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Outline What is pseudotime

Monocle

RNA Velocity

Challenges of Computational Inferences 
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What is Pseudotime/Trajectory 

Inference?  

Saelens, W et al. Nat Biotechnology 2019 
Trapnell, C et al. Nat Biotechnology 2014

1) Cell differentiation occurs through 

dynamic developmental processes

2) Pseudotime orders cells along 

trajectories that represent these 

process

3) Trajectory inference (TI) reconstructs 

these cellular transitions 
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Monocle 2
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Step 1: 
Choose 
genes that 
define 
progress
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Step 2: Reduce 
data dimensionality 
(ICA)
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Step 3: Construct 
minimum spanning tree 
(MST) on the cells
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Step 4: Find 
the longest 
path through 
the MST
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Step 5: 
Order cells 
along the 
trajectory 
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Step 1: Identify genes that define the 

progress

Trapnell, C et al. Nat Biotechnology 2014

1)      Cells exist in a high-dimensional space

• Each cell 𝑋𝑖 is a point in 𝑑 dimensional 

space

2) Select high variance genes or based on 

differential expression patterns

A. High variability across cells

• Compute the variance across cells for each 

gene

B. Genes that define biologically relevant 

processes (e.g., stem cell markers)

C.    Differential expression along cell states
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Step 2: Reduce 

data dimensionality 

(ICA)

Trapnell, C et al. Nat Biotechnology 2014

1) Mathematical equations:

• 𝑥 is the observed mixed signals

• 𝐴 is the mixing matrix

• 𝑠 is the original independent source signals 

2) Goals:

• 𝑦 is the estimated independent components

• 𝑊 is the unmixing matrix, computed by ICA

𝑠 𝐴 𝑥 = 𝐴𝑠 𝑦 = 𝑊𝑥
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Why ICA

https://github.com/NBISweden/excelerate-scRNAseq/blob/master/session-

trajectories/trajectory_inference_analysis.pdf

1) PCA :  find the directions of maximal 

variance

• Find the loudest sound in the room 

(dominant but may be mixed)

2) ICA:   find the direction of maximal 

independence 

• Find individual voices in a conversion 
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Step 3: Construct 

minimum spanning 

tree (MST) on the 

cells 

Trapnell, C et al. Nat Biotechnology 2014

• Connect all vertices (cells) in 𝑉 in 𝐺 = 𝑉, 𝐸
• Has no cycles

• Minimizes the total sum of edge weights

1) Compute the pairwise distance in reduced-

dimensional space 

2) Prim’s algorithm 
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Step 4: Find the 

longest path 

through the MST 

1) The longest continuous path is 

the best proxy for the 

differentiation timeline

• Longest path is called the 

diameter

Trapnell, C et al. Nat Biotechnology 2014 9



Step 5: Order cells 

along the trajectory

Trapnell, C et al. Nat Biotechnology 2014

1) Assign a pseudotime value to 

each cell

• Cells early in the path:   

undifferentiated states

• Cells later in the path: fully  

differentiated states

Developmental trajectory of olfactory neurons in mice 

https://cole-trapnell-lab.github.io/projects/sc-trajectories/
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RNA Velocity: spliced and unspliced RNA 

levels indicate changing gene expression 

Bioinformatics, 2021: tinyurl.com/veloviz

Sofrware +tutorials : jef.works/veloviz 11



RNA Velocity: spliced dynamics predict future 

cell state 

Bioinformatics, 2021: tinyurl.com/veloviz

Sofrware +tutorials : jef.works/veloviz 12



Visualizing RNA velocity trends: projecting 

onto existing 2D-embeddings  

Bioinformatics, 2021: tinyurl.com/veloviz

Sofrware +tutorials : jef.works/veloviz 13



Limitations of PCA for RNA velocity

1) Only capture linear trends

2) PCA prioritizes global variance 

and ignores local trajectories 

https://nbisweden.github.io/excelerate-scRNAseq/session-dim-

reduction/lecture_dimensionality_reduction.pdf 14



Limitations of t-SNE for RNA velocity

1) Focus on clustering rather than 

continuity (cells should be 

connected may end up in 

different clusters)

2) Stochastic and no fixed 

geometric structure

3) No global structure  

https://nbisweden.github.io/excelerate-scRNAseq/session-dim-

reduction/lecture_dimensionality_reduction.pdf 15



Limitations of UMAP for RNA velocity

• Based on topological structures

• Points are connected if the distance is below 

a threshold

• Manifold alignment while preserving topology

1)  Distance-based but not descriptive of 

directional process and transcriptional dynamics  

https://nbisweden.github.io/excelerate-

scRNAseq/session-dim-

reduction/lecture_dimensionality_reduction.pdf 16



Limitations of diffusion maps for RNA velocity

1) Diffusion maps assume Markovian diffusion 

(reversible transitions) while RNA velocity is 

irreversible 

2)     Global manifold structure and they tend to 

over smooth local velocity variations

Haghverdi et al 2015 17



Visualizing RNA velocity: RNA-velocity 

informed 2D-embeddings using VeloViz

𝐴𝑐 the observed transcriptomic profile

𝐴𝑝 the predicted future state 

transition vectors 𝐴𝑐 𝑡𝑜 𝐵𝑐
Cells with small composite distances are more 

likely transitions 
https://nbisweden.github.io/excelerate-

scRNAseq/session-dim-

reduction/lecture_dimensionality_reduction.pdf
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Challenges in Inferring 

cellular time

1) Learning ‘pseudo time’ 
trajectories

Assume cells take smooth 
paths

Does the learnt trajectory 
reflect real biological 
path? 
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LIVE-seq 

Chen et al, Nature 2022

1)  Cytoplasmic cellular biopsies

• miniaturized RNA-seq protocols for 

profiling gene expression

2)  Repeated cellular sampling

• time-lapse microscopy enables 

sequential extractions and profiling

• challenging to scale protocol to large 

numbers of cells
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Zman-seq 

Kirschenbaum et al, Cell 

2024

1) Barcoding cellular time in-vivo

• use fluorescent pulse labels

2) Time-stamped cellular dynamics

• cells retain their fluorescent label as a 

temporal barcode

• can build cellular trajectories with 

ground truth time-stamps
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Thank you! 
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