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Genome Annotation (AS, eQTL, GWAS) (25m7-part2)

 

Last edit in spring ’25. Just second 

half related to AS, eQTL & GWAS. 
Added in many GWAS slides relative 

to 2023. Now loosely related to 

2nd half of 2021’s M7 
[which has a video]. 
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Outline

• Part 1 : Generic Annotation 

(not related to an individual's variants)

- RNA-seq, Chip-seq

- Integration

- , Hi-C 

• Part 2 : Annotation related to an individual's variants 

- ASE/ASB

- GWAS & eQTL

Allele-specific Events



Inferring Allele Specific Binding/Expression 

using Sequence Reads

RNA/ChIP-Seq Reads

ACTTTGATAGCGTCAATG

 CTTTGATAGCGTCAATGC

 CTTTGATAGCGTCAACGC

   TTGACAGCGTCAATGCAC

    TGATAGCGTCAATGCACG

      ATAGCGTCAATGCACGTC

       TAGCGTCAATGCACGTCG

          CGTCAACGCACGTCGGGA

           GTCAATGCACGTCGAGAG

             CAATGCACGTCGGGAGTT

              AATGCACGTCGGGAGTTG

                TGCACGTTGGGAGTTGGC

           10 x T 

            2 x C

…AATGC…

…AACGC…

Haplotypes with a 
Heterozygous Polymorphism 

TF

Interplay of the annotation and individual sequence variants
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Calling AS Events

Fraction of Reads Mapping to Alternative Allele 

Allele-Specific SNPs

Reference Allele Alternate Allele

[Rozowsky et al., MSB (‘11)]

Binomial Null Distribution

(no allele-specific behavior)

ASE/ASB Example:
   …GTCAATGCAC

   …GTCAATGCACG

   …GTCAATGCACGTC

   …GTCAATGCACGTCG

   …GTCAACGCACGTCGGGA

    GTCAATGCACGTCGAGAG

      CAATGCACGTCGGGAGTT

       AATGCACGTCGGGAGTTG

Null Example:
ACTTTGATAGCGTCAATG

 CTTTGATAGCGTCAACGC

   TTGACAGCGTCAATGCAC

      ATAGCGTCAATGCACGT…

       TAGCGTCAACGCACGT…

          CGTCAACGCACGT…

             CAATGCACGT…

              AATGCACGT…
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Many Technical Issues in Determining ASE/ASB: 

Reference Bias 

(naïve alignment against reference v using a personal genome)

5

Reference
Genome

Personal
Genome

ChIP-seq 
reads

Map to diploid genome

Map to reference genome
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Outline

• Part 1 : Generic Annotation 

(not related to an individual's variants)

- RNA-seq, Chip-seq

- Integration

- , Hi-C 

• Part 2 : Annotation related to an individual's variants 

- ASE/ASB

- GWAS & eQTL

GWAS (Basic Workflow)
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Relating to Variants on a Population Level in a Cohort
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Variants Genes Traits

eQTL

GWAS

Mendelian Randomization
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Relating to Variants on a Population Level in a Cohort



Genome-Wide Association Studies (GWAS)

The basic idea behind a GWAS is to find significant associations between genetic markers and 
phenotypes (disease / traits) → exploratory “genome-wide” research, non-hypothesis based

1. Scanning SNPs across the genome

2. Testing each 
SNP for significant 

association with 
the trait

Manhattan plot
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GWAS: a (multiple) linear regression problem
Consider a quantitative trait (eg: weight)

• Consider a SNP S with allele1 = A, allele2 = G

• Define three groups of individuals with genotype AA, AG, GG

• The question we try to answer when conducting a GWAS: do we see a significant difference in the 
weight between these three groups of individuals that correlates with the dosage of allele2?

We can treat this as a linear regression problem:

y𝑖 = β0 + β1·x1𝑖 + 𝜀i

                             weighti = b0  + b1 · (dosagei of allele2) + errori

- weighti = weight of individual i = dependent variable
- b0 = intercept 
- dosagei of allele2 = dosage of allele2 in individual i  

= explanatory or independent variable
- b1 = effect of allele2 on the weight of the individual
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Theoretical model: assumptions

y𝑖 = β0 + β1·x1𝑖 + 𝜀i

                             weighti = b0  + b1 · (dosagei of allele2) + errori

errori is also more commonly called residual

Assumptions
• Linear relationship between y and x
• Homoscedastic residuals (= constant variance)
• Normally-distributed residuals

• 𝜀i  =  ~ Normal(0, 𝜎2)
• Independent observations

more 
stringent

less 
stringent
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(More Later)



Estimation by Least Squares

y𝑖 = β0 + β1·x1𝑖 + 𝜀i

                             weighti = b0  + b1 · (dosagei of allele2) + errori

To solve this equation, we apply the Ordinary Least Squares criterion: 

In other words, we need 
to find the combination 

of b0 and b1 that 
minimizes the sum of 

squared residuals 
across all individuals

b0 = z; b1 = 0 

z

b0 < z; b1 > 0 b0 << z; b1 >> 0 

1
2

 -
 L

e
c
tu

re
s
.g

e
rs

te
in

la
b

.o
rg

Slides from B Borsari & S Liu



GWAS: a (multiple) linear regression problem

y𝑖 = β0 + β1·x1𝑖  + β2·x2𝑖 + … + β(p-1)·x(p-1)i + 𝜀i

w
e
ig

h
t

dosage

• i = 1 … n observations (individuals / samples)
• yi = weight of individual i 
• x1i = dosage of allele2 of SNP S in individual i (0/1/2)
• x2i + … + x(p-1)i = covariates (age, gender, diet) in individual i
• 𝜀i  = error or residual of the estimated weight for individual i

A multiple regression problem:

Goals when performing multiple linear regression:

• Obtain the equation that models the relationship between y and the predictors x
• Test if a specific explanatory variable x has a significant effect in predicting y

• We are interested in evaluating the effect of SNP S on weight

Caveat: a phenotype is given by the contribution of both genetic and non-genetic effects

• it might be that, by coincidence, there are more males than females in the GG group, thus we can’t know a priori if the difference in weight is 
purely given by the effect of the SNP

• it might be that, by coincidence, the diet fatty-acid content varies between the three groups

1
3

 -
 L

e
c
tu

re
s
.g

e
rs

te
in

la
b

.o
rg

Slides from B Borsari & S Liu



Determining the effect of a SNP on the trait

Question: Does the genotype  of SNP S (x1) have a significant effect on the weight of an individual?

y𝑖 = β0 + β1·x1𝑖  + β2·x2𝑖 + … + β(p-1)·x(p-1)i + 𝜀i

The estimated effect of SNP S on weight is b1 (or ෡β1 ) 
• Under the null hypothesis (no effect of SNP S on weight), β1 = 0
• We can use the t-statistic to compute whether b1 is significantly different from β1 (0)

𝑡 =
𝑏1 − β1

𝑆𝐸b1

t ~ tSTUDENT
𝜐 = 𝑛 − 2

𝑛 = n of indivs.

• p-value < 𝛼: reject the null 
hypothesis, the SNP has a 
significant effect on weight

• p-value ≥ 𝛼 : accept the 
null hypothesis, the SNP 
does not have a significant 
effect on weight

• 𝛼 can be 0.05, 0.01, 0.001
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Outline

• Part 1 : Generic Annotation 

(not related to an individual's variants)

- RNA-seq, Chip-seq

- Integration

- , Hi-C 

• Part 2 : Annotation related to an individual's variants 

- ASE/ASB

- GWAS & eQTL

GWAS (Additional 

Considerations)



GWAS workflow

Study 
design

Power 
calculations

GWAS Downstream 
analysis

Replication 
studies

Type of study
• Quantitative trait
• Case-Control study (example: disease vs. healthy)

Balding, Nat Rev Genet, 2006
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GWAS workflow

Study 
design

Power 
calculations

GWAS Downstream 
analysis

Replication 
studies

Type of study
• Quantitative trait
• Case-Control study (example: disease vs. healthy)

Population stratification
• Some SNPs might have different allele frequencies in 

different subpopulations
• EX: In comparing Asian vs. European, what if one did 

GWAS for “uses chopstick” without correction
• allele2 is enriched in cases
• BUT cases are enriched in population 1, 

where allele2 is more frequent

Balding, Nat Rev Genet, 2006

Allele
2

Allele
1

1
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Uffelmann et al. (2021). Nature Reviews Methods Primers



GWAS workflow

Study 
design

Power 
calculations

GWAS Downstream 
analysis

Replication 
studies

Type of study
Population stratification
• Some SNPs might have different allele frequencies in 

different subpopulations (eg. Asian vs. European)
Choice of relevant covariates 
• Purpose: control for indirect effects unrelated to the 

phenotype of interest and eliminate the influence of 
confounders

• e.g., age, sex, genotyping batch

• First 5 or 6 Principal Components based on ancestry are 
usually included as model covariates in order to control for 
ancestry-related genetic variation that could confound
 results 

https://privefl.github.io/bigsnpr/articles/how-to-PCA.html 
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GWAS workflow

Study 
design

Power 
calculations

GWAS Downstream 
analysis

Replication 
studies

• Power is the probability that a SNP is truly associated with a trait
• It depends on sample size, allele frequency and effect size

• Larger sample size n and MAF f result in a more accurate estimate of the SNP effect 𝛽
• Larger absolute values of 𝛽 increase the difference from the null model (e.g. same mean 

value of the trait across genotype groups)
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GWAS workflow

Study 
design

Power 
calculations

GWAS Downstream 
analysis

Replication 
studies

Type of study
• Quantitative trait
• Case-Control study

Statistical model
• Linear regression (beta values)
• Logistic regression (OR)
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GWAS workflow

Study 
design

Power 
calculations

GWAS Downstream 
analysis

Replication 
studies

• Because of LD, many significant SNPs are indeed the 
result of indirect associations
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GWAS workflow

Study 
design

Power 
calculations

GWAS Downstream 
analysis

Replication 
studies

• Multiple testing Bonferroni correction: 
• GWAS test millions of SNPs for association with 

traits (multiple hypotheses) 
• Without correction, the chance of obtaining false 

positives increases dramatically 
• Controlling Family- Wise Error Rate(FWER) 

ensures the overall rate of false positives remains 
at a desired significance level (eg. 5%) 

• FWER = 𝛼
𝑚

, 

• 𝑚 = # of independent hypotheses
• # of independent common variants = 106

• FWER = 0.05/106 = 5·10-8
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GWAS workflow

Study 
design

Power 
calculations

GWAS Downstream 
analysis

Replication 
studies

• Constructing Polygenic Risk Score (PRS) 
• Include SNPs below a p-value threshold +

in low LD to retain independent signals

Sima et al, Human Genetics, 20242
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First GWAS: at Yale 

Klein et al, Science 2006

Scientists used genome-wide association to 
identify genes that affect the risk of 
developing Age – related macular 
degeneration 
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The NHGRI-EBI GWAS Catalog

The NHGRI-EBI Catalog of human genome-wide association studies: https://www.ebi.ac.uk/gwas/  

As of 2022-10-08, the GWAS Catalog contains 6041 publications and 427870 associations.
GWAS Catalog data is currently mapped to Genome Assembly GRCh38.p13 and dbSNP Build 154.

Slides from B Borsari & S Liu 2
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Outline

• Part 1 : Generic Annotation 

(not related to an individual's variants)

- RNA-seq, Chip-seq

- Integration

- , Hi-C 

• Part 2 : Annotation related to an individual's variants 

- ASE/ASB

- GWAS & eQTL

eQTL



Molecular quantitative trait loci

Organismal traits / 
diseases

Genome sequence Molecular 
phenotypes

weight✘
number of reads, 
gene expression, 

… 

• Population-scale analysis 
• Same concept as GWAS for quantitative traits (linear 

models, effects modeled as beta coefficients)

• molecular quantitative trait loci (QTLs)
• allele-specific (AS) events

Slides from B Borsari & S Liu 2
7

 -
 L

e
c
tu

re
s
.g

e
rs

te
in

la
b

.o
rg



2
8
 -

 L
e

c
tu

re
s
.G

e
rs

te
in

L
a
b

.o
rg

Expression quantitative trait locus (eQTL) 

Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 2014, 10:1896-1902
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Aspects of Scaling eQTL calculation to Many SNPs & Many Samples

Stegle O, Parts L, Durbin R, Winn J (2010) A Bayesian Framework to Account for Complex Non-Genetic Factors in Gene 

Expression Levels Greatly Increases Power in eQTL Studies. PLOS Computational Biology 6(5): e1000770. 

https://doi.org/10.1371/journal.pcbi.1000770

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000770

Taking into account covariates

General additive model for sources of gene expression variability.

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000770


Benefits of Hierarchical Testing
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[Liu et al. (‘25). Cell]



Step 1: Identify the most significant eSNP 

per gene, and then correct p-values for 
multiple testing within each gene to derive 

adjusted gene-level p-values

genes ordered by
descending significance

Step 2: Multiple testing correction (BH to 
estimate FDR) is applied to the set of all adjusted 

gene-level p-values to yield the threshold for 
defining significant eGenes (FDR 0.05)

Step 3: Pull in all significant eSNPs associated 
with each significant eGene by using the scheme 

adopted by GTEx: for each gene, a nominal p-
value threshold (derived using the beta 

distribution in Step 1) is used to pull in the full 
set of significant eSNPs for each significant 

eGene

P-values

co
u

nt
A

d
a
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d fro

m
 D

. R
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n (w
eb
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st)

Huge burden of multiple testing in genome wide eQTLs. 
Thus, use of a “cis” window around gene for cis-eQTLs +

multi-step (hierarchical) scheme to identify significant eGenes & their associated eSNPs

genes ordered by
by name

gene 14,053gene ~20K

gene k

gene 3

gene 2

gene 1

gene 14,053

gene 509

gene 3,140

gene 11,205

gene 7,956

gene 509

gene 3,140

gene 11,205

gene 7,956

gene 14,053

gene 509

gene 3,140

gene 11,205

gene 7,956
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References for 25m7 part-2 

(Annotation Related to Variants)

• Uffelmann, E., Huang, Q. Q., Munung, N. S., De Vries, J., Okada, Y., Martin, A. R., Martin, H. C., Lappalainen, T., & 

Posthuma, D. (2021). Nature Reviews Methods Primers, 1(1). 

Genome-wide association studies. 

https://doi.org/10.1038/s43586-021-00056-9

(Focus on the beginning up to Fig 2. Stop at the results section.)

• Aguet, F., Alasoo, K., Li, Y. I., Battle, A., Im, H. K., Montgomery, S. B., & Lappalainen, T. (2023). 

Nature Reviews Methods Primers, 3(1). 

Molecular quantitative trait loci. 

https://doi.org/10.1038/s43586-022-00188-6

(Focus on the beginning. Stop at the results section.)

• James, Gareth, Witten, Daniela, Hastie, Trevor, Tibshirani, Robert

An Introduction to Statistical Learning: with Applications in R  [ ISLR (2nd edition) ]

https://www.amazon.com/Introduction-Statistical-Learning-Applications-Statistics/dp/1071614177/  +  

https://www.statlearning.com

(Chapter 3.1 & 3.2 gives basic background on linear regression. 

Likewise, chap 13 (13.1 to 13.3) gives background on multiple testing.)

• Chen, J., Rozowsky, J., Galeev, T. R., Harmanci, A., Kitchen, R., Bedford, J., Abyzov, A., Kong, Y., Regan, L., & 

Gerstein, M. (2016). Nature Communications, 7(1). 

A uniform survey of allele-specific binding and expression over 1000-Genomes-Project individuals. 

https://doi.org/10.1038/ncomms11101

(Methods section up to “AlleleDB” part)

https://doi.org/10.1038/s43586-021-00056-9
https://doi.org/10.1038/s43586-022-00188-6
https://www.amazon.com/Introduction-Statistical-Learning-Applications-Statistics/dp/1071614177/
https://www.statlearning.com/
https://doi.org/10.1038/ncomms11101
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