
Tool # 1 - "Integrative tool to combine imaging and genomics to diagnose brain 
disease" 

 
Previous work and preliminary results. We have established a strong foundation in 

developing practical tools for genomic analysis, highlighted by our contributions to major 
consortia such as PsychENCODE. We helped generate a comprehensive online resource for 
the functional genomics of the human brain, an initiative that has informed subsequent models 
and tools44. This resource offers a detailed mapping of gene expression and regulatory 
networks across a large sample size, which aids in the understanding of the genomic basis of 
psychiatric disorders. We developed LNCTP, an innovative omics-based deep-learning 
approach designed to predict various psychiatric phenotypes from genotypes and detailed 
single-cell data. The LNCTP model utilizes a multi-level architecture incorporating a Boltzmann-
machine gene expression imputation engine and hierarchical linear predictors. This tool enabled 
us to explore the gene expression and chromatin states across a diverse cohort, including 
individuals diagnosed with various psychiatric disorders. The resulting insights have provided a 
robust foundation for our real-time analysis capabilities45. We have also developed various 
methods to analyze and integrate large-scale genomic data, including non-coding regions and 
their coding targets, to prioritize variants and understand their impacts on gene function and 
regulation50,51,52,53,54. Such genomic mapping efforts have informed the predictive models we are 
developing, enhancing accuracy and applicability. In our previous work, we successfully 
incorporated advanced techniques to enhance network inference capabilities in our analytical 
tools. 

Integrative analysis framework. The core of the module will be based on the deep-
learning part of our most recent work, LNCTP. LNCTP is an integrative model that inputs gene 
expression and also prioritizes disease genes across different cell types. Here, the core handles 
the following tasks: (1) imputing cell-type-specific and bulk tissue gene expression from 
genotype; (2) predicting the risk of disorders based on input genotypes; and (3) highlighting 
genes and pathways contributing to particular phenotypes in their specific cell type of action. 
The framework will include visible options, including genotypes at scQTL and bulk eQTL sites, 
cell-type-specific and bulk tissue-based GRNs, cell-type fractions, cell-to-cell communication 
networks, gene co-expression modules, and sample covariates. It will impute cell-type-specific 
gene expression from genotype with high cross-validated accuracy (Fig. 2). 

Figure 2: LNCTP Architecture. This figure presents the architecture of the LNCTP model, 
detailing its components and data flow. The diagram visualizes the integration of genotype data 
with cell-type-specific gene expression to predict psychiatric phenotypes. Key elements include 
the use of a conditional energy-based model for imputing gene expression and a hierarchical 
linear model for phenotype prediction.As shown in Figure 2, bulk and cell-type gene expression 
levels were imputed from genotype using a conditional energy-based model incorporating GRNs 
and cell-to-cell networks. Cell-type-specific nodes with dense connectivity were then 
incorporated into a deep linear model to predict phenotypes in each sample and prioritize cell 
types and genes for each trait. A hierarchical linear architecture will be used for the trait-
prediction portion of LNCTP, which has been demonstrated to perform comparably to or better 
than non-linear architectures. Moreover, the framework generates a model that is directly 
interpretable at multiple scales, avoiding many of the difficulties arising in the interpretation of 
deep neural networks, while maintaining a hierarchical structure. The linear architecture also 
enabled prioritization of intermediate phenotypes through gradient-based saliency and co-
heritability. 



Graphical-LASSO approach. 
We will enhance the network 
inference for the integrative model, 
using a graphical-LASSO training 
approach64 instead of the maximum-
likelihood approach used in the 
cornerstone paper44. The graphical-
LASSO objective is efficient to 
optimize and flexibly allows multiple 
networks to be used in the expression 
imputation component of the LNCTP 
framework. Additionally, it permits 
each network to serve as a soft 
constraint when fine-tuning the 
model. Thus, besides removing 
edges from the prior networks 
provided, novel edges may be 
introduced, altering the sparsity 
structure and permitting the discovery 
of novel cell-type gene–gene 

interactions. We will provide a Bayesian optimization search method for setting optimal 
parameters. 

Incorporate an imaging layer. The integration of imaging data into the LNCTP framework 
aims to bridge the gap between molecular and cellular processes and functional brain 
organization. By incorporating imaging modalities such as functional magnetic resonance 
imaging (MRI), we seek to enhance our understanding of spatial hierarchies and connectivity 
patterns within the brain. This integration will help predict psychiatric and brain-related 
phenotypes by combining genotypic, omic, and imaging data, potentially offering deeper insights 
into the intricate relationships among brain structure, function, and genetic factors. After 
appropriate covariate and batch correction, the resulting residual matrices can be fed as input to 
a deep learning layer. The subsequent integration with genotypes and omics data can be 
carried out in the following manner: (1) First, we will build purely deep learning models (such as 
feed-forward neural networks) that predict FC matrices conditional on matching genotypes. This 
analysis quantifies the heritable component of the functional connectivity signatures. (2) 
Second, we can integrate the omics-based imputation model from LNCTP on top of the 
genotypes to predict the FC matrices. This aims to determine the improvement in the heritability 
quantification of FC matrices by including inferred gene regulatory mechanisms and 
interactions. (3) Third, we will build a model to predict psychiatric and other brain-related 
phenotypes by incorporating FC matrices alongside the current LNCTP inputs. The result would 
be a model that quantifies the propensity for target phenotypes using both functional 
connectivity signatures (which correlate with certain conditions) and genetic/omic signatures. 
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Tool #2 - "A tool to integrate wearable data and genomics to help predict disease 
risk" 
We aim to construct variant impact models that incorporate wearable sensor data to ascertain 
the impact of variants on specific genes. We will build tools to leverage wearable and biosensor 
data to generate risk scores, as well as to identify and prioritize genetic loci of interest. 
 
Previous Work: We have previous experience in analyzing sensor data in human health 
contexts. We leveraged the time-series nature of biosensor data to assess the impact of an 
intervention on individual health (Liu et al, 2021). We developed a tool that implements a 
Bayesian structural time-series framework, to forecast the impact that an intervention (e.g., drug 
treatment) may have on a time-series process (e.g., detection of glucose level change). This 
work exemplifies how analyzing time-series based biosensor data can aid in assessing personal 
health. In more recent work, we leverage AI and data from wearable devices to characterize 
psychiatric disorders and identify genetic associations (Liu et al, 2024; and see Figure below). 

 
 



Proposed Work: Processing wearable biosensor data and generating biologically relevant 
features: The noisy nature of wearable time-series data requires rigorous preprocessing and 
feature engineering. Given our experience in time series signal processing, we aim to construct 
a tool to extract clinically relevant information from raw wearable data. We propose to combine 
different data modalities collected from wearable devices, as well as two distinct strategies for 
feature engineering: generating static and dynamic features. Static features are time-invariant 
and are created through summarization techniques, resulting in straightforward and efficient 
features commonly used in downstream modeling. Dynamic features retain the time-varying 
nature of the original digital signatures, preserving sequential and temporal patterns. 
Characterizing brain diseases and disorders using wearable biosensors and AI: We will adopt a 
dual-architecture approach that employs XGBoost for static features and Xception for dynamic 
features. For dynamic features, we propose another module of our tool, which uses deep neural 
networks as the architecture for modeling. The neural network, which takes multichannel time-
series data as input, will consist of a time-series encoder, pretraining decoder, disease 
classifier, and cognitive score predictor. We use the InceptionTime and XceptionTime 
architectures as integral parts of this tool. 
Leveraging wearable-derived features to identify associations with genetic variants. Wearable-
derived features may be used as GWAS phenotypes. As another component of our integrated 
tool, we plan to include a framework that performs a battery of multivariate GWAS leveraging 
sensor data to improve identification of disease-related variants. This framework within our tool 
will treat clusters of correlated features as multivariate digital phenotypes and implement a 
GWAS model use formula: Multivariate Digital Phenotype ~ Covariates + Disease + Genotype + 
Genotype:Disease, where “Genotype” corresponds to the genotype group of an individual at a 
particular genetic variant, “Disease” corresponds to the status of the individual (0 = control 
individual; 1 = individual with disease), and the interaction term Genotype:Disease allows us to 
identify a genetic effect on the multivariate digital phenotype that differs between cases and 
controls. For a given genome-wide significant locus, we will consider each feature in the 
significantly associated cluster and compare the feature value’s distributions among the three 
genotype groups. This approach will allow us to identify which specific wearable features are 
associated with the variant. Another way to harness the potential of wearable measurements as 
digital phenotypes for neuropsychiatric disorders is by using the wearable combination scores 
generated by our modeling framework. These scores combine wearable-derived features into a 
single continuous variable that summarizes an individual’s likelihood of having a particular 
disease. 
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Tool #3 - "Using LLMs with protein structure to find aberrant proteins " 
 
Understanding gene regulatory networks (GRNs) helps delineate the complex genetic and 
epigenetic orchestration, offering insights into how specific genes and pathways contribute to 
diseases. This knowledge is crucial for identifying potential biomarkers for early detection and 



monitoring disease stages. To reveal the interactions within affected cell-specific GRNs, we 
propose our  scBayesDiffNet module (which applies LatentDAG followed by DiffusionNet) and 
LLM (Fig. 3): 
 

 
 
Step 1: Refining cell-specific co-expression networks using the LatentDAG Bayesian approach  
1.1. We will build cell-specific co-expression networks from scRNA-seq data and simplify them 
with our LatentDAG Bayesian algorithm, which uses a directed acyclic graph (DAG) structure to 
capture conditional independence among variables{PMID: 26554085}. LatentDAG refines gene 
activity relationships in co-expression and ChIP-seq networks, creating clearer clusters and 
boundaries between modules, and enhancing connections in transcriptional and RNA-binding 
protein networks. The refined co-expression network is then input to SCENIC{PMID: 28991892} 
to identify regulons, with LatentDAG pre-filtering strengthening regulon motifs and reducing false 
positives. 
Step 2: Extracting cell-specific weighted GRNs from regulons using DiffusionNet 

Given the cell-type-specific regulon structure, we will apply a network diffusion method to better 
relate a set of input genes to their upstream regulators{PMID: 25078397,PMID: 15087500}. This 
approach allows us to integrate larger networks involving multiple transcription factors (TFs), 
surpassing simple combined regulons. The resulting GRNs will have weighted edges between 
TFs and their target genes, suggesting high-confidence interactions. This method identifies key 
regulators for a given target gene by providing the aggregate regulation score of each TF for that 
target. 
Step 3: Prioritizing and weighting key nodes and edges within the GRNs related to diseases using 
LLM 
We will highlight GRN nodes and edges based on associations with protein aggregation-related 
diseases such as Alzheimer’s and cardiovascular, and cancer. First, we weight nodes by their 
differential expression in diseased vs. control samples and adjusting for fold changes. Then, 
additional weights will be added to emphasize pathways linked to protein aggregation, a key 
mechanism in diseases like Alzheimer’s and cardiovascular diseases. Using fine-tuned large-
language models (LLMs), we will predict protein aggregation likelihood and trace the TF-target 
gene subnetworks to update their weights. We note that LLMs are especially useful for their 
sensitivity to point mutations affecting aggregation as diseases progress. 

 
 

Fig. 3 Schematic of scBayesDiffNet and LLM for constructing disease-
specific GRNs. 



Tool #4 - "Using LLMs or ML to highlight key variants for precision medicine" 
 

Previous Work. We have made methodological contributions to analyzing and integrating 
large-scale genomic data, including those targeting non-coding regions and their coding targets, 
to prioritize variants and understand their impacts on gene function and regulation 173–177. 
Transformer models for predicting allele-specific behavior. We recently developed the EN-TEx 
resource, comprising >1,600 multi-tissue epigenetic assays mapped to personal genomes of 
four individuals, and analyzed the effects of non-coding variants on regulation178. As part of 
this work, we developed a large language model (LLM) to predict variant effects in allele-specific 
(AS) behavior. Traditionally, AS is measured by mapping datasets to diploid personal genomes 
and calculating read depth changes between haplotypes at heterozygous SNVs179. We trained 
a transformer model incorporating DNABERT180 to predict heterozygous SNVs that exhibit AS 
activity based on local sequence contexts. Attention layers within the model captured complex 
sequence interactions. Our model outperformed the prediction accuracy of several baselines, 
including for transcription factor (TF, e.g., CTCF) and histone modification activity (e.g., 
H3K4me3). Attention scores highlighted genomic sequences important for prediction, 
recapitulating known TF binding motifs and revealing potential new motifs. When combined with 
tissue-specific epigenetic signals, the scores accurately predicted differential variant effects 
across tissues. Thus, transformer models can learn dependencies between genomic sequences 
without prior knowledge to produce novel insights into the mechanisms underlying variant 
effects. Similarly, our work on the DECODE framework leveraged sophisticated deep neural 
networks to refine genomic annotations for precise enhancer prediction and localization181. 
Additionally, we developed advanced frameworks to integrate text with multimodal molecular 
representations, i.e., 1D sequences, 2D interactions, and 3D structures182. We have also fine-
tuned the ESMFold LLM for predicting protein phases, demonstrating its superior performance 
compared to classical benchmarks such as random forest models183. 
 
Proposed Work. Transformer model approach for prioritizing variants. We will extend our 
transformer model approach for predicting allele-specific behavior and apply it to all variants to 
filter those likely to exhibit functional impacts. We will also compare the effect of using the 
reference genome sequence to the personal genome sequence in the window surrounding the 
heterozygous SNV (hetSNV). We will investigate which DNA sequence features are important 
for the transformer model performance. By observing the attention score patterns around AS 
hetSNVs, we will determine whether the transformer model focuses on distinct sequence 
features in the local neighborhood of hetSNVs. For example, in predicting AS CTCF binding, the 
transformer model identifies not only CTCF motifs but also other motifs corresponding to 
associated TF cofactors that bind near CTCF, which are used as additional features. We will 
apply the transformer model approach to predict SNVs that exhibit allele-specific expression 
within genes and allele-specific binding for regulatory regions near genes, aiming to identify 
hetSNVs likely to impact the function of those target genes. Additionally, we will extend the 
transformer model approach to predict other types of genomic function, such as tissue 
specificity, using the local sequence context around a targeted variant. This approach can be 
further refined to prioritize variants that significantly impact the expression of specific genes 
expressed in subsets of tissues or under certain phenotypic conditions.  
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