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Overview

• Convolutional operations in image classification

• Application of CNNs in regulatory genomics

➢ Learn meaningful representations from DNA sequences (Basset)

➢ Predict and precisely locate functional genomic regions (DECODE)

➢ Map DNA sequences to enhancer activity and uncover TF motif syntax rules 
(DeepSTARR)
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Convolutional Neural Network: LeNet 
(1998)
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Classification in computer vision 

How do we effectively extract and 
detect features from image data?

Classification

Adaptative

feature learning

w NN
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Why CNN over Feed-Forward Neural Nets?

• Represent an image with a flattened tensor 

• Problems of using fully connected layers for image classification:
• Too many weights

• 224 x 224 x 3

• Loss of spatial structure!
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Why CNN over Feed-Forward Neural Nets?

DNN works much worse than a shallow CNN even on
MNIST!

Error rate: ~1.0% vs. ~0.60% MNIST

Task

Adapted from Martin Min’s slides
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Classification in computer vision 

How do we effectively extract and 
detect features from image data?

Classification

Adaptative

feature learning

w NN

Use convolutional filters 7



Gerstein Lab

Detect features in an image via Kernel / Filter

• A filter (weight matrix) detects features in the input.
• They are initialized randomly and updated through backpropagation during training.

• Convolution identifies where these features appear in the image.
• Element-wise multiplication between filter and image region.

• Sum the results.

1 0 1

0 1 0

1 0 1

Image Filter of shape “X”

(1×1)+(1×0)+(1×1)+(0×0)+(1×1)
+(1×0)+(0×1)+(0×0)+(1×1)

Convolution operation on a 5x5 matrix
with a 3x3 kernel
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Detect features in an image via Kernel / Filter

• The filter is applied to 3x3 image patches to detect patterns or features.

• Convolution produces higher values when the filter matches the pattern in the image; Lower 
values indicate weaker matches or opposing patterns. 

• The resulting feature map highlights where the feature appears in the image.

1 0 1

0 1 0

1 0 1

Image Filter of shape “X” Convolved features
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Detect features in an image via Kernel / Filter

• The filter is applied to 3x3 image patches to detect patterns or features.

• Convolution produces higher values when the filter matches the pattern in the image; Lower 
values indicate weaker matches or opposing patterns. 

• The resulting feature map highlights where the feature appears in the image.
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Detect features in an image via Kernel / Filter

• Parameter sharing. In convolutional layers, the same weights / same filters 
(parameters) are applied across different spatial positions of the input. 

• For each feature map, neurons share weights, resulting in far fewer parameters compared to fully 
connected layers.

• Depth. Each convolution operation applies multiple filters (kernels) to the input, 
producing multiple feature layers (feature maps).

• Each filter detects a different pattern, such as edges, textures, or shapes.

• By stacking these feature maps, the network can capture a wide variety of features in the input 
image.
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Stride

• Stride determines how far the filter moves with each step 
(e.g., 1 pixel, 2 pixels).

Stride = 1

Stride = 2
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Zero-Padding

• Padding adds extra pixels 
(commonly zeros) around the 
image boundary to prevent 
loss of information at the 
edges.

• Without padding, pixels at the 
edges are used less in 
convolution, leading to loss of 
information and reduced output 
size.
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2D convolution examples

https://github.com/vdumoulin/conv_arithmetic?tab=readme-ov-file

No padding,

Stride = 1

Padding = 2,

Stride = 1

Padding = 1,

Stride = 2
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Pooling

• Pooling is often applied after convolution operation to simplify 
the output data.

• Max Pooling:
• Selects the maximum value within each region covered by the kernel.

• Average Pooling:
• Computes the average value within each region covered by the kernel.
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Pooling

• Max Pooling also acts as a noise suppressant by discarding 
noisy activations. 

• Pooling simplifies data and improves computational efficiency.

• Convolution performs a linear operation; non-linearity is often 
introduced through subsequent ReLU activations and pooling 
layers.
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CNN learns features directly from the data

The classification task drives the
feature extraction in CNN

1 0 1

0 1 0

1 0 1

17
Again, a convolutional filter is a matrix of weights, initialized randomly and updated 
through backpropagation during training.
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Low-level features:

Pixel intensity changes

Edge detection

Local texture variations

High-level features: (later layers of CNN)

Digit shapes (e.g., circular for "0", vertical line for "1")

Stroke thickness and curvature

Spatial relationships between different parts of a digit

CNN learns hierarchy of features
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Hierarchical representation learning

• Learn hierarchy of features directly from data (rather
than hand-engineering them)

Lee ICML 2019
Convolutional Deep Belief Network
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The above images are not direct filter weights (this visualization is for demonstration 
purposes; they are filters projected back into pixel space, to show what features
each layer is detecting). 

In practice, CNN filters are often less visually interpretable.



Gerstein Lab

Filters to detect X features

https://introtodeeplearning.com/slides/6S191_MIT_DeepL
earning_L3.pdf

• CNN filters are learnable weight 
matrices with defined sizes (e.g., 3×3, 
5×5) and learned features from data 
during training. 

• Filters stack hierarchically: 

• lower layers: simple features (e.g., edges)

• deeper layers: complex patterns (e.g. “X”).

• Modern CNNs can go very deep—e.g., 
ResNet: 34 layers (uses skip 
connections to avoid information loss).
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Overview

• CNNs in image classification

• Application of CNNs in regulatory genomics

➢ Learn meaningful representations from DNA sequences (Basset)

➢ Predict and precisely locate functional genomic regions (DECODE)

➢ Map DNA sequences to enhancer activity and uncover TF motif syntax rules 
(DeepSTARR)

Kelley et al. 2016

Chen Z., Zhang J. et al., ISMB 2021
de Almeida, Bernardo P.,  et al.  2022
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Transcriptional regulation requires the complex coordination of 
many proteins 

Anderrson, Nat Rev Genetics, 2020

CREs – cis-regulatory elements

Promoters: Initiate transcription near the gene

Enhancers: Regulate gene expression from a 

distance

Motifs: Short DNA patterns for TF binding
22
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Overview of gene regulation

✓Where are the regulatory regions 
and protein binding motifs located?

✓How strongly do transcription 
factors bind to DNA?

✓How do these motifs interact with 
each other (within CREs or across 
different CREs)?

o e.g. Competitive binding, collaborative
binding.
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Adapted from Genomics I slides

➢ How does DNA sequence encode gene regulation?

➢ What regulatory logic is embedded in the sequence?

How DNA Sequences Drive Transcription?
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How DNA Sequences Drive Transcription?

➢ Learn meaningful representations from DNA sequences (Basset).

Functional assays:

1. ATAC-seq/DNase-seq

2. ChIP-seq, CUT&RUN
3. STARR-seq, MPRA

4. RNA-seq, CAGE, PRO-seq
5. Hi-C, ChIA-PET, micro-C

ML / DL

Input Output
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Basset: Representation Learning of DNA Sequences 
Using CNNs

Convolutional filters / ReLU / Max pooing

Basset: Kelley et al. 2016

Diagram from: Eraslan et al., Nature 
Reviews Genetics, 2019
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DNA convolutional filters 

Feature maps indicate 
detection of certain motifs 
(filters) in the sequence

Produces feature map: each column 
corresponds to a convolutional filters

Scan the filters across the input 
sequence

Kelley et al. 2016

In image: 

In DNA: PWM 
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First-Layer Filters Align with Known TF Binding Motifs

Motif information is derived by 

converting first-layer filter activations 

into probabilistic PWMs, counting 

nucleotide occurrences above a 
threshold. 

Overall, 45% of filters could be 

annotated in the motif database
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ReLU activation ignores misalignment
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Max pooling summarizes features  

Max pooling

• Summarize / aggregate information

• Reduces the dimension of the input 

• Provides invariance to small sequence 
shifts to the left or right.
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Representation Learning of DNA Sequences Using CNNs

2nd and 3rd convolutional layers
identify local motif interactions and
uncover regulatory interactions across
broader regions

Convolution Activation Max pooling MLP
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Layer 1

Layer 2

Layer 3

Sequence motifs

Local motif interactions

Regulatory syntax across broader regions

Hierarchical representation learning
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Representation Learning of DNA Sequences Using CNNs

Layer 1

Sequence motifs

CNNs have inherent limitations in capturing long-range interactions

- Basset: 20k nt range; distal enhancers can act thousands of nts away

Sequence models (RNNs, LSTMs, and Transformers) extend the visible 

range of sequence interactions by modeling long-range dependencies.

✓ More on this in Martin’s lecture.
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➢Learn meaningful representations 
directly from DNA sequences (Basset)

➢Predict and locate functional 
genomic regions (i.e. enhancers) 
(DECODE) 

➢Map DNA sequences to enhancer 
activity and uncover TF motif syntax 
rules (DeepSTARR)

Chen Z., Zhang J. et al.  (ISMB 2021)

How DNA Sequences Drive Transcription?
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STARR-seq allows direct measurement of enhancer 
activity 

• STARR-seq provides direct readouts of enhancer activity
• STARR-seq is massively parallel reporter assay that measures enhancer activity from arbitrary sources of DNA. 

• Genomic fragments are transfected into target cells in front of a luciferase gene, and enhancer activity is quantified by 
measuring luciferase expression.

• Limitation: STARR-seq lacks the resolution needed for precise enhancer localization.

Chen Z., Zhang J. et al.  (ISMB 2021)

https://starr-seq.starklab.org/overview/

Localize enhancer 
regions
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Epigenetic Features as Inputs→ STARR-seq as Output

Chen Z., Zhang J. et al.  (ISMB 2021)

Training datasets. Histone marks and ATAC-seq across cell types.  

Labels

36



Gerstein Lab

Predicting and Localizing Regulatory Regions with CNNs

Overall Workflow 

• Input: High-resolution epigenetic features across a 4kb genomic window.

• Model: A CNN-based binary classifier predicts the presence of enhancers.

• Target: STARR-seq peaks, representing enhancer activity regions.

• Grad-CAM is further applied to generate a feature importance score, justifying key 
features and precisely localizing enhancer regions.

Chen Z., Zhang J. et al.  (ISMB 2021)

37



Gerstein Lab

Selvaraju R.R. et al.  (2017)

• Problem: Enhancer localization?

• Convolutional Filters: Learn features critical for 
enhancer prediction, outputting activation maps.

• Feature Maps: Highlight genomic regions 
containing these essential features 

Leverage Feature Maps to Localize Enhancer Regions

Gradient-weighted Class Activation Mapping 
(Grad-CAM)
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Selvaraju R.R. et al.  (2017)

• Problem: Enhancer localization?

• By superimposing activation maps (𝑨𝒌) 
weighted by gradient-based importance 
scores (𝑎𝑘), Grad-CAM highlights the most 
salient features for making predictions and 
reveals high-resolution core enhancer 
annotations. 

Leverage Feature Maps to Localize Enhancer Regions

Gradient-weighted Class Activation Mapping 
(Grad-CAM)
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Selvaraju R.R. et al.  (2017)

• Problem: Enhancer localization?

• Grad-CAM enables precise enhancer 
localization at a much higher resolution 
compared to the original 4 kb input.

Leverage Feature Maps to Localize Enhancer Regions

Gradient-weighted Class Activation Mapping 
(Grad-CAM)
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➢Learn meaningful representations 
directly from DNA sequences 
(Basset)

➢Predict and locate functional genomic 
regions (DECODE) 

➢Map DNA sequences to enhancer 
activity and uncover TF motif 
syntax rules (DeepSTARR)

de Almeida, Bernardo P.,  et al.  2022

How DNA Sequences Drive Transcription?
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de Almeida, Bernardo P.,  et al.  2022

The cis-regulatory code that regulates enhancer activity

TF motif arrangements/syntax

(number, order, orientation, flanks, and spacing)

Enhancer sequence
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Vo and Goodman, JBC, 2001
Adapted from Kellis and Gifford, Regulatory Logic Lecture, 2020

The spatial arrangement of TF binding is critical

Enhancer sequence
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Quantitatively predicting enhancer activity from DNA sequence

• Input: 1-hot encoding of 249-bp DNA sequences.

• Architecture: 4-layer CNN with max-pooling after each layer, followed by two fully connected layers.

• Convolutional filters:

• Early convolutional layers identify TF motifs.

• Later layers capture more complex patterns like motif syntax and local motif interactions.

• Output: Simultaneous prediction of quantitative enhancer activities for developmental (Dev) and housekeeping (Hk) 
enhancers. de Almeida, Bernardo P.,  et al.  2022

Quantitative
prediction of enhancer
activity (STARR-seq)
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In silico analysis of motif distances

Quantitative enhancer

activity prediction

DeepSTARR 
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In silico analysis reveals distinct modes of motif cooperativity

Cooperativity mode (1/2/3) depends on the TF and motif pair

• ETS: always mode 1

• AP-1: always mode 3

• GATA: modes 1/2/3 depending on partner TF

• Also validated with experimental data
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Summary

• Convolutional operations in image classification

o Use convolutional filters to learn features in the image (as well as genome)

o Introduce non-linearity through ReLU activation

o Pooling is commonly use to summarize information and preserve spatial invariance

• Application of CNNs in regulatory genomics

➢ Learn meaningful representations from DNA sequences (Basset)

➢ Predict and precisely locate functional genomic regions (DECODE)

➢ Map DNA sequences to enhancer activity and uncover TF motif syntax rules 
(DeepSTARR)
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Suggested Readings 

• ISLR v2: Chapter 10.3 Convolutional Neural Networks

• Greener et al., 2022 – A guide to machine learning for biologists, Nat 
Rev Mol Cell Biol. 

• Kelley et al., 2016 – Basset: learning the regulatory code with CNNs, 
Genome Res. 

• Chen et al., 2021 – DECODE: deep-learning framework for enhancer 
analysis, Bioinformatics. 

• de Almeida et al., 2022 – DeepSTARR: predicting enhancer activity 
from DNA, Nat Genet.
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(Optional) Suggested Readings 

• Kelley et al., 2016 – Basset: learning the regulatory code with CNNs, 
Genome Res. 

• Kelley et al., 2018 – Dilated CNNs for sequential regulatory activity 
prediction, Genome Res. 

• Avsec et al., 2021 – Enformer: gene expression prediction with long-
range interactions, Nat Methods. 

• Linder et al., 2025 – Borzoi: predicting RNA-seq coverage from DNA 
sequence, Nat Genet.
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