
Lecture Title and Date

Sequence Comparison
02/05/2025

Objectives of the Lecture

● Understand sequence alignment principles and learn about existing alignment
techniques

● Understand how to compute and interpret similarity matrices/dot plots
● Understand how to compute sum matrices from similarity matrices and recover the best

alignments from a sum matrix (Needleman-Wunsch)

Key Concepts and Definitions

Basic Alignment: Comparing two sequences (can be nucleotides or amino acids) to identify and
quantify the similarity between them.

Dynamic Programming: Breaking down bigger problems into smaller subproblems and storing
results, so they do not have to be re-computed. This saves computational cost and time.

Gap Penalties: Numerical scores assigned to gaps (indels) to discourage excessive gaps in the
alignment process and optimize for biologically realistic/meaningful alignments. Gap penalties
can be constant, linear, or otherwise defined.

Global Alignment: Aligns two sequences from end to end, optimizing over the whole length (e.g.
Needleman-Wunsch algorithm).

Local Alignment: Identifies subsequences that are the most similar between two sequences,
focusing on high-similarity regions rather than the entire sequence (e.g. Smith-Waterman
algorithm).

Suboptimal alignment: A sequence alignment that is not the optimal one according to the
scoring scheme but still has a high score and may be biologically more relevant than the
“optimal” alignment.

Needleman-Wunsch (1970) automatic alignment method: The first automatic alignment method
which uses dynamic programming, similarity matrices/dot plots, and sum matrices to determine
the best alignments for two strings.

Similarity matrix/dot plot: A matrix to compare the possible letter-to-letter matches of two strings,
with a 1 or a dot indicating that there is a match between two letters and a 0 or an empty cell
indicating that two letters do not match.

Sum matrix: a matrix computed from a similarity matrix/dot plot to determine what the highest
number of letter-to-letter matches there is for the alignment of two sequences. The best
alignments can be recovered from this matrix by tracing back the steps taken to compute the
matrix.

Main Content/Topics

In this lecture, Dr. Gerstein wants us to understand some of the basic concepts in sequence
alignment. In the image below, he gives an example of how someone may align two small text
strings by hand. In the example, if you do not allow for the possibility of gaps and simply align
the text strings relative to each other, you achieve two matches. But, if you allow for gaps, you
may be able to achieve more matches. For example, if you allow there to be end gaps, then the
sequences may only line up in the middle and the end of one sequence could line up with a gap
in the other. You could also have insertions, where a letter was inserted into one sequence.
During alignment, you would add a gap in the other sequence in the same spot to account for
the insertion.

When scientists first started sequencing proteins in the 1960s, they had to deal with much
longer strings and could not rely on aligning by hand. Needleman-Wunsch (1970) figured out the
first automatic method for alignment, using dynamic programming to find the global alignment of
two strings.

Dr. Gerstein then described the steps in the Needleman-Wunsch alignment method:

Step 1: Make a dot plot (similarity matrix)

To make a similarity matrix, you place your two strings horizontally on the top and vertically on
the left of a grid. Then you place a 1 in any box if the letters match up in the corresponding row
and column, shown in the left figure. The figure on the right shows the 1s as dots in a dot plot.
Importantly, we see that if you have a long string of letters that match, you get a diagonal pattern
in your dot plot, as seen with “SEQUENCE” and “FUN”, with “FUN” actually matching in two
locations.

Step 2: Start computing the sum matrix

We then use the similarity matrix we calculated in Step 1 (left matrix in the below figure) to
compute the sum matrix (right matrix in the below figure). The intuition behind computing the
sum matrix is that at each letter-to-letter matching step during alignment, we could either match
the letters directly in the two sequences or we could add a gap to either sequence. At each
letter-to-letter matching step, we choose the best option (no gap, row gap, or column gap) that
results in the best score up to that point, and the option we choose affects how we construct the
sum matrix.

The pseudocode below the figures is very helpful for explaining how we construct the sum
matrix from the similarity matrix. Essentially, we start with the similarity matrix as our sum matrix,
which is a matrix of 1s and 0s. Then, we begin in the bottom right corner of the sum matrix and
travel left across the bottom row. At each cell, the new value of the cell in the sum matrix is the
original value (1 or 0) plus the score from choosing the best option (no gap, row gap, column
gap). To choose the best option, you take the max of: [the cell diagonally one row down and one
column to the right, all cells one row down and at least two columns to the right, and all cells
one column to the right and at least two rows down]. The first option corresponds to no gap, the
second to making a column gap, and the third to making a row gap.

Step 3: Continue to compute sum matrix and Step 4: Sum matrix done

The left matrix in the figure below shows Step 3, where we continue to compute the sum matrix.
In that matrix, the cell with a 5 is highlighted as the cell we are looking at at that step. The black
boxes with white numbers are the cells we look at to determine what the value of the cell in
question should be. The original value of the cell in question in the similarity matrix was a 1, and
the max of all the black boxes is a 4. Therefore, the new value of the cell in question is 1 + 4 =
5. Since the cell with a 4 was down one row and over two columns, this corresponds to making
a column gap.

The right matrix in the figure below shows Step 4, which is the completed sum matrix. The
highest value (which happens to be in the top left cell, although it doesn’t have to be) is an 8.
This means that the most letter-to-letter matches we can get from any alignment is 8.

Step 5: Traceback

Now we want to recover the actual alignment that results in the most matches. From our best
score, the 8, we trace back diagonally down and to the right going towards where we started in
the bottom right corner. By doing the traceback, we are trying to figure out where we added
gaps and to which sequence we added them, and this depends on “remembering” which cell we
chose as the “max” in each step when computing the new values of our cells.

In the example above, we start at the cell with the 8, since it is the largest one, so we start both
of our sequences with A. We then look at all of the cells that were considered when figuring out
how to calculate the score for the 8 cell (recall from the figure under Step 3 and Step 4, the
black cells in the left matrix are the ones we were considering to calculate the 5 cell, so a similar
logic can be used to remember which cells we considered for the 8 cell). By looking at these

cells, we see that the 7 is the largest one, so we must have calculated the 8 cell from that one (7
+ 1 = 8). So, we traceback to the 7 cell that is diagonally touching the 8. Since the 7 is
diagonally touching the 8, that means that no gap was added, and AB in the sequence on the
top of the matrix matches directly to the AY in the sequence on the left. Then we do the same
logic for the 7 we just traced back to, and we trace back to the next 7 cell, so now we have ABC
matching to AYC. When we do the next traceback for that 7 cell, we see that the largest value
was the 6 that was two columns over instead of just one (if you notice, there are actually two
possible 6s we could choose, and this conflict will be discussed in Step 6). This means that we
added a column gap there, so there is a gap between the Y and C of the sequence on the left of
the matrix, and the gap lines up with the N of the sequence on the top. So now we have ABCNY
matching to AYC–Y. By continuing this process, we can recover the final alignment show in the
image below:

Step 6: Alternate tracebacks

It is also possible that there could be multiple ways to trace back, so there could be multiple
alignments that result in the same highest possible number of letter-to-letter matches. In the
example we have been using, you can see in the image below that instead of picking the 6 we
chose before when tracing back from the last 7, we could have chosen the 6 that was two rows
down and one column over instead. In the forward process, either 6 could have been the “max”
that we used to compute the 7. Therefore, we could form a different alignment by using this 6
instead of the other one. If we use this 6, we add a gap between C and N in the sequence at the
top of the matrix at the position of the second y in the sequence at the left of the matrix. So, we
are now matching ABC–N to AYCYN, which is different from what we did under Step 5.
Basically, we added a gap in a different spot to get a different alignment, but this alignment will
still result in 8 letter-to-letter matches, which is the best we can do. If you notice, we will also
add a gap in a different spot when tracing back to the 5 now that the 6s are in different spots,
but after that, we follow the same traceback from Step 5. The final alignment from this traceback
is shown under the matrix below.

Discussion/Comments

- Needleman-Wunsch algorithm has a time complexity of O(m*n) → high computational
cost → important to consider for large-scale data, may not be the best approach

- Newer tools like FASTA and BLAST may not be as accurate but run a lot faster
- Aligning the entire sequence may not always be desired when there is high similarity on

multiple short sequences within a long sequence → local alignment tools may be more
appropriate in those cases

- The choice of gap penalty scores affects the alignment results, so choosing an
inappropriate gap penalty may lead to suboptimal alignment results

- This lecture looks at the simplest form of sequence alignment from Needleman-Wunsch,
where matching amino acids get a score of 1, while mismatches get a score of 0. The
paper also discusses more advanced methods, which assign scores based on factors
like amino acid properties, genetic code similarities, or surrounding sequences. Gaps in
the alignment are can also be discouraged using a penalty, which can depend on the
gap’s size or direction, and gaps are only allowed if the overall alignment score improves
enough to justify them.

Suggested readings:

A somewhat old but neat review on alignment tools and concepts for a general overview:

Vingron, M., & Waterman, M. S. (1994). Sequence alignment and penalty choice: Review of
concepts, case studies and implications. Journal of molecular biology, 235(1), 1-12.
https://doi.org/10.1016/S0022-2836(05)80006-3

A more recent review on sequence alignment tools, which may be helpful in determining
what newer tools and algorithms are available and ready to use:
Chao, J., Tang, F., & Xu, L. (2022). Developments in Algorithms for Sequence Alignment: A
Review. Biomolecules, 12(4), 546. https://doi.org/10.3390/biom12040546

Other Suggest references for many of the key concepts

Original paper on Needleman-Wunsch algorithm (global alignment):
Needleman, S. B., & Wunsch, C. D. (1970). A general method applicable to the search for
similarities in the amino acid sequence of two proteins. Journal of molecular biology, 48(3),
443-453. https://doi.org/10.1016/0022-2836(70)90057-4

Original paper on Smith-Waterman algorithm (local alignment):
Smith, T. F., & Waterman, M. S. (1981). Identification of common molecular subsequences.
Journal of molecular biology, 147(1), 195-197. https://doi.org/10.1016/0022-2836(81)90087-5

Newer tools (prioritize speed → often used for large data):

- FASTA
- Pearson, W. R., & Lipman, D. J. (1988). Improved tools for biological sequence

comparison. Proceedings of the National Academy of Sciences, 85(8),
2444-2448. https://doi.org/10.1073/pnas.85.8.2444

- FASTA manual: http://fasta.bioch.virginia.edu/fasta_www2/fasta_list2.shtml
- BLAST

- Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic
local alignment search tool. Journal of molecular biology, 215(3), 403-410.
https://doi.org/10.1016/S0022-2836(05)80360-2

- BLAST web tool: https://blast.ncbi.nlm.nih.gov/Blast.cgi

Interactive app to visualize alignment matrix for custom sequences using the
Needleman-Wunsch algorithm by the Grant Lab at UCSD:
https://bioboot.github.io/bimm143_W20/class-material/nw/

https://doi.org/10.1016/S0022-2836(05)80006-3
https://doi.org/10.1016/0022-2836(70)90057-4
https://doi.org/10.1016/0022-2836(81)90087-5
https://doi.org/10.1073/pnas.85.8.2444
http://fasta.bioch.virginia.edu/fasta_www2/fasta_list2.shtml
https://doi.org/10.1016/S0022-2836(05)80360-2
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://bioboot.github.io/bimm143_W20/class-material/nw/

	Lecture Title and Date
	Objectives of the Lecture
	
	Key Concepts and Definitions
	
	Main Content/Topics
	Discussion/Comments
	Suggested readings:
	Other Suggest references for many of the key concepts
	

