Biomedical Data Science (ersteinLab.org/courses/452)
Genome Annotation (AS, eQTL, GWAS) (2sm7-part2)
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Outline

 Part 1 : Generic Annotation
(not related to an individual's variants)
- RNA-seq, Chip-seq
- Integration
-, HI-C
« Part 2 : Annotation related to an individual's variants
- ASE/ASB
- GWAS & eQTL

Allele-specific Events
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Inferring Allele Specific Binding/Expression
using Sequence Reads

RNA/ChIP-Seq Reads

ACTTTGATAGCGTCAATG :><:
CTTTGATAGCGTCAATGC
CTTTGATAGCGTCAACGC ~AACGC...
TTGACAGCGTCAATGCAC TF
TGATAGCGTCAATGCACG '
ATAGCGTCAATGCACGTC )
TAGCGTCAATGCACGTCG ‘ \U/{
CGTCAACGCACGTCGGGA
GTCAATGCACGTCGAGAG LAATGC...
CAATGCACGTCGGGAGTT
AATGCACGTCGGGAGTTG
TGCACGTTGGGAGTTGGC Haplotypes with a
Heterozygous Polymorphism
10 x T
2 x C

Interplay of the annotation and individual sequence variants



ASE/ASB Example:

Calling AS Events

..GTCAATGCAC
..GTCAATGCACG
..GTCAATGCACGTC
..GTCAATGCACGTCG Null Example:
..GTCAACGCACGTCGGGA ACTTTGATAGCGTCAATG
GTCAATGCACGTCGAGAG CTTTGATAGCGTCAACGC
CAATGCACGTCGGGAGTT TTGACAGCGTCAATGCAC
AATGCACGTCGGGAGTTG ATAGCGTCAATGCACGT...
Alleles fic SNP Binomial Null Distribution TAGCGTCAACGCACGT..
ele- ecific IS _ ey : CGTCAACGCACGT...
p (no allele-specific behavior) CAATGOACGT..
_ AATGCACGT...
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Reference Allele

Alternate Allele

Fraction of Reads Mapping to Alternative Allele

[Rozowsky et al., MSB (‘11)]
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Many Technical Issues in Determining ASE/ASB:
Reference Bias

(naive alignment against reference v using a personal genome)

Map to reference genome

Reference — n _/_\
Genome

Map to diploid genome

o ChIP-seq

Pd. L c N T reads

|

Personal
Genome MQ

. A

Lectures.gersteinlab.org — Rozowsky et al. Cell (‘23)



Outline

 Part 1 : Generic Annotation
(not related to an individual's variants)
- RNA-seq, Chip-seq
- Integration
-, HI-C
« Part 2 : Annotation related to an individual's variants
- ASE/ASB
- GWAS & eQTL

GWAS (Basic Workflow)
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Gerstein Lab

Relating to Variants on a Population Level in a Cohort

Variants Traits
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Gerstein Lab

Relating to Variants on a Population Level in a Cohort

GWAS

(\

Variants Traits

e

Mendelian Randomization

.gersteinlab.org]
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Genome-Wide Association Studies (GWAS)

The basic idea behind a GWAS is to find significant associations between genetic markers and
phenotypes (disease / traits) = exploratory “genome-wide” research, non-hypothesis based

Manhattan plot
2. Testingeach :
SNP for significant
association with |
the trait -
N | i .
g , ¢ l
m' ﬁ" W i

22 A

chromosome

1.Scanning SNPs across the genome

Slides from B Borsari & S Liu



GWAS: a (multiple) linear regression problem

Consider a quantitative trait (eg: weight)
* Consider a SNP Swith allele, = A, allele, =G
* Define three groups of individuals with genotype AA, AG, GG

* The question we try to answer when conducting a GWAS: do we see a significant difference in the
weight between these three groups of individuals that correlates with the dosage of allele,?

We can treat this as a linear regression problem:

O
Vi = BotByxyte O
Y VN £ o °
weight; = b, + b, - (dosage, of allele,) + error; O O
= o 0O
- weight; = weight of individual / = dependent variable g
- by =intercept
- dosage, of allele, = dosage of allele, in individual i 0 1 2
= explanatory or independent variable (AA) (AG) (GG)
- b, =effect of allele, on the weight of the individual dosage

Slides from B Borsari & S Liu



(More Later)

Theoretical model: assumptions

Vi = Bot+BiXytE

weight; =b, + b, - (dosage, of allele,) + error;

error; is also more commonly called residual

Assumptions

Linear relationship between y and x
Homoscedastic residuals (= constant variance)
Normally-distributed residuals

* & = ~Normal(0, 0?)
Independent observations

more
stringent

less
stringent

weight

residual value @ predicted value

®
0o 1 2
(AA) (AG) (GG)

dosage

Slides from B Borsari & S Liu



Estimation by Least Squares

Vi = BotBiXytE

weight; = b, + b, - (dosage, of allele,) + error;

To solve this equation, we apply the Ordinary Least Squares criterion: Q(by,b,)={> €>=> (Y, —b, b, X,)

b,=2z;b,=0 by<z;b,>0 by<<z;b;>>0
O 8 In other words, we need
- 8 - e = to find the combination
_'En 7@ g o 'E» ° g .qQ; of by and b, that
2 o o 2 o o = minimizes the sum of
o o squared residuals
o ° across all individuals
0 1 2 0 1 2 0 1 2
(AA) (AG) (GG) (AA) (AG) (GG) (AA) (AG) (GG)

dosage dosage dosage

Slides from B Borsari & S Liu



GWAS: a (multiple) linear regression problem

A multiple regression problem:

A
Vi = Bot BrXy +BaXy oo+ Bipay Xyt E;

=
* j=1...nobservations (individuals / samples) %
* y,=weight of individual / =
* X,;,=dosage of allele, of SNP S in individual i (0/1/2) ae
* Xy t...*+ X = CoOvariates (age, gender, diet) in individual / 00\\’3“\
* ¢&; =error or residual of the estimated weight for individual i >

dosage

Caveat: a phenotype is given by the contribution of both genetic and non-genetic effects

* it might be that, by coincidence, there are more males than females in the GG group, thus we can’t know a priori if the difference in weight is
purely given by the effect of the SNP

* it mightbe that, by coincidence, the diet fatty-acid content varies between the three groups

Goals when performing multiple linear regression:

* Testif a specific explanatory variable x has a significant effect in predictingy
* We areinterested in evaluating the effect of SNP S on weight

Slides from B Borsari & S Liu



Determining the effect of a SNP on the trait

Question: Does the genotype of SNP S (x,) have a significant effect on the weight of an individual?

Vi = Bo* Br-Xy +BaXg ¥ oo+ BptyXpy + &

The estimated effect of SNP S on weight is b, (or BA1 )
* Under the null hypothesis (no effect of SNP S on weight), §, =0

* We can use the t-statistic to compute whether b, is significantly different from (3, (0)

0.40

0.35)
0.30F

b1 _B1

t = > 025
SE,, = 0.20}

0.15F

£~ TsTypENT 0.10¢
0.05}

v=n-—2
0.00
n = n of indivs.

p-value < a: reject the null
hypothesis, the SNP has a
significant effect on weight
p-value = « :acceptthe
null hypothesis, the SNP
does not have a significant
effecton weight

a can be 0.05, 0.01, 0.001

Slides from B Borsari & S Liu



Outline

 Part 1 : Generic Annotation
(not related to an individual's variants)
- RNA-seq, Chip-seq
- Integration
-, HI-C
« Part 2 : Annotation related to an individual's variants
- ASE/ASB
- GWAS & eQTL

GWAS (Additional
Considerations)

.GersteinLab.org
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GWAS workflow

Study Power Downstream Replication
: . GWAS . .
design calculations analysis studies
Type of study

* Quantitative trait
* Case-Control study (example: disease vs. healthy)

Balding, Nat Rev Genet, 2006

Slides from B Borsari & S Liu



GWAS workflow
> Stugly >> Powgr >> GWAS >> Downstrgam >> Replicgtion
design calculations analysis studies

o.. 0000,

., Q000
0000
0000

Population stratification

* Some SNPs might have different allele frequencies in
different subpopulations ©
EX: In comparing Asian vs. European, what if one did O o ° O
GWAS for “uses chopstick” without correction

Populat
2

* allele,is enrichedin cases
* BUT cases are enriched in population 1,
where allele, is more frequent

Slides from B Borsari & S Liu



GWAS workflow

Study Power Downstream Replication
. . GWAS . .
design calculations analysis studies
Scores of PCA
1001
¥
Choice of relevant covariates 50. : PonLfIa(;cion
) Inian
* Purpose: control for indirect effects unrelated to the & 3 Italy
phenotype of interest and eliminate the influence of = : Bz‘re”ands
confounders UK2
* e.g., age, sex, genotyping batch o]
* First 5or6 Principal Components based on ancestry are

usually included as model covariates in order to control for — = - P
ancestry-related genetic variation that could confound PC1

results _ _ o .
https://privefl.github.io/bigsnpr/articles/how-to-PCA. html

Slides from B Borsari & S Liu


https://privefl.github.io/bigsnpr/articles/how-to-PCA.html

GWAS workflow

Study Power Downstream Replication
: . GWAS . .
design calculations analysis studies

* Power is the probability that a SNP is truly associated with a trait
* |t depends on sample size, allele frequency and effect size

* Larger sample size n and MAF fresult in a more accurate estimate of the SNP effect
* Larger absolute values of 5 increase the difference from the null model (e.g. same mean
value of the trait across genotype groups)

Slides from B Borsari & S Liu



GWAS workflow

Study Power Downstream Replication
: . GWAS . .
design calculations analysis studies
Type of study Statistical model

* Linearregression (beta values)
* Logistic regression (OR)

* Quantitative trait
e Case-Control study

vV Vv

Slides from B Borsari & S Liu



GWAS workflow

Study Power Downstream Replication
: . GWAS . .
design calculations analysis studies

* Because of LD, many significant SNPs are indeed the
result of indirect associations



GWAS workflow

Study Power Downstream Replication
: . GWAS . .
design calculations analysis studies

* Multiple testing Bonferroni correction:
* GWAS test millions of SNPs for association with
traits (multiple hypotheses)
* Without correction, the chance of obtaining false
positives increases dramatically
* Controlling Family- Wise Error Rate(FWER)
ensures the overall rate of false positives remains

at a desired significance level (eg. 5%)

(04
« FWER =—,
m

* m =# of independent hypotheses
* #ofindependent common variants = 10°
* FWER=0.05/10% =5-10%

Slides from B Borsari & S Liu



GWAS workflow

Study Power Downstream Replication
: . GWAS . .
design calculations analysis studies

* Constructing Polygenic Risk Score (PRS)
* Include SNPs below a p-value threshold +
in low LD to retain independent signals

Genotype dosage for individual i at "
SNPj

PRS; = % Gy+8
j=1 i

Estimate effect size [as log (OR)]* of the j* &
variant (SNP)

Slides from B Borsari & S Liu Sima et al, Human Genetics, 2024



First GWAS: at Yale

P=48x10" " 2ol Bz B d e med
- e e = oy o= - T "R T
6 ¢ 54 2 5 . 5 . T S Y M 4 & ateter e

-Iogm(P)

Scientists used genome-wide association to
identify genes that affect the risk of
developing Age - related macular

nil degeneration
B
o6 ob SN'P rs1329428r
-8 Cases
>06} > 0.6} |€=@ Controls
Q Q
c =
') (7}
> 3
g o4 g 04
(e [T ~N
02 02
ol— A 2 0 s A
AA AB BB AA AB 88
Genotype Genotype

Klein et al, Science 2006



The NHGRI-EBI GWAS Catalog

The NHGRI-EBI Catalog of human genome-wide association studies: https://www.ebi.ac.uk/gwas/

As of 2022-10-08, the GWAS Catalog contains 6041 publications and 427870 associations.
GWAS Catalog datais currently mapped to Genome Assembly GRCh38.p13 and dbSNP Build 154.

Slides from B Borsari & S Liu


https://www.ebi.ac.uk/gwas/

Outline

* Part 1 : Generic Annotation
(not related to an individual's variants)
- RNA-seq, Chip-seq
- Integration
-, HI-C
- Part 2 : Annotation related to an individual's variants
- ASE/ASB
- GWAS & eQTL

eQTL
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Molecular guantitative trait loci

Genome sequence =——> Molecular

. phenotypes
[ \

* molecular quantitative trait loci (QTLs)

O
wedit 0 | |
o O * Population-scale analysis

number of reads, o * Same concept as GWAS for quantitative traits (linear
gene expression, o o) models, effects modeled as beta coefficients)

O

O

0 1 2

(AA) (AG) (GG)
dosage

Slides from B Borsari & S Liu



Expression quantitative trait locus (eQTL)

Cis-eQTL

SNP X has an effect on local Gene A

e

Gene A expression levels

SNP X Gene A
located in transcription factor ' '
promoter region located on AA AB BB

SNP X Geno
chromosome 1 type

Altered Protein A levels,
effect on the binding to
the transcription factor
binding sites of
downstream genes
Trans-eQTL
SNP X has an effect on distant Gene B through an
intermediary factor (such as a transcription factor)

§ .:.l -‘2-"".)’
e (o Ble—g !
Protein A Gene B :
binding site located on s Ly + '
chromosome 2 © A AB BB
SNP X Genotype

Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 2014, 10:1896-1902

28 ~ Lectures.GersteinLab .org



Aspects of Scaling eQTL calculation to Many SNPs & Many Samples

Taking into account covariates
General additive model for sources of gene expression variability.

Standard eQTL mapping with covariates and hidden factors
( Standard eQTL mapping with covariates R
[ Standard eQTL mapping ‘

SNP Age Environment ln‘tgg(ctti:ns
. 1513
(Disease state Gender Temperature 2environment

Tissue) Environment Concentration Non-linear effects

Expression] —. | Geno- Known Hidden
— type + factors factors +

Y YO (S)  YO(F)

Stegle O, Parts L, Durbin R, Winn J (2010) A Bayesian Framework to Account for Complex Non-Genetic Factors in Gene
Expression Levels Greatly Increases Power in eQTL Studies. PLOS Computational Biology 6(5): e1000770.
https://doi.org/10.1371/journal.pcbi.1000770
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https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000770

Benefits of Hierarchical Testing

Feature-wise Test Hierarchical Two-Step Test
: Step 1
p features Testing = .
(dq, -y dp) —1| each feature N Qiougl?gt pI chatLtjres
/ independently = Clusters INto (X total clusters
] | |
~ q
=] J = test
P H — 5 on each cluster
4] e K
= - Study-wide | -
% _ significance: ..°_/ q StU(;Iy-mde_
| (U (5-108) /p I3 cluster g significance:
- _‘/| significantly (5 108)/ Q
associated Q<<p
Step 2. Post-hoc Univariate Test
1 ... rfeatures
e in cluster g
! E o 4
L E 2
! I I .;13 “EIE T T T

genotype group genotype group



multi-step (hierarchical) scheme to identify significant eGenes & their associated eSNPs

Huge burden of multiple testing in genome wide eQTLs.
Thus, use of a “cis” window around gene for cis-eQTLs +

genel I— J— e ‘*‘I gene 7,956 I‘ = | P ‘*‘I gene 7,956 I‘ I * ‘*‘I gene 7,956

gene 2 I— _ = | —I gene 11,205 I—*- == I —I gene 11,205 I* = =1 —I gene 11,205

gene 3 I— — | |- *—' gene 3,140 I— =— |- -*—I gene 3,140 I— - -*—*—I gene 3,140

genek I- — — |— —* gene 509 I— — |— —* gene 509 I— S —*—* gene 509
{  genem2ok | —f [M—— genemsposs |i—i—||- — — - — ===

genes ordered by
descending sig nificance

genes ordered by
by name

Step 3: Pull in all significant eSNPs associated
with each significant eGene by using the scheme
adopted by GTEx: for each gene, a nominal p-
value threshold (derived using the beta
distribution in Step 1) is used to pull in the full
set of significant eSNPs for each significant
eGene

N

Step 1: Identify the most significant eSNP
per gene, and then correct p-values for
multiple testing within each gene to derive
adjusted gene-level p-values

N

Step 2: Multiple testing correction (BH to
estimate FDR) is applied to the set of all adjusted
gene-level p-values to yield the for
defining significant eGenes (FDR 0.05)

Truth

I MNull

Alternative

p(mi")adj = AUC = 1E-2

. nominal = 1E-4

min)

count

(1s0d gam) uosuiqoy ‘g wo.fpaidopy

0.0 02 0.4 06 0.8 1.0

P-values




References for 25m7 part-2
(Annotation Related to Variants)

Uffelmann, E., Huang, Q. Q., Munung, N. S., De Vries, J., Okada, Y., Martin, A. R., Martin, H. C., Lappalainen, T., &
Posthuma, D. (2021). Nature Reviews Methods Primers, 1(1).
Genome-wide association studies.

(Focus on the beginning up to Fig 2. Stop at the results section.)

Aguet, F., Alasoo, K., Li, Y. |., Battle, A., Im, H. K., Montgomery, S. B., & Lappalainen, T. (2023).
Nature Reviews Methods Primers, 3(1).
Molecular quantitative trait loci.

(Focus on the beginning. Stop at the results section.)

James, Gareth, Witten, Daniela, Hastie, Trevor, Tibshirani, Robert
An Introduction to Statistical Learning: with Applications in R [ ISLR (2nd edition) ]

(Chapter 3.1 & 3.2 gives basic background on linear regression.
Likewise, chap 13 (13.1 to 13.3) gives background on multiple testing.)

Chen, J., Rozowsky, J., Galeev, T. R., Harmanci, A., Kitchen, R., Bedford, J., Abyzov, A., Kong, Y., Regan, L., &
Gerstein, M. (2016). Nature Communications, 7(1).
A uniform survey of allele-specific binding and expression over 1000-Genomes-Project individuals.

(Methods section up to “AlleleDB” part)
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https://doi.org/10.1038/s43586-021-00056-9
https://doi.org/10.1038/s43586-022-00188-6
https://www.amazon.com/Introduction-Statistical-Learning-Applications-Statistics/dp/1071614177/
https://www.statlearning.com/
https://doi.org/10.1038/ncomms11101
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