
Analysis of functional genomics data. We have extensive experience in developing and 
maintaining pipelines for the quality assessment and processing of different types of 
functional genomics data. Additionally, we have been leading pipeline development efforts in 
a number of large-scale genomics consortia such as ENCODE, modENCODE, Gencode and 
the 1000 Genomes Project. In terms of genome annotation, we have pioneered the 
identification of non-coding transcription and novel transcribed elements both in the human 
species and in model organisms [1-5]: among these, incRNA predicts novel non-coding 
RNAs (ncRNAs) using known ncRNAs of various biotypes, and FusionSeq detects 
transcripts that arise due to trans-splicing or chromosomal translocations. Our group has 
also led efforts for the annotation and analysis of pseudogenes in the framework of the 
Gencode project. In collaboration with the UCSC and HAVANA teams, we have developed a 
variety of methods to identify pseudogenes [6-9]. These include PseudoSeq and 
PseudoPipe, which take as input all known protein sequences in the genome and use 
homology search to identify disabled copies of functional paralogs (referred to as 
pseudogene parents). As concerns transcriptome analysis, in the framework of the ENCODE 
and modENCODE projects we have curated pipelines for gene expression quantification that 
ensure uniform processing and comprehensive annotation of RNA-seq data, allowing direct 
comparison of gene expression patterns across multiple species [10-11]. Our pipeline IQSeq 
calculates the relative and absolute abundance of contributing transcript isoforms to a gene 
from RNA-Seq data [12]. To ensure the anonymization of confidential sequence information 
that can be potentially extracted from RNA-seq reads, we have developed the Mapped Read 
Format (MRF), a compact data summary format to store both short and long read 
alignments, as well as an accompanying suite of tools (RSEQtools) [13]. We have also 
significantly contributed to the analysis of extracellular small RNA-Seq experiments with our 
exceRpt pipeline [14], which we developed in the framework of the NIH Extracellular RNA 
Communication Consortium. Besides transcriptomic data, we have created a number of 
tools for epigenome analysis. First, we developed PeakSeq [15], a tool for the genome-wide 
identification of TF binding sites from ChIP-Seq data, which was extensively employed by 
the ENCODE consortium. Second, we developed MUSIC [16], a peak caller that performs 
multiscale decomposition of ChIP-seq signal, which is applicable to studies of histone 
modifications enabling detection of broad and punctate regions of enrichment. 
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Measuring the 
regulatory potential 
of non-coding 
regions. Besides the 
analysis of functional 
genomics data, we 
have large 
experience analyzing 
data from massively 
parallel reporter 
assays. Analysis of 
data such as that 
obtained from 
STARR-seq assays 
brings in an additional 
level of complexity, 
since in this kind of 
experiments the 
coverage is typically 
non-uniform, 
overdispersed, and 
often confounded by 
sequencing biases 
such as GC content, 
or other factors like 

RNA secondary structure and thermodynamic stability. To overcome these limitations, we 
developed a negative binomial regression framework for uniformly processing STARR-seq 
data, STARRPeaker, which we used to generate comprehensive and unbiased catalogs of 
putative enhancers in various ENCODE cell lines [1]. We further integrated epigenomics and 
STARR-seq data to improve the prediction of enhancers across multiple species. To do so, 
we developed matched-filter (Figure 1) a framework that uses Drosophila STARR-seq peaks 
to create shape-matching filters based on meta-profiles of epigenetic features [2]. We 
integrated the resultant features with supervised machine-learning algorithms to predict 
enhancers in both Drosophila and mammals. Finally, we have also extensively contributed to 
the identification of cell-type specific enhancers with DECODE, a deep-learning framework 
that improves the annotation of enhancers by precise detection of their genomic boundaries 
[3]. 
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Figure 1: Flowchart of the matched-filter model. (a): We identified the double-peak 
pattern in the H3K27ac signal close to STARR-seq peaks. (b): We aggregated the 
H3K27ac signal around these regions after aligning the flanking maxima, using interpolation 
and smoothing on the H3K27ac signal. (c): The same operations were performed on other 
histone signals and DHS to create metaprofiles in other dependent epigenetic signals. (d): 
Matched filters were used to scan the histone and/or DHS datasets to identify the 
occurrence of the corresponding pattern in the genome. (e): The matched-filter scores are 
high in regions where the profile occurs (gray region shows an example), but are low when 
only noise is present in the data. (f): The individual matched-filter scores from different 
epigenetic datasets were combined using integrated model to predict active promoters and 
enhancers in a genome-wide fashion.



Identifying and interpreting genetic variants. We have pioneered the identification of 
genetic variants, in particular large structural variants (SVs), for the advancement of 
personalized genomics. We developed Paired-End Mapper (PEMer), a toolkit for the 
detection of SVs from paired-end sequencing data [1], and CNVnator, a pipeline for the 
discovery and annotation of typical and atypical CNVs from family and population genome 
sequencing [2]. We have also led efforts for the identification of allele-specific variants. Our 
pipeline AlleleSeq integrates an individual’s genomic variation data (SNVs, indels, and SVs) 

into the reference 
genome, phases 
information of 
heterozygous variants 
producing maternal and 
paternal haplotypes, and 
maps genomic loci that 
display imbalance in gene 
expression or chromatin 
binding between the two 
alleles (allele-specific 
events) [3]. We used 
AlleleSeq to construct the 
personal diploid genome, 
splice-junction libraries 
and personalized gene 
annotations for NA12878 
[3], and to build 382 
personal genomes using 
the variant call sets from 
the 1000 Genomes 
Project [4]. Furthermore, 
using the extensive 
Roadmap dataset, we 

constructed a high-resolution map that reveals allelic imbalances in DNA methylation, 
histone marks, and transcription across 71 epigenomes from 36 distinct cell and tissue types 
from 13 donors [5]. We recently expanded this pipeline to call allele-specific genomic 
elements, such as genes or regulatory regions, giving rise to our updated tool, AlleleSeq2. 
We applied AlleleSeq2 to the EN-TEx resource encompassing ~1.6K datasets from four 
donors (~30 tissues x 15 assays) and generated the largest catalog (>1M) of allele-specific 
loci available to date in the human genome [6]. We leveraged this catalog to develop a 
deep-learning transformer model that can predict the allele-specific activity based only on 
local nucleotide-sequence context (Figure 2) highlighting the importance of 
transcription-factor-binding motifs particularly sensitive to variants. 
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Figure 2: Deep-learning model predicting AS activity from nucleotide sequence. 
(A) Schematic of the sequence-based predictive model. (B) Average performance of 
models predicting AS activity. (C) Performance of a tissue-specific model for CTCF. 
(D) Attention patterns learned by the model. (E) Average attention pattern of 
sequence-based models for various assays. (F) Motif enrichment surrounding the AS 
CTCF SNV agrees with the average attention pattern in (E).



[4] Chen, Jieming et al. “A uniform survey of allele-specific binding and expression over 
1000-Genomes-Project individuals.” Nature communications vol. 7 11101. 18 Apr. 2016, 
doi:10.1038/ncomms11101
[5] Onuchic, Vitor et al. “Allele-specific epigenome maps reveal sequence-dependent 
stochastic switching at regulatory loci.” Science vol. 361,6409 (2018): eaar3146. 
doi:10.1126/science.aar3146
[6] Rozowsky, Joel et al. “The EN-TEx resource of multi-tissue personal epigenomes & 
variant-impact models.” Cell vol. 186,7 (2023): 1493-1511.e40. 
doi:10.1016/j.cell.2023.02.018



Analyzing biological networks to elucidate the effects of genomic variants. 
Reconstructed networks can help infer the direct and indirect effects of genomic variants. 
For example, we have used network properties such as centrality to evaluate the functional 
significance of genomic variants [1]. Genomic variants can also lead to disruptions of 
network connections. We developed DiNeR for identifying disruptions of TF co-regulation by 
variants and analyzing their consequences [2]. On a larger scale, some network 
perturbations may propagate to cause major network rewiring. We developed the TopicNet 
method to measure such rewiring in transcriptional regulatory networks [3]. We have also 
applied this idea to study network rewiring in cancer cells, as part of our efforts toward 
producing a general resource for cancer research based on ENCODE data [4]. In addition to 
studying individual networks, ultimately it is necessary to study multiple networks jointly to 
understand how they affect each other. Finally, we have recently developed a unified 
pre-trained language model, MolLM, to integrate biomedical text and improve 2D and 3D 
molecular representations [5]. 
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