Biomedical Data Science (GersteinLab.org/courses/452) Multiple Sequences (25m4)

Mark Gerstein Yale U. Also, some slide deletions related to low-complexity regions & mult. seq. alignment issues

Multiple Sequence Alignment Topics

- Multiple Sequence Alignment
- Motifs
 - Fast identification methods
- Profile Patterns
 - Refinement via EM
 - Gibbs Sampling
- HMMs
- Applications
 - Protein Domain databases
 - Regression vs expression

- One of the most essential tools in molecular biology

It is widely used in:

- Phylogenetic analysis
- Prediction of protein secondary/tertiary structure
- Finding diagnostic patterns to characterize protein families
- Detecting new homologies between new genes and established sequence families

<u>Multiple Sequence</u> <u>Alignments</u>

- Practically useful methods only since 1987
- Before 1987 they were constructed by hand
- The basic problem: no dynamic programming approach can be used
- First useful approach by D. Sankoff (1987) based on phylogenetics

AGRI CHICK	154	VCPAS	SGVa.ESI	VCGSDGKD	YRSEC	DINKHA	DKQENVFKKFDCAC	201
AGRI RAT	165	LCPTT	FGAp.DGT	VCGSDGVD	YPSEC	QLLSHA	ASQEHIFKKFNGPC	212
FSA HUMAN	116	VCAPD	SNItwKG	VCGLDGKT	YRNE	ALLKAR	KEQPELEVQYQCRC	164
FSA_PIG	116	VCAPD	SNItwKGP	VCGLDGKT	YRNE	ALLKAR	KEQPELEVQYQCKC	164
FSA RAT	116	VCAPD	SNItwKGP	VCGLDGKT	YRNE	ALLKAR	KEQPELEVQYQCKC	164
FSA SHEEP	109	VCAPD	SNItwKG	VCGLDGKT	YRNE	ALLKAR	KEQPELEVQYQCKC	157
IACI_BOVIN	14	KVYTEA	TREYNP	ICDSAAKT	YSNE	Τ F	NEKM.NNDADIHFNHFGEC	61
IAC2_BOVIN	7	AEFKDPKVY	TRESN	HCGSNGET	YGNK	AF	KAVM.KSGGKINLKHRCKC	57
IACA_PIG	7	NVYRSHLFF	TRQMDF	ICGINGKS	YANPO	IF	SEKG.LRNQKFDFGHWGHC	57
IACS_PIG	12	DVYRSHLFF	TREMD	ICGINGKS	YANPO	IF	SEKL.GRNEKFDFGHWGHC	62
IAC_MACFA	33	ARYQLPG	PRDFNP	VCGIDMIT	YPNB	TL	MKIR.ESGQNIKILRRGPC	81
IOV7_CHICK	94	SPYLQVVRDGNtMVA	PRILKP	VCGSDSFT	YDNE	GI	AYNA.EHHTNISKLHDGEC	150
IOVO_ABUPI	8	SDHPKPA	LQEQKP	LCGSDNKT	YDNKO	SF	NAVV.DSNGTLTLSHFCKC	56
IOVO_ALECH	6	SEYPKPA	TLEYRP	LCGSDSKT	YGNKO	NF	NAVV.ESNGTLTLSHFCKC	54
IPSG_VULVU	68	TEYSDM	TMDYRF	LCGSDGKN	YSNKO	IF	NAVV.RSRGTIFLAKHGEC	115
IPST_ANGAN	12	GEMSAMHA	PMNFAP	VCGIDGNT	YPNE	SL	FQRQ.NTKTDILITKDDRC	61
IPST_BOVIN	9 (TNEVNG	PRIYNF	VCGIDGVT	YSNE	LL	MENK.ERQTPVLIQKSCPC	56
IPST_PIG	9 (TSEVSG	PKIYNF	VCGHDGIT	YSNE	VL	SENK.KRQTPVLIQKSGPC	56
IPST_SHEEP	9 (TNEVNG	PRIYN	VCG DGVT	YANEC	LL	MENK.ERQTPVLIQKSGPC	56
OATP_HUMAN	439	NVDCN	₽sKIWD	VCGNNGLS	YLSAC	LAG	ET.SIGTGINMVFQNCS	485
OATP_RAT	439	NTRCS	STNt.WD	PVCGDNGVA	YMSAG	LAG	KKFV.GTGTNM.VFQDCSC	486
PE60_PIG	37	EHMTESPD	SRIYD	VCGEDGVT	YESEC	KI	LARI.ENKQDIQIVKDGEC	86
PGT_RAT	444	RRDCS	PDSf.FH	VCGDNGVE	YVSPO	HAG	SSTNTSSEASKEPI	488
PSG1_MOUSE	33	HDAVAG	PRIYD	VCGIDGIT	YANE	VL	FENR.KRIEPVLIRKGEPC	80
QR1_COTJA	466	ICQDPAA	PstKDYKR	VCGTDNKT	YDGT	QLFGTK	QLEGtKMGRQLHLDYMCAC	521
SC1_RAT	424	VCQDPET	PpaKILDQ	ACCIDNOT	YASSO	HEFATK	MLEGtKKGHQLQLDYFCAC	479
SPRC_BOVIN	93	VCQDP.TS	Pap.iGEFEK	WOSNDNKT	EDSS	HFFATK	TLEGtKKGHKLHLDYIGPC	149
SPRC_CAEEL	74	ECISK	PeldgDPMDK	VCANNNOT	FISLO	DEYRER	LCKR.KSkecskafNAKVHLEYLCEC	135
SPRC_MOUSE	92	VCQDP.TS	Pap.iGEFEK	VOSNDNKT	FDSS	HFFATK	TLEGtKKGHKLHLDYIGPC	148
SPRC XENLA	90	VCQDPST	Ets.vGEFEK	ICGIDNKT	YDSSC	HFFATK	TLEGtKKGHKLHLDMICPC	146

(LEFT, adapted from Sonhammer et al. (1997). "Pfam," Proteins 28:405-20. ABOVE, G Barton AMAS web page)

Progressive Multiple Alignments

(quick, simplified overview)

- Most multiple alignments based on this approach
- Initial guess for a phylogenetic tree based on pairwise alignments
- Built progressively starting with most closely related sequences
- Follows branching order in tree
- Sufficiently fast
- Sensitive
- Algorithmically heuristic, no mathematical property associated with the alignment
- Biologically sound, it is common to derive alignments which are impossible to improve by eye

(adapted from Sonhammer et al. (1997). "Pfam," Proteins 28:405-20)

(More Later)

<u>Agglomerative</u> <u>Clustering</u>

- Ex. From Wikipedia
- "Suppose we have merged the two closest elements b and c, we now have the following clusters {a}, {b, c}, {d}, {e} and {f}, and want to merge them further. To do that, we need to take the distance between {a} and {b c}, and therefore define the distance between two clusters."

Clustering approaches for multiple sequence alignment

- Clustal uses average linkage clustering
 - ◊ also called UPGMA

(Unweighted Pair Group Method with Arithmetic mean)

http://compbio.pbworks.com/f/linkages.JPG

Problems in Multiple Alignment

Domain Problem

Local Minimum Problem

- Stems from greedy nature of alignment (mistakes made early in alignment cannot be corrected later)

Multiple Alignment

MOTIFS

<u>Motifs</u>

- several proteins are grouped together by similarity
- they share a conserved motif

searches

- motif is stringent enough to retrieve the family members from the complete protein database
- PROSITE: a collection of motifs (1135 different motifs)

Prosite Pattern -- EGF like pattern

A sequence of about thirty to forty amino-acid residues long found in the sequence of epidermal growth factor (EGF) has been shown [1 to 6] to be present, in a more or less conserved form, in a large number of other, mostly animal proteins. The proteins currently known to contain one or more copies of an EGF-like pattern are listed below.

- Bone morphogenic protein 1 (BMP-1), a protein which induces cartilage and bone formation.
- Caenorhabditis elegans developmental proteins lin-12 (13 copies) and glp-1 (10 copies).
- Calcium-dependent serine proteinase (CASP) which degrades the extracellular matrix proteins type
- Cell surface antigen 114/A10 (3 copies).
- Cell surface glycoprotein complex transmembrane subunit .
- Coagulation associated proteins C, Z (2 copies) and S (4 copies).
- Coagulation factors VII, IX, X and XII (2 copies).
- Complement C1r/C1s components (1 copy).
- Complement-activating component of Ra-reactive factor (RARF) (1 copy).
- Complement components C6, C7, C8 alpha and beta chains, and C9 (1 copy).
- Epidermal growth factor precursor (7-9 copies).

- 'C': conserved cysteine involved in a disulfide bond.
- 'G': often conserved glycine
- 'a': often conserved aromatic amino acid
- '*': position of both patterns.
- 'x': any residue

```
-Consensus pattern: C-x-C-x(5)-G-x(2)-C
```

[The 3 C's are involved in disulfide bonds]

```
http://www.expasy.ch/sprot/prosite.html
```

2 common applications for motif analysis

- Given a collection of binding sites (or protein sequences with binding motifs), develop a representation of those sites that can be used to search new sites and reliably predict where additional binding sites occur.
- Given a set of sequences known to contain binding sites for a common factor, but not knowing where the sites are, discover the location of the sites in each sequence and a representation of the protein.

Multiple Alignment

PROFILES

EGF Profile Generated for SEARCHWISE

Cons	S A	С	D	Е	F	G	н	I	к	L	м	N	P	Q	R	S	т	v	W	Y	Gap
v	-1	-2	-9	-5	-13	-18	-2	-5	-2	-7	-4	-3	-5	-1	-3	0	0	-1	-24	-10	100
D	0	-14	-1	-1	-16	-10	0	-12	0	-13	-8	1	-3	0	-2	0	0	-8	-26	-9	100
v	0	-13	-9	-7	-15	-10	-6	-5	-5	-7	-5	-6	-4	-4	-6	-1	0	-1	-27	-14	100
D	0	-20	18	11	-34	0	4	-26	7	-27	-20	15	0	7	4	6	2	-19	-38	-21	100
P	3	-18	1	3	-26	-9	-5	-14	-1	-14	-12	-1	12	1	-4	2	0	-9	-37	-22	100
С	5	115	-32	-30	-8	-20	-13	-11	-28	-15	-9	-18	-31	-24	-22	1	-5	0	-10	-5	100
A	2	-7	-2	-2	-21	-5	-4	-12	-2	-13	-9	0	-1	0	-3	2	1	-7	-30	-17	100
s	2	-12	3	2	-25	0	0	-18	0	-18	-13	4	3	1	-1	7	4	-12	-30	-16	25
n	-1	-15	4	4	-19	-7	3	-16	2	-16	-10	7	-6	3	0	2	0	-11	-23	-10	25
р	0	-18	-7	-6	-17	-11	0	-17	-5	-15	-14	-5	28	-2	-5	0	-1	-13	-26	-9	25
с	5	115	-32	-30	-8	-20	-13	-11	-28	-15	-9	-18	-31	-24	-22	1	-5	0	-10	-5	25
L	-5	-14	-17	-9	0	-25	-5	4	-5	8	8	-12	-14	-1	-5	-7	-5	2	-15	-5	100
N	-4	-16	12	5	-20	0	24	-24	5	-25	-18	25	-10	6	2	4	1	-19	-26	-2	100
g	1	-16	7	1	-35	29	0	-31	-1	-31	-23	12	-10	0	-1	4	-3	-23	-32	-23	50
G	6	-17	0	-7	-49	59	-13	-41	-10	-41	-32	3	-14	-9	-9	5	-9	-29	-39	-38	100
т	3	-10	0	2	-21	-12	-3	-5	1	-11	-5	1	-4	1	-1	6	11	0	-33	-18	100
С	5	115	-32	-30	-8	-20	-13	-11	-28	-15	-9	-18	-31	-24	-22	1	-5	0	-10	-5	100
I	-6	-13	-19	-11	0	-28	-5	8	-4	6	8	-12	-17	-4	-5	-9	-4	6	-12	-1	100
d	-4	-19	8	6	-15	-13	5	-17	0	-16	-12	5	-9	2	-2	-1	-1	-13	-24	-5	31
i	0	-6	-8	-6	-4	-11	-5	3	-5	1	2	-5	-8	-4	-6	-2	0	4	-14	-6	31
g	1	-13	0	0	-20	-3	-3	-12	-3	-13	-8	0	-7	0	-5	2	0	-7	-29	-16	31
L	-5	-11	-20	-14	0	-23	-9	9	-11	8	7	-14	-17	-9	-14	-8	-4	7	-17	-5	100
Е	0	-20	14	10	-33	5	0	-25	2	-26	-19	11	-9	4	0	3	0	-19	-34	-22	100
s	3	-13	4	3	-28	3	0	-18	2	-20	-13	6	-6	3	1	6	3	-12	-32	-20	100
Y	-14	-9	-25	-22	31	-34	10	-5	-17	0	-1	-14	-13	-13	-15	-14	-13	-7	17	44	100
т	0	-10	-6	-1	-11	-16	-2	-7	-1	-9	-5	-3	-9	0	-1	1	3	-4	-16	-8	100
С	5	115	-32	-30	-8	-20	-13	-11	-28	-15	-9	-18	-31	-24	-22	1	-5	0	-10	-5	100
R	0	-13	0	2	-19	-11	1	-12	4	-13	-8	3	-8	4	5	1	1	-8	-23	-13	100
С	5	115	-32	-30	-8	-20	-13	-11	-28	-15	-9	-18	-31	-24	-22	1	-5	0	-10	-5	100
Р	0	-14	-8	-4	-15	-17	0	-7	-1	-7	-5	-4	6	0	-2	0	1	-3	-26	-10	100
P	1	-18	-3	0	-24	-13	-3	-12	1	-13	-10	-2	15	2	0	2	1	-8	-33	-19	100
G	4	-19	3	-4	-48	53	-11	-40	-7	-40	-31	5	-13	-7	-7	4	-7	-29	-39	-36	100
У	-22	-6	-35	-31	55	-43	11	-1	-25	6	4	-21	-34	-20	-21	-22	-20	-7	43	63	50
s	1	-9	-3	-1	-14	-7	0	-10	-2	-12	-7	0	-7	0	-4	4	4	-5	-24	-9	100
G	5	-20	1	-8	-52	66	-14	-45	-11	-44	-35	4	-16	-10	-10	4	-11	-33	-40	-40	100
Е	2	-20	10	12	-31	-7	0	-19	6	-20	-15	5	4	7	2	4	2	-13	-38	-22	100
R	-5	-17	0	1	-16	-13	8	-16	9	-16	-11	5	-11	7	15	-1	-1	-13	-18	-6	100
С	5	115	-32	-30	-8	-20	-13	-11	-28	-15	-9	-18	-31	-24	-22	1	-5	0	-10	-5	100
Е	0	-26	20	25	-34	-5	6	-25	10	-25	-17	9	-4	16	5	3	0	-18	-38	-23	100
т	-4	-11	-13	-8	-1	-21	2	0	-4	-1	0	-6	-14	-3	-5	-4	0	0	-15	0	100
D	0	-18	5	4	-24	-11	-1	-11	2	-14	-9	1	-6	2	0	0	0	-6	-34	-18	100
I	0	-10	-2	-1	-17	-14	-3	-4	-1	-9	-4	0	-11	0	-4	0	2	-1	-29	-14	100
D	-4	-15	-1	-2	-13	-16	-3	-8	-5	-6	-4	-1	-7	-2	-7	-3	-2	-6	-27	-12	100

Cons. Cys

M(p,a) = chance of finding amino acid a at position p

 $M_{simp}(p,a) =$ number of times a occurs at p divided by number of sequences However, what if don't have many sequences in alignment? $M_{simp}(p,a)$ might be baised. Zeros for rare amino acids. Thus:

 $M_{cplx}(p,a) = \Sigma_{b=1 \text{ to } 20} M_{simp}(p,b) \times Y(b,a)$ Y(b,a): Dayhoff matrix for *a* and *b* amino acids

 $S(p,a) \sim \Sigma_{a=1 \text{ to } 20} M_{simp}(p,a) \text{ In } M_{simp}(p,a)$

Scanning for Motifs with PWMs

A particular site is evaluated by adding up the entries from the scoring matrix at each position, and comparing the sum to a match threshold. For log ratio PWMs, an empirically chosen threshold of 60% of the maximum positive score has been used by Harbison et al. and is approximately equal to cutoffs determined by the principled cross-validated method presented in MacIsaac et al. More sophisticated algorithms developed specifically for motif scanning are described briefly in Figure 3.

Parameters: overall threshold, inclusion threshold, interations

- Automatically builds profile and then searches with this
- Also PHI-blast

PSI-BLAST (Position-Specific Iterative Basic Local Alignment Search Tool)

Multiple Alignment: Probabilistic Approaches for Determining PWMs

- Expectation Maximization: Search the PWM space randomly
- Gibbs sampling: Search sequence space randomly.

Expectation-Maximization (EM) algorithm

- Used in statistics for finding maximum likelihood estimates of parameters in probabilistic models, where the model depends on unobserved latent variables.
- EM alternates between performing
 - an expectation (E) step, which computes an expectation of the likelihood by including the latent variables as if they were observed, and
 - a maximization (M) step, which computes the maximum likelihood estimates of the parameters by maximizing the expected likelihood found on the E step.
- The parameters found on the M step are then used to begin another E step, and the process is repeated.
- 1. Guess an initial weight matrix
- 2. Use weight matrix to <u>predict instances</u> in the input sequences
- 3. Use instances to predict a weight matrix
- 4. Repeat 2 [E-step] & 3 [M-step] until satisfied.

Another good source is Wes Craven's 776 course: https://www.biostat.wisc.edu/~craven/776/lecture9.pdf [Adapted from B Noble, GS 541 at UW, http://noble.gs.washington.edu/~wnoble/genome541/] [Also Adapted from C Bruce, CBB752 '09]

Multiple Alignment

Gibbs Sampling

Initialization

Step 1: Randomly guess an instance s_i from each of t input sequences {S₁, ..., S_t}.

[Adapted from B Noble, GS 541 at UW, http://noble.gs.washington.edu/~wnoble/genome541/]

Gibbs sampler

- Steps 2 & 3 (search):
 - Throw away an instance s_i : remaining (t 1) instances define weight matrix.
 - Weight matrix defines instance probability at each position of input string S_i
 - <u>Pick new s_i </u> according to probability distribution (not necessarily always the s_i giving the highest prob.)
- Return highest-scoring motif seen

Sampler step illustration:

http://noble.gs.washington.edu/~wnoble/genome541/]

Comparison

- Both EM and Gibbs sampling involve iterating over two steps
- Convergence:
 - EM converges when the PSSM stops changing.
 - Gibbs sampling runs until you ask it to stop.
- Solution:
 - EM may not find the motif with the highest score.
 - Gibbs sampling will provably find the motif with the highest score, if you let it run long enough.

[Adapted from B Noble, GS 541 at UW, http://noble.gs.washington.edu/~wnoble/genome541/]

Multiple Alignment

HMMs

26 (c) M Gerstein, GersteinLab.org, Yale

Hidden Markov Model:

- a composition of finite number of states,
- each corresponding to a column in a multiple alignment

- each state emits symbols, according to symbol-emission probabilities

Starting from an initial state, a sequence of symbols is generated by moving from state to state until an end state is reached.

0.9

state sequence (hidden):

0.99

 $\dots (1) (1) (1) (1) (1) (2) (2) (2) (2) (1) (1) \dots$ transitions: ? 0.99 0.99 0.99 0.99 0.01 0.9 0.9 0.9 0.1 0.99

0.01

0.1

0.4 0.1

0.1

0.4

2

A

C 0.4

G 0.5

Т

0.05

0.05

symbol sequence (observable):

... **A T C A A G G C G A T** ... emissions: 0.4 0.4 0.1 0.4 0.4 0.5 0.5 0.4 0.5 0.4 0.4

HMMs

(Figures from Eddy, Curr. Opin. Struct. Biol.)

Probability of a path through the model Viterbi maximizes for seq Forward sums of all possible paths

Forward Algorithm – finds probability P that a model λ emits a given sequence O by summing over all paths that emit the sequence the probability of that path

Viterbi Algorithm – finds the most probable path through the model for a given sequence (both usually just boil down to simple applications of dynamic programming)

EX of Richness of the HMM Modelling Framework: Predicting Membrane Proteins

References

- Stormo, G. D. (2010). Methods in Molecular Biology, 85–95. Motif discovery using expectation maximization and Gibbs' sampling. <u>https://doi.org/10.1007/978-1-60761-854-6_6</u>
- R Durbin, S Eddy, A Krogh, G Mitchison
 Published by Cambridge University Press 1st (first) edition (1998)
 Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids
 <u>https://www.amazon.com/Biological-Sequence-Analysis-Probabilistic-University/dp/B00HQ0TD64</u>
 (<u>http://www.mcb111.org/w06/durbin_book.pdf</u>)
 (Read Chap. 5)
- James, Gareth, Witten, Daniela, Hastie, Trevor, Tibshirani, Robert An Introduction to Statistical Learning: with Applications in R [ISLR (2nd edition)] <u>https://www.amazon.com/Introduction-Statistical-Learning-Applications-Statistics/dp/1071614177/ + https://www.statlearning.com</u> (Chap 12.4.2 gives a nice overview of hierarchical clustering)
- Forte, Rui Miguel: 9781783982806: Amazon.com: Books. Mastering Predictive Analytics with R: Master the craft of predictive modeling by developing strategy, intuition, and a solid foundation in essential concepts
 <u>https://www.amazon.com/Mastering-Predictive-Analytics-Miguel-Forte/dp/1783982802</u> (Optional: HMM sect. in chap. 8 has a simple intro to promotor prediction)