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Network Topology

Simple Mathematical Models
for Interpreting Complex
Topology: ER Model & Small
World Networks



Models for networks of complex topology

» Erdos-Renyi (1960)
» Watts-Strogatz (1998)
« Barabasi-Albert (1999)

A Barabasi & R Albert
"Emergence of scaling in
random networks,"

Science 286, 509-512 (1999).




The Erdés-Reényi [ER] model (1960)

. —
- & - Y ;ﬂ'.\
- " .I_,.-" -.II «.'l"
. . « e
% i -
b =0 p =02 Y 7 p%s ﬁ'\
" e . o e
Voo
. . L .

« Start with N vertices and no edges
» Connect each pair of vertices with probability Pgg

Important result: many properties in these graphs appear quite suddenly, at
a threshold value of Px(N)

-If Peg~c/N with c<1, then almost all vertices belong to isolated trees
-Cycles of all orders appear at Pgg ~ 1/N



The Watts-Strogatz [WS] model (1998)

Regular Small-world Random

Increasing randomness

« Start with a regular network with N vertices
* Rewire each edge with probability p

For p=0 (Regular Networks): For p=1 (Random Networks):
high clustering coefficient low clustering coefficient
*high characteristic path length *low characteristic path length

QUESTION: What happens for intermediate values of p?



1) There is a broad interval of p for which L is small but C remains large
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2) Small world networks are common :

Table 1 Empirical examples of small-world networks

L actual L random Cactual l:jram:h:-m
Filrm actors 3.65 299 0.79 D.00027
Power grid 18.7 12.4 0.080 0.008

C. elegans 265 2.25 0.28 Q.05



Small world network

* Asimple connected graph G exhibiting two properties:

— Large Clustering Coefficient: Each vertex of G is linked to a relatively well-
connected set of neighboring vertices, resulting in a large value for the
clustering coefficient C(G);

— Small Characteristic Path Length: The presence of short-cut connections
between some vertices results in a small characteristic path length L(G).

Regular small-world Random

Increasing randomness

* |ocal connectivity and global reach

Watts and Strogatz (1998), Nature, Collective dynamics of ‘small-world’ netwogks




Network Topology

Simple Mathematical Models
for Interpreting Complex
Topology: BA Model & Scale
Free Networks



Random v Scale-free Networks

[From Barabasi & Bonabeau, Sci. Am., May '03]

RANDOM NETWORKS, which resemble the U.S. highway system nodes with a very high number of links. In such networks, the

(simplified in left map), consist of nodes with randomly placed distribution of node linkages follows a power law (center graph)

connections. In such systems, a plot of the distribution of node in that most nodes have just a few connections and some have

linkages will follow a bell-shaped curve (left graph), with most a tremendous number of links. Inthat sense, the system has no

nodes having approximately the same number of links. “scale.” The defining characteristic of such networks is that the
In contrast, scale-free networks, which resemble the U.S. distribution of links, if plotted on a double-logarithmic scale

airline system (simplified in right map), contain hubs (red)— (right graph), results in a straight line.

Random Network Scale-Free Network

Bell Curve Distribution of Node Linkages Power Law Distribution of Node Linkages

— Typical node

Number of Nodes
Number of Nodes
Number of Nodes
(log scale)

Number of Links Number of Links Number of Links [log scale)




The Barabasi-Albert [BA] model (1999)

Look at the distribution of degrees
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@ two problems with the previous models:
1. N does not vary
2. the probability that two vertices are connected is uniform

* GROWTH: starting with a small number of vertices m, at every timestep add
a new vertex with m < m,

* PREFERENTIAL ATTACHMENT: the probability I'l that a new vertex will be
connected to vertex | depends on the connectivity of that vertex:

[1(k,) = Zk

=l i =3 g =3 i
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Birth of Scale-Free Network

A SCALE-FREE NETWORK grows incrementally from two to 11 nodesin this example. When deciding where to establish a link, a new node
(green] prefers to attach to an existing node [red] that already has many other connections. These two basic mechanisms—growth
and preferential attachment—will eventually lead to the system’s being dominated by hubs, nodes having an enormous number of links.

¥ 3

[From Barabasi & Bonabeau, Sci. Am., May '03]
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SCALE FREENESS GENERALLY EVOLVES THROUGH PREFERENTIAL
ATTACHMENT (THE RICH GET RICHER)

The Duplication Mutation Model

Description

Vs

The interaction
partners of A are
more likely to be
duplicated

Gene duplication

Ve

* Theoretical work shows that a mechanism
of preferential attachment leads to a scale-
free topology

(“The rich get richer”)

* In interaction network, gene duplication
followed by mutation of the duplicated gene
Is generally thought to lead to preferential
attachment

* Simple reasoning: The partners of a hub
are more likely to be duplicated than the
partners of a non-hub

Source: Albert et al. Rev. Mod. Phys. (2002) and Middendorf et al. PNAS (2005)
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SCALE FREENESS GENERALLY EVOLVES THROUGH PREFERENTIAL
ATTACHMENT (THE RICH GET RICHER)

The Duplication Mutation Model Description

Ve

* Theoretical work shows that a mechanism
of preferential attachment leads to a scale-
o ° e free topology
(“The rich get richer”)
* In interaction network, gene duplication
The interaction followed by mutation of the duplicated gene
Gene duplication partners of A are Is generally thought to lead to preferential
more likely to be attachment
duplicated
o H * Simple reasoning: The partners of a hub
are more likely to be duplicated than the
° o ° e partners of a non-hub
- J -

Source: Albert et al. Rev. Mod. Phys. (2002) and Middendorf et al. PNAS (2005)
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