347 4.124/1.572
Ours 0.095/0.246 0.072/0.221 1.563/1.002 4.490/1.630
Cross- EDM 0.109/0.274 0.147/0.309 11.244/3.205 5.715/1.957
Docked HierDiff 0.107/0.268 0.089/0.278 2.364/1.468 5.752/1.897
2020 Ours 0.100/0.259 0.062/0.205 2.356/1.243 4.244/1.644
Disentanglement analysis
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The End



