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Experience in analyzing the impact of genetic variation 
We have extensive experience with quantifying the impact of genetic variants from various 
layers of information. For instance, we developed a variant-prioritization pipeline named 
FunSeq that has been widely used to identify disease-causing mutations for further in-depth 
analyses to understand the mechanisms underlying disease pathogenesis [1,2]. We also 
developed GRAM [3], a generalized model to predict cell-type-specific molecular effects of 
non-coding variants on their associated genes, and AlleleSeq, a tool for detecting candidate 
variants associated with allele-specific binding and allele-specific expression [4-6]. To probe 
the functional effects of genetic variation and the mechanistic underpinnings of disease, we 
previously built integrated models that relate molecular- and cellular-level phenotypes to high-
level traits. In our previous work, we developed an interpretable integrated modeling 
framework for this purpose, within the context of psychiatric genomics [7]. Our Deep 
Structured Phenotype Network (DSPN) framework allowed us to model the joint distribution 
of all phenotypes of interest conditioned on genetic variation; a joint energy function enabled 
us to embed prior knowledge in the connectivity of the network and interpret new relationships 
during and after training. We used a conditional deep Boltzmann machine architecture with 
multiple layers, including genotype, gene expression, epigenetics, and cell fraction layers, and 
introduced lateral connectivity at the visible layer to embed the gene regulatory network (GRN) 
and quantitative trait locus (QTL) linkages. Further, we developed a rank-statistic-based 
interpretation scheme that allows us to functionally annotate hidden nodes and prioritize them 
relative to disorders [8]. Our model improved disease prediction by 6-fold compared to additive 
polygenic risk scores for schizophrenia, highlighted key genes for schizophrenia and other 
disorders, and allowed imputation of missing transcriptome information from genotype alone 
[7]. Finally, we also have extensive experience in extracting latent signatures from gene 
expression data as biomarkers for asthma [9], and in integrating 3D protein structures and 
dynamics with mutational frequencies to identify cancer driver genes [10]. 
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Experience in single-cell characterization of the human brain 
In the framework of the PsychENCODE consortium we previously created brainSCOPE (brain 
Single-Cell Omics for PsychENCODE) [1] a uniformly processed single-cell (sc) resource 
which comprises snRNA-seq, snATAC-seq, and snMultiome data from >2.8 M nuclei of 388 
individual brains (182 healthy controls and 206 individuals with neurological disorders). Our 
cell-type annotation scheme, 
which harmonizes several 
published analyses in the 
prefrontal cortex including the 
BICCN reference atlas, 
identified 28 cell types. We used 
our processed snRNA-seq data in 
combination with these 28 cell 
types to identify single-cell cis-
eQTLs (scQTLs). By employing 
the same analytical strategy as 
the GTEx consortium [2], we 
identified a “core callset” of 
>1.4M single-cell eQTLs, with 
an average of ~85K cis-eQTLs 
and ~690 eGenes per cell type. 
To overcome the low statistical 
power that characterizes the rarer 
cell types, we complemented this 
core set of scQTLs with an 
additional callset derived from a 
Bayesian linear mixed-effects 
QTL mapping model (Fig. 1A). Overall, we identified 330 scQTLs for eGenes related to brain 
disorders. Some of these variants map to the 17q21.31 locus, previously associated to brain 
disorders, such as an astrocyte-specific scQTL for the Tau protein gene MAPT and a multi-cell 
type scQTL for the neurodegenerative-disorder risk gene KANSL1 [3]. Furthermore, we 
developed a Poisson-regression model that incorporates a continuous trajectory and a 
pseudotime-genotype interaction term, which we used to identify “dynamic scQTLs”, i.e. 
eQTLs that change effect size along the pseudotime trajectory (Fig. 2B) [4]. 
 
We also combined our snRNA-seq data with publicly available ligand-receptor pairs to 
construct a cell-to-cell interaction network [5]. Our analyses highlighted three broad ligand-
receptor usage patterns that distinguish excitatory, inhibitory, and glial cell types. We also 
investigated how cell-cell communication patterns are altered in neuropsychiatric disorders. 
We found that individuals with schizophrenia and bipolar disorder showed notable inter-
mixings among the three broad patterns of ligand-receptor usage. For instance, when 



comparing individuals with schizophrenia with healthy controls, we found that excitatory 
neurons received less incoming signaling, while inhibitory neurons received more (Fig. 2C).  
 
We also used our population-scale single-cell data to systematically assess transcriptomic and 
epigenetic changes due to aging. First, we identified a list of aging DE genes across cell types 
(Fig. 2D). We found, for instance, that HSPB1, which encodes a heat-shock protein and has 
been previously implicated in longevity, is upregulated in multiple cell types in older 
individuals [6-7]. Additionally, we constructed a model to predict an individual's age from their 
single-cell expression data (Fig. 2E). We generated cell-type specific pseudo-bulk expression 
matrices derived from snRNA-Seq and used XGBoost to predict the age of each individual. 
Formally, we define  as the expression matrix, where each row  corresponds to a specific 
cell's transcriptomic profile.  represents the actual age labels, our predictive model aims to 
minimize the following objective function: 

 
where  is the number of samples,  is the model function parameterized by . To gauge 
the efficacy and precision of our models, we implemented multiple evaluation metrics: Pearson 
correlation, Spearman correlation, mean absolute error, and root mean squared error. To gain 
more biological insights to the model predictions, we adapted the SHAP module in order to 
decipher how individual features of the model (e.g., gene expression for a particular cell type) 
impact accuracy. The model shows that the transcriptomes of six cell types (L2/3 IT, L4 IT, L5 
IT, L6 IT, Oligodendrocytes, and OPC) have strong predictive value. It also shows that many 
individual genes contribute to the model, highlighting broad transcriptome changes in aging. 
From these, we selected two particularly predictive genes previously associated with aging, 
FKBP5 and MKRN3, and observed a clear correlation between their expression and aging (Fig. 
2E) [8-10]. Finally, we also investigated the effects of age on the epigenome using single-cell 
candidate cis-regulatory elements (scCREs) to deconvolve bulk chromatin accessibility for 628 
individuals into those for specific cell types. The resulting scCRE activity patterns in certain 
cell types, particularly microglia, cluster individuals into distinct age groups. We further 
expanded our analysis to highlight how patterns of enriched TF motifs in active scCREs change 
with age in a cell-type-specific fashion. Some TFs demonstrate consistent patterns across cell 
types (FOXO4 and RXRA), while others exhibit more cell-type-specific patterns (NEUROG1). 
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