Zimmerone Projects summary slides

2017-2023

Summary:

- 1. Project purpose: comparative analysis of personal genomes
 - a. Compare the variant in Carl's genome with those in genomAD and 1000 genome databases
- 2. genomic databases are important for understanding the "normal" range of genetic variation
- 3. vcfR retrieves online references
- 4. ANNOVAR retrieves genome frequencies and annotations

No genes prioritized

No genes prioritized

Summary Figure: eQTLs identified in different tissues

- 1. Project purpose: comparative analysis of personal genomes
 - a. Compare the variants in Carl's genome with those in GTEx databases
- 2. Carl's SNPs are interestingly enriched in immune-related chromosome regions
- 3. A small proportion of SNPs serve as eQTLs and regulate the expression of genes (mainly in the immune system)

Summary:

- 1. Project purpose: comparative analysis of personal genomes
 - a. Assessing deleteriousness of SNV's in Carl's genome
- 2. Used PolyPhen2, PROVEAN and SIFT for SNPs classification
- 3. Estimated the deleteriousness of a mutation based on properties of amino acids and evolutionary constraint

No genes prioritized

Summary:

- 1. Project purpose: personal genomes and personalized medicine (CRISPR)
 - a. Identifying off-target CRISPR site
- 2. Used algorithms Cas-OFF and CRISPR-SEEK to identify off-target CRISPR sites
- Results on hg38 showed that CRISPR-Seek predicted 516/650 and CasOFFinder 461/650

No genes prioritized

2017 group 4

No genes prioritized

- 1. Project purpose: personal genomes and personalized medicine (CRISPR)
 - a. The impact of SNPs on sgRNA sets and off target mutations
- 2. Found PAM sites in the human reference genome as well as Carl's genome and compares the similarity of the two sets:
 - a. Many PAM sites with matched upstream sequences are present in Carl's sets
- 3. Generated sgRNA libraries from Carl's genome and compared it to the reference genome
 - a. Zimmer mom and dad have slightly more in common than with either does with the reference

Summary:

- 1. Project purpose: network analysis of personal genomes
 - a. Propose a tool that calculates the degree centrality and betweenness centrality of proteins containing and not containing SNPs in Carl's genome using a PPI file
- 2. Calculated the degree centrality and the betweenness centrality for all nodes in the PPI network
- 3. Found no statistically significant difference in distributions of proteins containing SNPs and not containing SNPs
- 4. Observed no statistically significant enrichment of proteins/protein types in any hierarchical layers of the PPI network

No genes prioritized

No genes prioritized

- 1. Project purpose: structural analysis
 - a. Analyze the structure of the mutation F19Y found in Carl's genome for galectin-8
- 2. Amino acids mutations can be favorable or unfavorable
- 3. Analyzed Carl's genome for protein galectin-8 mutations
 - a. Compared WT vs Mutant's repulsive energy and RMSD

No genes prioritized

- 1. Project purpose: structural analysis
 - a. Analyze the structure of the mutation I35F found in Carl's genome for galectin-8 at location 35
- 2. Amino acid mutations include changes in size, charge, hydrophobic effect, and change in potential energy
 - a. Size and charge are important in predicting mutation effects
- 3. Side chain angle potential energies increased by I35F mutations
- 4. RMSD increased with I35F mutation
- 5. Unexpected mutation results (D/E, F/Y)

No genes prioritized

Summary Figure: Variation Functional Class Variation Region 1.0 downstream 1.0 ntergenic 0.8 0.8 plice site acceptor 0.6 0.6 splice site donor Ratio Ratio splice site region anscript 0.4 0.4 upstream UTR 3 prime UTR 5 prime 0.2 0.2 0.0 0.0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Y X 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Y X chromosome chromosome

- 1. Project purpose: comparative analysis of personal genomes
 - a. Compare Carl's genome with the Neanderthal data
- 2. Neanderthal variants have been observed in humans in a frequency higher than expected by chance; some of these variants are associated with disease risk.
- 3. Retrieved Neanderthal data came from The Max Planck Institute and used bedtools intersect to analyze basic statistics of %N SNP composition of Carl's SNP set

No genes prioritized

- 1. Project purpose: comparative analysis of personal genomes
 - a. Compare the variants in Carl's genome with those in GTEx databases to assess whether Carl should take up sprinting
- 2. Carl's genome indicates that he:
 - a. may have abnormal regulation of axon guidance (related to Parkinson's)
 - b. may have more (or less!) explosive fast-twitch muscles than average
 - c. may be at risk for gastrointestinal tract cancer

No genes prioritized

- 1. Project purpose: predict gene expression values from carl's snp information
- 2. Potentially higher risk of Parkinson's disease
 - a. Lowered expression level for a protective gene AGAP1
- b. Lowered expression level for a important gene KANSL1 (in mental development)
- 3. Potentially higher risk for Alzheimer's disease
 - a. Increased expression level for a risk gene SLC10A2
- 4. More likely to have a longer life span
- 5. Increased expression for two protective genes (ASCC2 and MRP4)

No genes prioritized

- 1. Project purpose: analyzing a common variant associated with inflammatory response
- 2. Investigated in cannabinoid receptor type 2
- 3. The CC variant is the common and ancestral variant
- 4. Cannabinoid receptor type 2 is involved in immune signaling
- 5. Disease significance: the cannabinoid receptor type 2 Q63R variant increases the risk of celiac disease

		Summary Figure:	Gene (SNP)	Beta coefficient (log odds ratio)
r a group 5			APOE(rs429358 & rs7412)	0.566
			CR1 (rs6656401)	0.165514
	-		PICALM (rs10792832)	-0.13926
			MS4A6A (rs983392)	-0.10536
			CD2AP (rs10948363)	0.09531
			EPHA1 (rs11771145)	-0.10536
			INPP5D (rs35349669)	0.076961
			NME8 (rs2718058)	-0.07257
	\		ZCWPW1 (rs1476679)	-0.09431
			CELF1 (rs10838725)	0.076961

Summary:

- 1. Project purpose: calculating Carl's risk for Alzheimer's disease
- 2. Alzheimer's disease phenotype is indicated by the amyloid cascade hypothesis
- 3. Carl has 10 out of 22 associated SNPs
 - a. Probability of Alzheimer's is 13.72% vs probability of Alzheimer's in general population is 10%

No genes prioritized

20

Summary:

- 1. Project purpose: identifying significant protein-coding mutations in Carl's genome
- 2. Hypothesizes that Carl's mutation will not drastically decrease protein functionality and thus not increase his risk of developing cancer
- 3. Conclusions:
 - a. Mutations appear to be tolerated in coding regions
 - a. Olfactory receptors
 - b. Polarity is preserved among most mutation

No genes prioritized

No genes prioritized

- 1. Project purpose: PRS prediction in coronary artery disease, type II diabetes, and schizophrenia
- 1. Pre-processed Carl's genotype file then calculated his polygenic risk scores for coronary artery disease, type II diabetes, and schizophrenia
- 2. Limitations:
 - a. PRS is only interpretable when compared to that of cases/controls
 - b. Simulation result is not robust and depends heavily on simulation hypothesis

2019 group 1 (chr 1)

Top 10 Prioritized Genes

- 1. NBPF19
- 2. LMX1A
- 3. OBSCN
- 4. KIAA1324
- 5. HSPG2
- 6. TESK2
- 7. UBXN11
- 8. SPATA6
- 9. ADORA1
- 10. DCAF6

Additional Gene(s)

Summary Figure: HSPG2: Heparan Sulfate Proteoglycan 2 • Encodes the perlecan protein, which is found in muscle and cartilage . NOL HSPG2: Heparan Sulfate Proteoglycan 2 • Encodes the perlecan protein, which is found in muscle and cartilage . ECM-receptor interaction

- 1. Prioritization approach: exonic mutational burden
- 2. Downstream analysis: STRING network analysis of protein interactions
- 3. Findings:
 - a. STRING analysis of the HSPG2 gene shows that Carl has six SNPs associated with Schwartz Jampel syndrome
 - b. STRING analysis of the HRNR gene (from the SIFT sorting list) shows that Carl has one SNP that's associated with eczema in caucasian Europeans

2019 group 2 (chr 2)

Top 10 Prioritized Genes

- 1. LRP1B
- 2. AC007682
- 3. CTNNA2
- 4. NRXN1
- 5. ERBB4
- 6. AC009499
- 7. ALK
- 8. THSD7B
- 9. DPP10
- 10. CNTNAP5

Additional Gene(s)

C2orf16

- 1. Prioritization approach: mutational burden
- 2. Downstream analysis: gene expression analysis
- 3. Findings:
 - a. NRXN1,CTNNA2, ERBB4, DPP10, LRP1B have high expression levels in brain
 - b. SNP in C2orf16 is associated with the MEtabolic Syndrome

2019 group 3 (chr 3)

Top 10 Prioritized Genes

- 1. MUC4
- 2. SLC9C1
- 3. CAND2
- 4. C0L6A5
- 5. OR5H8
- 6. CFAP44
- 7. DNAH12
- 8. FYC01
- 9. HRG
- 10. NAALADL2

- 1. Prioritization approach: number of nonsynonymous SNVs
- 2. Downstream analysis: text mining analysis through APIs and PubTator
- 3. Findings:
 - a. Different SNPs in the same gene may have distinct consequences: one SNP in CAND2 is associated with Atrial fibrillation and Ataxia Telangiectasia while another SNP is related to obesity
 - b. Identified a gene that has high rare nonsynonymous SNVs burden: ALDH1L, which has a SNP that's associated with Cleft Palate

2019 group 4 (chr 4)

Top 10 Prioritized Genes

- 1. FAT1
- 2. DCHS2
- 3. DUX4L4
- 4. FRAS1
- 5. KIAA1211
- 6. MTTP
- 7. NEIL3
- 8. PIGG
- 9. SHROOM3
- 10. ALKPK1

- 1. Prioritization approach: mutational burden of nonsynonymous variants
- 2. Downstream analysis: PDB structural analysis
- 3. Findings:
 - a. Found three variants DDX60L has that could potentially reduce the ability of this protein's ability to perform its protective function
 - i. However, without structural information this is highly speculative
 - b. Found variation in MTTP, a gene associated with abetalipoproteinemia when functionality is reduced

2019 group 5 (chr 5)

Top 10 Prioritized Genes

- 1. CDH12
- 2. CDH18
- 3. PDE4D
- 4. CTNND2
- 5. SGCD
- 6. SPOCK1
- 7. MCC
- 8. SLC25A48
- 9. TENM2
- 10. SLIT3

- 1. Prioritization approach: mutational burden
- 2. Downstream analysis: STRING network analysis
- 3. Findings:
 - a. Genes from original mutational burden analysis shows connection with cadherin proteins
 - b. Carl has high mutational burden for multiple genes linked to CDH12
 - c. Chromosome 5p deletion including CDH12 causes cri-du-chat syndrome

PS6KA2

GRIK2

2020 group 2 (chr 7)

Top 10 Prioritized Genes

- 1. CNTNAP2
- 2. MAGI2
- 3. PTPRN2
- 4. DPP6
- 5. SDK1
- 6. DGKB
- 7. AUTS2
- 8. HDAC9
- 9. GRM8
- 10. PDE1C

Summary:

Zimmer:

1. Prioritization approach: mutational burden

GRM8 visualization (PDB: 6E5V

- 2. Downstream analysis: PDB structural analysis
- 3. Findings:
 - a. Among the top 10 most mutated genes on chromosome 7, there are 6 missense variants within 4 genes

0.00

- b. Only one variant, conferring a protein, is characterized: GRM8
- c. PolyPhen analysis shows that substitution at pos 362 from F to Y is predicted to be tolerated

0.20

Curr Protoc Hum Genet. 2013 Jan; 07: Unit7.20.

0.40

0.60

0.80

1.00

2020 group 3 (chr 8)

Top 10 Prioritized Genes

- 1. CSMD1
- 2. SGCZ
- 3. LINC02055
- 4. NRG1
- 5. DLGAP2
- 6. DLC1
- 7. CSMD3
- 8. CCDC26
- 9. PSD3
- 10. NKAIN3

Additional Gene(s)

PNMA2

- 1. Prioritization approach: mutational burden
- 2. Downstream analysis: gene expression analysis
- 3. Findings:
 - a. PNMA2 is highly expressed in the brain and is implicated in cancer and neurological disorders
 - b. PNMA2 C>T causes nonsynonymous variant which lies in the dimerization domain

2020 group 4 (chr 9)

Top 10 Prioritized Genes

- 1. PTPRD
- 2. ASTN2
- 3. TRPM3
- 4. LINGO2
- 5. KDM4C
- 6. GLIS3
- 7. ADAMTSL1
- 8. CCDC171
- 9. BNC2
- 10. PCSK5

- 1. Prioritization approach: mutational burden
- 2. Downstream analysis: gene expression analysis
- 3. Findings:
 - a. ADAMTSL1 is an interesting genes that's involved in extracellular matrix organization
 - b. BNC2 is found to be strongly associated with congenital lower urinary-tract obstruction
 - c. Gene PTPRD has been implicated as a locus for restless legs syndrome and genetic variants of PTPRD are associated with bronchial asthma

2020 group 5 (chr 10)

Top 10 Prioritized Genes

- 1. AKR1E2
- 2. AKR1C2
- 3. AKR1C3
- 4. TMEM254-AS1
- 5. ASAH2B
- 6. WDR37
- 7. SEPHS1
- 8. PTCHD3
- 9. SNCG
- 10. PITRM1

- 1. Prioritization approach: mutational burden
- 2. Downstream analysis: STRING network analysis
- 3. Findings:
 - a. Rare, deleterious variant found within ASAH2B
 - b. PTCHD3 variant found to be associated with decreased risk for cataracts
 - c. AKR1E2 stop gained mutation is associated with lower height and fat-free body mass; AKR1C2 splice-donor variant is associated with lower weight, fat-free body mass; AKR1C3 stop gained mutation is associated with lower fat-free body mass and basal metabolic rate

2020 group 6 (chr 11)

Top 10 Prioritized Genes

- 1. SLC22A24
- 2. CASP12
- 3. OR52J3
- 4. ZNF705E
- 5. ALDH3B2
- 6. MRVI1
- 7. OR52N4
- 8. TREH
- 9. MS4A14
- 10. OR8K1

Summary Figure:

- 1. Prioritization approach: impact score using SnpEff
- 2. Downstream analysis: STRING network analysis
- 3. Findings:
 - a. Several olfactory receptors were found in this analysis
 - b. Some genes were involved in metabolic processes

2021 group 1 (chr 12)

Top 10 Prioritized Genes

- 1. TMEM132D
- 2. MGAT4C
- 3. PRR4
- 4. ANKS1B
- 5. FAM19A
- 6. ERC1
- 7. CACNA1C
- 8. KSR2
- 9. TAS2R14
- 10. CCDC91

- 1. Prioritization approach: mutational burden
- 2. Downstream analysis: PINA and STRING network analysis
- 3. Findings:
 - a. mutations may be relevant to taste transduction pathway
 - b. ERC1 expression is associated with a number of genes correlated with cancer prognosis; KSR2 interacts with MAPK (signaling-pathway involved in oncogenesis)
 - c. alternative approach to gene ranking finds interesting gene:
 - i. KSR2 variant related to facial morphology

2021 group 2 (chr 13)

Top 10 Prioritized Genes

- 1. MYO16
- 2. ATP8A2
- 3. ATP11A
- 4. MCF2L
- 5. FARP1
- 6. PCDH9
- 7. DLEU1
- 8. RNF219-AS1
- 9. CCDC169
- 10. DIAPH3

- 1. Prioritization approach: mutational burden
- 2. Downstream analysis: gene expression analysis
- 3. Findings:
 - a. MYO16 has genetic association with Autism Spectrum Disorder
 - b. Deletions of gene DLEU1 are found at high rates in patients with lymphocytic leukemia

2021 group 3 (chr 14)

Top 10 Prioritized Genes

- 1. RGS6
- 2. LINC00871
- 3. FOXN3
- 4. MDGA2
- 5. NPAS3
- 6. NRXN3
- 7. RAD51B
- 8. NUBPL
- 9. SLC25A21

10. AKAP6

- 1. Prioritization approach: mutational burden
- 2. Downstream analysis: gene expression analysis
- 3. Findings:
 - a. RGS6 modulates neuronal and cardiovascular activities, through regulating G protein signaling
 - b. MDGA2 is overall highly expressed in brain tissues but also highly expressed in testis

2021 group 4 (chr 15)

Top 10 Prioritized Genes

- 1. ALDH1A2
- 2. RORA
- 3. SEMA6D
- 4. AKAP13
- 5. PCSK6
- 6. TCF12
- 7. SCAPER
- 8. GCOM1
- 9. UNC13C
- 10. AGBL1

- 1. Prioritization approach: mutational burden
- 2. Downstream analysis: STRING network analysis
- 3. Findings:
 - a. Two genes [RORA/TCF12] predicted to interact
 - b. RORA and TCF12 are implicated in TH17 cell differentiation pathway
 - c. Potential implications of RORA/TCF12 mutation
 - i. RORA: neurodevelopmental delay; epilepsy; cerebral ataxia
 - ii. TCF12: coronal craniosyntosis; anaplastic oligodendroma

2021	group	5
(chr 1	6)	

Top 10 Prioritized Genes

- 1. PKD1L2
- 2. METTL22
- 3. ZNF469
- 4. UBE2I
- 5. SCNN1G
- 6. ADCY9
- 7. ACSF3
- 8. BCAR1
- 9. ABAT
- 10. CEP20

	Table 1: Two Most Common Phrases for Each Gene*										
nmary Figure:	Gene	Most Common Phrase(s) Second Most Common Phrase(s)									
, ,	PKD1L2	Polycystem (or polystin)	Cerebrospinal-fluid-contacting neurons								
	UBE2I	E2-conjugating/differentially expressed genes	oogenesis								
	METTL22	Hematopoietic stem cells	Human proteins								
	ACSF3	Next-generation sequencing/RNA-sequencing	Breast cancer								
	SCNN1G	Liddle sundrome (ls)	Nephrotic syndrome								
	BCAR1	osteoclasts	cancer/protein tyrosine kinase 6								
	ABAT	Gamma-aminobutyric acid	Cabamazepine								
	ADCY9	microRNA	asthma/molecular mechanisms								
	ZNF469	Ehlers-Danlos Syndrome	Brittle cornea syndrome								
	CEP20	Centriolar satellites	Pericentriolar satellites/centrosomal proteins								
	*multiple term:	s in a cell indicate that they were detected	with same frequency								

Summary:

Sur

- 1. Prioritization approach: mutational burden
- 2. Downstream analysis: text mining analysis

3. Findings:

- a. SCNN1G is associated with liddle syndrome
- b. ADCY9 if part of the G-protein signaling cascade that begins with beta-adrenergic receptor activation
- c. ACSF3 is associated with combined malonic and methylmalonic aciduria

2021 group 6 (chr 17)

Top 10 Prioritized Genes

- 1. MYO15A
- 2. RNF213
- 3. KRT40
- 4. HAP1
- 5. BRCA1
- 6. RPTOR
- 7. TTYH2
- 8. DNAH17
- 9. NLRP1
- 10. QRICH2

- 1. Prioritization approach: mutational burden
- 2. Downstream analysis: gene expression analysis
- 3. Findings:
 - a. DNAH17 has highest (24) SNVs
 - i. Missense mutations are associated with flagellar mutations and asthenozoospermia
 - ii. Asthenozoospermia is only one of the causes of male infertility
 - iii. Investigated if Carl's DNAH17 has a variant that increases risk of asthenozoospermia

2022 group 1 (chr 18)

Top 10 Prioritized Genes

- 1. ZNF407
- 2. SETBP1
- 3. PIEZO2
- 4. MYL12B
- 5. DCC
- 6. ZNF532
- 7. RAB27B
- 8. PTPRM
- 9. ANKRD12

```
10. DOK6
```


- 1. Prioritization approach: impact score using SnpEff
- 2. Downstream analysis: network analysis using KNIT
- 3. Findings:
 - a. The network identified seems to be related to DNA damage repair/DNA replication
 - b. ZNF407 is affected by WDR5 that could lead to colon cancer progress
 - c. Mutation in SETBP1 is associated with Schinzel-Giedion midface retraction syndrome

2022 group 2 (chr 18)

Top 10 Prioritized Genes

- 1. SLC14A2
- 2. L3MBTL4
- 3. DOK6
- 4. PIGN
- 5. DCC
- 6. PIEZO2
- 7. DLGAP1
- 8. PTPRM
- 9. LINC00907
- 10. AQP4-AS1

- 1. Prioritization approach: mutational burden
- 2. Downstream analysis: gene expression analysis and structural analysis
- 3. Findings:
 - a. Comparison of gene expression levels of target genes indicates mutations affect tissue-specific genes and ubiquitous genes
 - b. Protein structure illuminate the possible effects of the mutational burden, since several amino acid were changed in the structures. However, fortunately, none affected active sites or protein protein interfaces

- 1. Prioritization approach: mutational burden
- 2. Downstream analysis: text mining analysis
- 3. Findings:
 - NEDD4L has the highest correlation with the word hypertension a.
 - It is involved in blood pressure maintenance i.
 - b. CD226 has a correlation of 0.79 with the word autoimmune
 - It is indeed associated with many autoimmune diseases including i. refractory celiac disease

6. PIEZO2

PIGN

5.

- 7. ALPK2
- 8. NEDD4L
- 9. CD226
- 10. ARHGAP28

2022 group 4 (chr 18)

Top 10 Prioritized Genes

- 1. ALPK2
- 2. CEP192
- 3. SERPINB10
- 4. ANKRD62
- 5. MOCOS
- 6. SLC35G4
- 7. COLEC12
- 8. ELOA2
- 9. TUBB8B
- 10. CCDC102B

- 1. Prioritization approach: mutational burden of non-synonymous mutations
- 2. Downstream analysis: gene expression analysis
- 3. Findings:
 - a. Most prioritized genes are expressed in heart and testes tissues
 - b. The most saturated association in list is cancer/cell cycle regulation
 - c. ALPK2 is associated with developmental processes primarily in heart
 - d. Almost all mutations observed are in unstructured regions and not disruptive to the protein structure

- Prioritization approach: mutational burden
- Downstream analysis: gene expression analysis and STRING
 - Some of these genes expressed in few tissues consistent with known function
 - Differential expression may point to non-canonical functions: DCC in testis (tumor suppression) : PIEZO2 in lungs (stretch sensation)
 - Mutated genes are pieces in larger pathways: disruption \rightarrow downstream

Total calls	Breast, Mammary, Tissue Adipocyto Endothelia cell (hymphatic) Endothelial cell (hymphatic) Epitytesia cell (uminal)	 Immune (DC/macrophage) Mycospitheial (basal) Paricyte/SMC 	Endotheater Anterona Endotheater cell (vrscutar) Endotheater cell (vascutar) Epitheater cell (sosamous) Epitheater cell (sosamous)	 Epithelial cell (suprabasal) Finnune (B. cell) Immune (DC) 	 Immune (D.K.macrophage) Immune (NK cell) Immune (T cell) Immune (T cell) 	Mucours (mass cery Mucofbroblast Morthoroblast	 Pericyte/SMC Schwann cell Esophagus Muscularis 	 Adipocyte Endothelial cell (lymphatic) Endothelial cell (vascular) 	Horobiast Horobiast Horobiast Horobiast Innune (B.cel) Innune (B.cel)	 Immune (NK cell) Immune (T cell) Immune (mast cell) 	 Myocyte (smooth muscle) Neuronal Pericyte/SMC 	 Schwann cell Heart Left Ventricle Adipocyte 	 Endothelial cell (lymphatic) Endothelial cell (vascular) Fibrobiast 	 Immune (B cell) Immune (DC/macrophage) Immune (NK cell) Immune (T cell) 	 Immune (mast cell) Myocyte (cardiac) Myocyte (cardiac, cytoplasmic) 	 Pericyte/SMC Schwann cell 	 Endothelial cell (hrmphatic) Endothelial cell (vascular) Epithelial cell (alveolar type)) 	 Epithelial cell (alwocar type II) Epithelial cell (basal) Epithelial cell (clisted) Ecitedia cell (clisted) 	 Environment con (couc) Environment (B coil) Environment (B coil) Environment (D c/macrochacoe) 	Immune (NK cell) Immune (T cell) Immune (alvectar macrophace)	Pencyte/SMC Pencyte/SMC	Adipocyte Endothelial cell (lymphatic) Endothelial cell (lymphatic) Endothelial cell (vascutar)	 Fibroblast Immune (DC/macrophage) Immune (NK cell) 	 Immune (T cell) Immune (mast cell) Myccyte (MMJ-rich) 	 Myocyte (sk. muscle) Myocyte (sk. muscle, cytoplasmic) Pericyte/SMC 	 Satelite cell Schwann cell Prostate 	 Endothelial cell (tymphatic) Endothelial cell (vascular) Epithelial cell (Hillock) 	 Epithelial cell (basal) Epithelial cell (club) Epithelial cell (club) 	 Intruceusi Immune (B cell) Immune (DC/macrophage) Immune (MK cell) 	 Immune (T cel) Immune (mast cel) Mocoda (most) municity 	 Myucore (announ muscore) Pericyte/SMC Schwann cell 	 Skin Sun, Exposed, Lower, leg Adipocyte Endothinial call Ihrmohatici 	 Endothelial cell (vascular) Epithelial cell (basal keratinocyte) Epithelial cell (basal keratinocyte) 	 Epithelial cell (mature keratinocyte) Epithelial cell (mature keratinocyte) Ebithelial cell (suprabasal keratinocyte) 	 Immune (DC/macrophage) Immune (Langerhans) Immune (Coti) 	Infimume (mass ceri) Melanocyte Pericyte/SMC Satroceus cland call	 Swort gland cell Unknown 	
SERPINB1	-																																					
ELOA	2 -																																					
ALPK	2																																					
ANKRD6	2																																					
COLECT	2																																					
CCDC102	3						• •									••			• • •																			
CEP19	2																																					
MYOM	1						•																															
MOCO	5																																					

- Prioritization approach: nonsynonymous exonic mutational burden
- 2. Downstream analysis: gene expression analysis (single cell analysis)
 - a. Gene expression profiles suggest that differentially expressed genes may associate with tissue-specific functions
 - Most genes are associated with polymorphisms and are part of disease-proliferation pathways and mechanisms.

2023 group 1 (chr 19)

Top 10 Prioritized Genes

- 1. MUC16
- 2. ZNF85
- 3. ANF568
- 4. DMKN
- 5. ZNF419
- 6. ANKLE1
- 7. ZNF415
- 8. FAM129C
- 9. EMR1
- 10. ATP5SL

- 1. Prioritization approach: mutational burden, count number of high/moderate impact mutations on each gene
- 2. Downstream analysis: gene expression analysis
- 3. Findings:
 - a. MUC16 has 71 moderate impact mutations
 - b. MUC16 high expression in the Visceral adipose, cervix, salivary gland
 - c. ZNF419 has 7 high impact mutations, most of any other genes
 - d. ZNF419, ZNF569, and ZNF415 predict enabling DNA-Binding transcription factor activity

2023 group 4 (chr 19)

Top 10 Prioritized Genes

- 1. Perilipin-4
- 2. ZNF225
- 3. CYP2A7
- 4. ANKRD62
- 5. ZNF568
- 6. CYP2A7
- 7. MUC16
- 8. ZNF568
- 9. J3KP41
- 10. P06213

Summary Figure:

41

- 1. Prioritization approach: mutational burden
- 2. Downstream analysis: protein structure analysis
- 3. Findings: none

2023 group 2 (chr 19)

Top 10 Prioritized Genes

- CACNA1A 1.
- 2. VSTM2B-DT
- 3. **ZNF675**
- **INSR** 4.
- 5. **ZNF536**
- 6. LINC02987
- 7. MUC16
- 8. GNG7
- 9. ENSG0000269 110

KDM4B 10.

- Prioritization approach: mutational burden 1.
- 2. Downstream analysis: structure prediction of wildtype and mutant ZNF675 protein
- 3. Findings:
 - Valine to alanine substitution (V197A) on exon 4 of ZNF675 causes a a. notable change in the protein structure
 - b. ZNF675 is co-expressed with other zinc finger proteins that maybe involved in transcriptional regulation via the NFkB pathway.
 - Low specificity of ZNF675 protein in tissue makes it difficult to C. characterize its physiologic role.

2023 group 3 (chr 19)

Top 10 Prioritized Genes

- 1. CD3EAP
- 2. XRCC1
- 3. OR7G2
- 4. OR10H5
- 5. LILRB4
- 6. KIR2DL3
- 7. KIR2DL1
- 8. KIR3DL2
- 9. ZFP28
- 10. GP6

- 1. Prioritization approach: exonic mutational burden
- 2. Downstream analysis: protein structure analysis
- 3. Findings:
 - a. Resistance to Cisplatin-based cancer treatment
 - b. Dysregulation of certain immune cell subtypes ability to distinguish host and tumor cells
 - c. Dysregulation of collagen-based platelet adhesion

2023 group 5 (chr20)

Top 10 Prioritized Genes

- 1. CTSZ
- 2. MTG2
- 3. SLC52A3
- 4. PROKR2
- 5. HELZ2
- 6. LAMA5
- 7. TMC2
- 8. JPH2
- 9. KIAA1755
- 10. PTPRT

- 1. Prioritization approach: exonic SNP number
- 1. Downstream analysis: (1) Pymol visualization and global IDDT; (2) Local IDDT and AlphaFold2 sequence coverage analysis
- 2. Findings:
 - a. Benign mutation P267L on MTG2 alters the secondary structure from loop to α -helix
 - b. All 9 SNPs we studied are benign
 - c. Loop regions tend to have low sequence coverage and local IDDT

2023 group 6 (chr 20)

Top 10 Prioritized Genes

- 1. LAMA5
- 2. HELZ2
- 3. JPH2
- 4. PTPRT
- 5. CDH4
- 6. DNAJC5
- 7. RAB22A
- 8. EU95_1860
- 9. 5LC52A3
- 10. SIGLEC2

- 1. Prioritization approach: exonic mutational burden
- 2. Downstream analysis: protein structure analysis
- 3. Findings:
 - a. No disease-associated variants identified
 - b. No variants caused significant changes in protein structures
 - c. Most genes with the highest mutational burden regulate cell structure and integrity
 - d. Mutations in proteins were non-deleterious since they occurred in loops or did not disrupt important interfaces.

2023 group 7 (chr 20)

Top 10 Prioritized Genes

- 1. TAF4
- 2. FERMT1
- 3. MROH8
- 4. BPIFB4
- 5. **KIAA1755**
- 6. MYH7B
- 7. SIRPG
- 8. HELZ2
- 9. SIGLEC1
- 10. LAMA5

- 1. Prioritization approach: exonic mutational burden
- 2. Downstream analysis: tissue gene expression analysis
- 3. Findings:
 - a. BPIFB4 is associated with longevity and decreased heart disease
 - b. SIGLEC1 is an immune marker with high lung expression. Low expression is correlated with severe COVID-19 disease

2023 group 8 (chr 20)

Top 10 Prioritized Genes

- 1. MACROD2
- 2. CDH4
- 3. PTPRT
- 4. PLCB1
- 5. SLC24A3
- 6. PAK5
- 7. CFAP61
- 8. EYA2
- 9. TSHZ2
- 10. SLX4IP

- 1. Prioritization approach: exonic and intronic mutational burden
- 2. Downstream analysis: gene expression at bulk and single-cell levels
- 3. Findings:
 - a. We observed little correlation in bulk or single-cell data between mutational burden and specificity of expression by tissue
 - b. scRNA-seq gives more detailed picture of how cells in a given tissue express mutationally burdened genes
 - c. Further work is required to uncover functional significance of mutations we observed and how it relates to tissue expression

2023 group 9 (chr 21)

Top 10 Prioritized Genes

- 1. UMODL1
- 2. PCNT
- 3. TPTE
- 4. SON
- 5. LSS
- 6. LIPI
- 7. IFNAR2
- 8. WDR4
- 9. N6AMT1
- 10. COL6A2

- 1. Prioritization approach: mutational burden
- 2. Downstream analysis: Compare the variant in Carl's genome with those in genomAD and 1000 genome databases
- 3. Findings:
 - a. Structure of mutation found using AlphaFold
 - b. Studies on mutations found using UNIPROT (most mutations did not have significant effect)

2023 group 10 (chr 21)

Top 10 Prioritized Genes

- 1. UMODL1
- 2. KRTAP12-2
- 3. KRTAP10-10
- 4. PCNT
- 5. KRTAP10-7
- 6. LCA5L
- 7. COL18A1
- 8. IFNAR2
- 9. KRTAP10-1
- 10. KRTAP10-3

- 1. Prioritization approach: Non-synonymous mutations
- 2. Downstream analysis: Gene expression analysis
- 3. Findings:
 - a. Gene expression levels in tissues seem to be highly correlated with function
 - b. Protein-coding mutations in UMODL1 have been associated with various conditions like myopia or effects on hormones
 - c. PCNT has shown to be a positive association betwee non-synonymous mutations in mood disorders.

2023 group 11 (chr 21)

Top 10 Prioritized Genes

- 1. IFNAR2
- 2. IL10RB
- 3. CBR3
- 4. BACH1
- 5. KRTAP 10-1
- 6. KRTAP 10-11
- 7. TPTE
- 8. ADAMTS
- 9. KRTAP 13-2
- 10. KRTAP 10-6

Summary Figure:

Summary:

1. Prioritization Approach: Identifying protein-encoding genes with highest mutational burden on chromosome 21 of Carl Zimmer

2. Downstream Analysis: Protein Structural Analysis on Genes with High Mutational Burden and show clinical significance with PyMol

- 3. Findings
 - a. Three clinically significant mutations were observed on chromosome 21 of Carl Zimmer
 - b. Mutation(s) of IFNAR2 and IL10RB is expected to increase susceptibility to viruses
 - c. Mutation of CBR3 is expected to pose no functional consequence

2023 group 12 (chr 21)

Top 10 Prioritized Genes

- 1. DSCAM
- 2. RUNX1
- 3. NCAM2
- 4. KCNJ6
- 5. TSPEAR
- 6. GRIK1
- 7. ERG
- 8. APP
- 9. CHODL
- 10. BACH1

- 1. Prioritization approach: protein coding genes with highest mutational burden
- 2. Downstream analysis: protein structure (rSASA) analysis with NetSurfP
- 3. Findings:
 - a. APP causes protein aggregates that are well-linked to Alzheimer's: found no protein coding variants GRIK1 L902S has a correlation with ADHD
 - it is a cationic channel in the Cerebellum and hypothalamus; binds to excitatory neurotransmitter L-glutamate