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2D 3x3 Convolution Applied to RGB Input of Size 5x5

Input

Picture credit:

https://thomelane.github.io/convolutions/2DConvRGB.html

Input Volume (+pad 1) (7x7x3)

Filter WO (3x3x3)

Filter W1 (3x3x3)

Output Volume (3x3x2)
o[:,:,0]
0 |2 2

-7 -6 -2
-1 30

of sy ¢ pd]
28 2 4

45

2 |2 =l

toggle movement

xX[:,:,0] w0[:,:,0] wl[:,:,0
00 000 0 0 -1 [0 A0
i [ IW-II 0
o oftfaft]r o 1 0 -1 0 o -1
o ofofifft]r o w0 [: 2,1
0 o [1]2]2-

@ |t |1 |o |©

0 0 0 0 O

x[s,9,1]

0 0 0

0 0 0

0o 1 o

a2 Bias b1 (1x1x1)
0 1 |1 [:,:,0]
Tl i 0

0 0 0

x[:,:,2]

0 0 0O 0 0

0 0 L2 1 00

0o o [1]1 fo 0

0 22212 o

0o 1 [LAo o 0

0 0 2 01 0 0

0 000 0 0 O



AlexNet Network Structure
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Pay attention to the output Size and the number of parameters



Long Short-Term Memory
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- Figure 1: Our model reads an input sentence “ABC” and produces “WXYZ” as the output sentence. The
Neural Network Pointwise Vector

: Concatenate Copy model stops making predictions after outputting the end-of-sentence token. Note that the LSTM reads the
Layer Operation Transfer R p 2 5 i
. . input sentence in reverse, because doing so introduces many short term dependencies in the data that make the
Picture Credit: optimization problem much easier.

https://colah.github.io/posts/2015-08-Understanding-LSTMs/ 4




Long Short Term Memory (LSTM): Gradient Flow
[Hochreiter et al., 1997]

Uninterrupted gradient flow!
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In between:
Highway Networks
Similar to ResNet! g="T(x,Wr)

y=g(~)H(x,W1.1)+(l—g)(-);c

Srivastava et al, “Highway Networks”,
ICML DL Workshop 2015

Slide Credit: Fei-Fei, Johnson, and Yeung, Stanford cs231n, 2019 °



Bidirectional LSTM
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Picture Credit: https://www.cs.toronto.edu/~graves/asru 2013.pdf




Sequence-to-Sequence Model for Machine Translation
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Encoder-Decoder with Attention for Machine Translation
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Fioure 1: The graphical illus-
the proposed model
trying to generate the {-th tar-
get word y, given a source
sentence (Z1,Z2,...,ZT).

Encoder: p(yilyb ey Yi—1, X) = g(yi—l’ Si, Cz‘)

7;".={(1_?')°7:.-1+?.0—L1,, .lf!>0
,if.-_-U N; [— o % 5
' 81 f(Sz—l,.%—l,Cz)-

7;,— —=tanh (‘_"tE.l, 4 l_n? [7, o T:._,])

2?0 (W Bn+ T, 7,) Ty
?; =0 (?V,.-EJ‘, + E},.-h-},-_l). .
C; = E Qg4 hj .
7. .
h" i [ (_If_: ] J:].
. exp (Gz'j)
Decoder: Qij = T ’
8 =(1—Z!)°s!—l+zi°§h Zk:]. exp (eik)

§ =tanh(WEy; 1+ U [r,08,_1] +Cq)

Z =0 (M/zEyi—l"'U‘zs'l—l'{'Czci) h

vy =0 (WyByi1 + Ussizy +Cits) €ij = a(si— 1, j)
ti =Up8i—1 + Voliyi—1 + Cot;.

p(yilsi, yi1, ¢) ocexp (y! Wot;)

Bahdanau et al., NEURAL MACHINE TRANSLATION BY JOINTLY LEARNING TO ALIGN AND TRANSLATE. ICLR 2015.



Self Attention: Transformer

e Self Attention: use word representations in a sequence to attend to word

representations at different positions in the same sequence
o Capture long-range dependencies in a sequence more efficiently

e Scaled dot-product attention

o Transformer views encoder representations of an input sequence as Key-Value (K, V) pairs
and employs multi-head scaled dot-product attention

QK'
N

Attention(Q, K, V) = softmax( )\

Vaswani et al., Attention Is All You Need. NIPS 2017.



Multi-Head Scaled Dot-Product Attention in Transformer

Multi-head attention jointly attend to information from Mhlti-Head Avetition
different representation subspaces at different positions.

; QK’
Attention(Q, K, V) = softmax( 'V y '
\/ﬁ Scaled Dot-Product ﬂ& h
. Attention
MultiHead(Q, K, V) = Concat(heady, ..., hea,dh)WO [tl.-ne-l@ ;ear ‘l:-;[ar_].]
where head; = Attention(QmQ, K WZ.K , VWZ.V) ¥ ¥ ¥

v K Q

Where the projections are parameter matrices W € R Xdi WK ¢ RwosiXdi PV ¢ Rémosi X dv
and WO ¢ R?dv X dnoser
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Encoder of Transformer

Add & Norm LayerNorm(x + SubLayer(x))

_Add & Norm _

Multi-Head
Attention
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Transformer-based Large Language Models

D(Ss—ksy 00985815 o0y Siii—1) p(output|input, task)
Random 25.0%
Average human rater 34.5%
GPT-3 5-shot 43.9%
Gopher 5-shot 60.0%
Chinchilla 5-shot 67.6%
Average human expert performance 89.8%
June 2022 Forecast 57.1%
June 2023 Forecast 63.4%

Table 6 | Massive Multitask Language Understanding (MMLU). We report the average 5-shot
accuracy over 57 tasks with model and human accuracy comparisons taken from Hendrycks et al.
(2020). We also include the average prediction for state of the art accuracy in June 2022/2023 made
by 73 competitive human forecasters in Steinhardt (2021).

https://arxiv.org/pdf/2203.15556.pdf 14



Directed Probabilistic Generative Models with Hidden Units

We want to train a directed generative model p

generative network inference network

p(x,h) = p(x|h1)p(hi[h2)...p(h)
q(h|x) = g(h1|x)g(hz|h1)...q(h.|h,_1)

e Our goal is to learn the model parameters to maximize the log-probability of data x
o Learning: learn the model parameters maximizing log p(x)

o Inference: infer the hidden states from p(h | x)
15



Variational Inference

We want to train a directed generative model p

generative network inference network

Variational Bound of Log-
Likelihood P(x)

p(x,h) = p(x|h1)p(hyh2)...p(h.)
q(h|x) = g(h1[x)q(hz|h1)...q(h.[h._1)

meax Eﬁ(x) lnpg(:l,’) = méiJXEﬁ(x) ln/pg(:c, z)dz

z

)ln

I pol(x, 2
mgxx]Ef,(x) In pg(x) — min D(q(2) || pe(2 | a;))] = maxE;, lma’XEq(z po(Z, 2)

geQ Z geQ q(2)

Every data point x has its own variational parameters (q(z)): flexible but not scalable.



Amortized Variational Inference

All data points share a variational inference network Q parameterized by a neural network.

Variqtional Bound of Log- lOg P0 (iE) - lOg Z PH (33, h)

Likelihood P(x)

We want to train a directed generative model p

generative network inference network P .T, h
QR pihy el ZZch(hliU) log b ( )
Df(}”\ 50‘54 h qu (h|33)
QIO pihIh) | CILITI0 alhih)
S S91015 = Fgllog Py(x,h) — log Q4 (h|z)]
p(x; h) = p(x|h1)p(hs h2)...p(h) — E(:E, 0, Qb)

q(h|x) = g(h1[x)q(hz|h1)...q(h.[h._1)

By rewriting the bound as

L(z,0,¢) =log Py(z) — KL(Qg(h|z), Po(hl|z)),



The Reparameterization Trick Using a Deterministic Function Mapping

z ~ q5|x?) = N(z; @, 6>
Z=p+06 Oe, wheree ~ N(0,I)
Original form Reparameterised form

I | I
I | |
I | |
I I I
I I I
~q@ex) oz =90x, ;
S |
¥ 3 19/ \© ~ple) |
. =0L/dg; :
o e I '\ |
: Deterministic node {gingma,22001133]]
engio,
. . Bardoimfsds [Kingma and Welling 2014]

[Rezende et al 2014]
Kingma and Welling, Auto-Encoding Variational Bayes. ICLR 2014
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Variational Inference with the Reparameterization Trick
10gp9 (X(l)a t aX(N)) — fo\il 1ng9(x(2))

log pe(x'") = Drc1.(40(z[x")|pe(2x')) + L(8, ¢; x'*))

log pe(x\V) > L£(0, ¢;xV) = Ey, (s [~ 10g ¢4 (2]x) + log pe(x, 2)]

ELBO:

L(6, ¢;X(i)) = —DKL(Q¢(Z|X(i))||P9(Z)) + ]Eq¢(z|x(i)) [10gp0(x(i)|z)]

Kingma and Welling, Auto-Encoding Variational Bayes. ICLR 2014 19



Variational Autoencoder with a Isotropic Multivariate Gaussian Prior

L£(8,¢;x") = —Dk1(q4(2xV)||pe(2)) + E, (zx) [1ogpe(x“>|z)]

p(z) = N(0,1)
p(z|z) = N(f(2),cl) feF c>0

f* = argmaxE, . (log p(z|2))

feFr
_ 2
— AR <_||$ ) )
feF * 2C

J L

; 1 i i i 1 i) |, (4,

L(0,¢ixD) = 23" (1+1og((0}”)?) = (") = (01")?) + 7 Y log pa(xV 2V
j= =1

1
where z") = pu + @ ©e® and €Y ~ N(0,1)

Kingma and Welling, Auto-Encoding Variational Bayes. ICLR 2014 20



Variational Autoencoder with a Isotropic Multivariate Gaussian Prior

L e Ideally they are identical. ~ ~--------------------- - Recoi:stl:aed
X~X
Probabilistic Encoder
q0(2[x)
Mean w Sampled
latent vector
Probabilistic
e Decoder | X’
po(x|z)
o
Std. dev
_ An compressed low dimensional

zZ=p+o0e representation of the input.
e ~N(0,I)

Picture Credit: https://lilianweng.qithub.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html
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VAE Loss

N(o, I) *—

\/h
K — 7

X o =h(x) §(\=f(z)

loss = C||x-x][2 + KLIN(1,0),N(O,)] = C||x-f(2) ||* + KLLN(g(x), h(x)), N(0, 1) ]

Picture Credit: https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73




Training VAE Using Mini-batch Variational Inference with the
Reparameterization Trick

Algorithm 1 Minibatch version of the Auto-Encoding VB (AEVB) algorithm. Either of the two
SGVB estimators in section 2.3/can be used. We use settings A/ = 100 and L = 1 in experiments.

0, ¢ < Initialize parameters
repeat
XM « Random minibatch of M datapoints (drawn from full dataset)
€ < Random samples from noise distribution p(€)
g « Vo.oLM (0, p; XM €) (Gradients of minibatch estimator (8))
0, ¢ < Update parameters using gradients g (e.g. SGD or Adagrad [DHS10])
until convergence of parameters (6, ¢)
return 0, ¢

Kingma and Welling, Auto-Encoding Variational Bayes. ICLR 2014 23



VAE for Generating MNIST Digits

QO~Mm 0N
~HhMh>T -
NS b Q%

OV G B 0o —
0o O3 N
T o300l

~ el o~ -
LM b PQ L
~— =m0 Wm
VMmO LN N
O Uy oo —
oy rosntn NN
CFodererI9QL

QO3 oo,

oo~
DO, om O -
SN0 m
0O ™~
OO, 5~
T N A R R

BB o;o,

left: 1st epoch, middle: gth epoch, right: original

24

Picture Credit: http://kvfrans.com/variational-autoencoders-explained/
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Autoencoder vs. Variational Autoencoder

\/

neural network neural network
encoder decoder
X X =d(z)
loss = [|x-X| = || x-d()|FF = [|x-d(et) |

Picture Credit: https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73




Autoencoder vs. Variational Autoencoder

training
process

input

encoder

e

encoded vector
(in latent space)

generation
process

sampler

sampled vector

(from latent space)

decoder

decoded content

(reconstructed input /
generated content)

Picture Credit: https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
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Autoencoder vs. Variational Autoencoder

e
| UA
T
. encoded data can be decoded
(/) without loss if the autoencoder
N has enough degrees of freedom
A encoder decoder
@ \
from e @)
® AWWJ— Catent St ; 5 o 2
sppainine® data foF one W without explicit regularisation,
g for new contes some points of the latent space
the autoencoder

are “meaningless” once decoded

Picture Credit: https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73




Autoencoder vs. Variational Autoencoder

neural network

neural network
decoder

encoder

g X =d(z)

loss = ||x-x]|]? + KL N0, )] = || x-d(2)|]? + KL ,N(0,1)]

Picture Credit: https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73




Autoencoder vs. Variational Autoencoder

O VAN sogl o PR VR o O
Pace meaningless
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) ./ i S
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Picture Credit: https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
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Autoencoder vs. Variational Autoencoder

what can happen without regularisation x V what we want to obtain with regularisation

Picture Credit: https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
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Autoencoder vs. Variational Autoencoder

Picture Credit: https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73




Problems of VAE: Overlapping Latent Space

Picture Credit: https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73




Conditional VAE (There Are Other Conditioning Priors)

KLIN (u(Y, X).S(Y, X))|N(0.1)]] | Decoder
\ (P)

Encoder [Sample( from N (0. ])

(@)

Left: a training-time conditional variational autoencoder imple-
mented as a feedforward neural network
Right: the same model at test time, when we want to sample from

P(Y|X).

Picture Credit: https://arxiv.ora/pdf/1606.05908.pdf




Conditional VAE (There Are Other Conditioning Priors)

log po(y|x) > —KL (¢4(2x,Y)llpe(2|x)) + Eq, (ax,y) [ log po (y]x, )]
and the empirical lower bound is written as:

L

~ 1
LCVAE(xa y; 97 ¢) = —KL (q¢ (Z|X, y) ||p9(Z|X)) . & Z Z 10gp9 (y|X, Z(l))a
=1

z() = g4(x,y,eY), €V ~ N(0,I) and L is the number of samples.

35
Sohn et al., Learning Structured Output Representation using Deep Conditional Generative Models. NIPS 2015.



The Reparameterization Trick in VAE

p(z) = N(0,I)
p(z|2) = N(f(2),cl) feF c>0

Let’s forget about variational inference for maximizing log p(x) but focus on the
probability distribution of p(x|z) itself, we can easily sample from p(x|z), which leads
to a nice GENERATIVE model and transforms a simple Gaussian distribution to a
complex data distribution p4(x) through a one-to-one mapping f: z — x

A direct approach to aligning our generated data distribution p,(x) with real data
distribution p.(x) is to perform moment matching, for e.g., minimizing maximum

mean discrepancy in a high-dimensional feature space induced by a kernel (kernel
MMD).

36



Transform a Simple Distribution to a Complex Distribution

[
— GENERATIVE = e
NETWORK -
Input random variable The generative network Output random variable The output of the
(drawn from a simple transforms the simple (should follow the targeted generative network
distribution, for random variable into distribution, after training once reshaped.
example uniform). a more complex one. the generative network).

Picture Credit:https://towardsdatascience.com/understanding-generative-adversarial-networks-gans-cd6e4651a29
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An Indirect Approach for Comparing Distributions

p(z) = N(0,1)
p(z|z) = N(f(2),cl) feF c>0

e Transform a simple Uniform/Gaussian distribution p(z) to a complex data
distribution py(x) through a one-to-one mapping f: z — x

e An indirect approach is to assume that we have an oracle discriminator that can
perfectly discriminates whether or not a data point is from the real data
distribution. We can make use of this oracle discriminator to improve our
generative network such that our generated data distribution perfectly aligns
with the real data distribution.

e In practice, we don’t have this oracle discriminator, but we can treat it as a deep
neural network and learn it from data. 38



Generative Adversarial Network (GAN)

e The goal of the discriminator D is to discriminate whether a sample comes from
the real data distribution (training data) or the generated data distribution
(generated data).

e The goal of the generator G is to transform a simple (e.g., Gaussian, Uniform)
distribution to a real data distribution such that the generated sample will fool
the discriminator.

e This is a minmax two-player game. In a global optimum, D will output 72
everywhere and pg(X) = py(X)

Goodfellow et al., Generative Adversarial Nets. NIPS 2014.
39



Generative Adversarial Network (GAN)

Bl Forward propagation (generation and classification) Bl Backward propagation (adversarial training)
o ©O o ©O
o) O
A A © o0 © A © o O
0 0 o o © 0o _©
5% o = = o500 = - o P00 .
o " GENERATIVE o'% e 79 o° DISCRIMINATIVE o %6 ®° 9 09 .
o o 9% NETWORK ' o NETWORK 4 °
o - <+ | 0% 4= * | 990
(o] o (o] - 0O
0 0o
> > >
Input random The generative network The generated distribution The discriminative network The classification error
variables. is trained to maximise the and the true distribution are is trained to minimise the is the basis metric for the
final classification error. not compared directly. final classification error. training of both networks.

Picture Credit:https://towardsdatascience.com/understanding-generative-adversarial-networks-gans-cd6e4651a29
Goodfellow et al., Generative Adversarial Nets. NIPS 2014. 40




Generative Adversarial Network (GAN)

LY
\ Nk A
« 0 .,
8 e .
A
NS

Y/ Y/ N/

(a) (b) (©) (d)

RER P

Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) p, from those of the generative distribution p4 (G) (green, solid line). The lower horizontal line is
the domain from which 2z is sampled, in this case uniformly. The horizontal line above is part of the domain
of . The upward arrows show how the mapping @ = (G(z) imposes the non-uniform distribution p, on
transformed samples. G contracts in regions of high density and expands in regions of low density of py. (a)
Consider an adversarial pair near convergence: p, is similar to pgaa and D is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D* (x) =

—Paa(®)___(c) After an update to G, gradient of D has guided G(z) to flow to regions that are more likely

Pdaa(T) +pPg () °
to be clas;iﬁed as data. (d) After several steps of training, if G and D have enough capacity, they will reach a

point at which both cannot improve because p; = paaa. The discriminator is unable to differentiate between
the two distributions, i.e. D(z) = 3.

Goodfellow et al., Generative Adversarial Nets. NIPS 2014.
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Optimal D of Generative Adversarial Networks

min max V(D, G) = Egrpy(a) 108 D(@)] + Exvp, () log(1 — D(G(2)))].

y = alog(y) + blog(1 - )

|
|

if y=alog(y)+blog(l —y),theoptimal yis . ', *
a > l——y* ind optimal y* by setting y’ = 0.
— * = @:5
Y a + b yi= aLb
Optimize D(x) = pr(x) log D(x) + p,(x) log(1 — D(x)), we get

pr(x) + pg(x)

Goodfellow et al., Generative Adversarial Nets. NIPS 2014. 42



Optimal Solution of Generative Adversarial Networks

minmax V (D, G) = Egpu(a)l0g D(®)] + E,up, (2)[log(l — D(G(2)))].

G D

With p = q, the optimal value for D and V is

D=L -1
ptqg 2

. ) 1 1
min max V(D, G) = E,np (n[log 5] + Ezep g llog(1 — 5)]
= —2log2

Goodfellow et al., Generative Adversarial Nets. NIPS 2014.
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Training Algorithm of GAN

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our
experiments.

for number of training iterations do
for k steps do

e Sample minibatch of m noise samples {z1), ..., 2(™)} from noise prior p,(z).
e Sample minibatch of m examples {xz(!),...,2(™} from data generating distribution
Pdata (w)

e Update the discriminator by ascending its stochastic gradient:

Vo, 3 [iog D (a) +10g (1- D ( (=9)))].

end for

e Sample minibatch of m noise samples {z(1), ..., z(™)} from noise prior p,(2).
e Update the generator by descending its stochastic gradient:

Vo, 3108 (10 (6 (=9))).

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

Goodfellow et al., Generative Adversarial Nets. NIPS 2014.
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Real Image/Video Data is often Supported in a Low-D

Manifold
For e.g. MNIST digits, ImageNet Images, Videos, although the pixel space is very

high-dimensional.

It's easy to find a perfect discriminator to separate high-dimensional data
supported in low-dimensional space.
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Picture Credit:https://lilianweng.qgithub.io/lil-log/2017/08/20/from-GAN-to-WGAN.html




Training GANs: Two-player game

Minimax objective function:

lan Goodfellow et al., “Generative
Adversarial Nets”, NIPS 2014

min max [Eprdata log Dg,(z) + E,p(z) log(1 — Ded(Geg(Z)))]

0, 04

Alternate between:
1. Gradient ascent on discriminator

04

2. Gradient descent on generator
ngin Esz(z) log(l - ng (Ggg (Z))

In practice, optimizing this generator objective
does not work well!

max [wavpdata log Ded (.’L‘) -+ Esz(z) log(l = ng (Geg (Z))):|

) whensampiEisTkel.
fake, want to learn |

from it to improve
generator. But 2
gradient in this region-

is relatively flat!

Slide Credit: Fei-Fei Li, Justin Johnson, and Serena Yeung, cs231n 2017

Gradient signal
dominated by region
where sample is
already go\od
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lan Goodfellow et al., “Generative

Training GANS: TWO-player game Adversarial Nets”, NIPS 2014

Minimax objective function:
min max | Egnp,,, 108 Do, (%) + Eanp() log(1 — Doy (Go, (2)) ]

0, 04
Aside: Jointly training two

Alternate between: networks is challenging,
i can be unstable. Choosing

1. Gradient ascent on discriminator objectives with better loss
max |E... loc Ds (2 E log(1 — D > ]Iandscapes helps training,
64 [ z~Pdata -O06 ed( ) + z~p(z) 8( ed(Gog( ) is an active area of
research.

4

— log(1 - D(G(z2)))

2. Instead: Gradient ascent on generator, different

bjective . .
object maxE, ;) log(De,(Ge,(2))) Thisis unstable with |
04 large variance of gradient!!!;;

Instead of minimizing likelihood of discriminator being correct, now  High gradiént signal
maximize likelihood of discriminator being wrong.
Same objective of fooling discriminator, but now higher gradient

signal for bad samples => works much better! Standard in practice.

w
T

— —logD(G(z))

2F

=3 L

Cow gradient signal

Slide Credit: Fei-Fei Li, Justin Johnson, and Serena Yeung, cs231n 2017 47



Deep Convolutional GAN (DCGAN): CNN Generator

G(2)

DCGAN generator used for LSUN scene modeling. A 100 dimensional uniform distribu-
tion Z is projected to a small spatial extent convolutional representation with many feature maps.
A series of four fractionally-strided convolutions (in some recent papers, these are wrongly called

deconvolutions) then convert this high level representation into a 64 x 64 pixel image. Notably, no
fully connected or pooling layers are used.

Radford et al., UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE
ADVERSARIAL NETWORKS. ICLR 2016
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Generated Samples of DCGAN

. g 3 e
' e ﬂ n v M - }itﬁ 4 i : !t! ez -y
B ot ‘ ! < ] e . R

& . -~ . 1:.‘ g ) , g 'M ' ’ bi\f;;’;‘, .

Generated bedrooms after five epochs of training. There appears to be evidence of visual

under-fitting via repeated noise textures across multiple samples such as the base boards of some of
the beds.
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Interpolation Results of DCGAN
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Latent Vector (z) Mampulatlon Results of DCGAN

neutral neutral

smiling man
woman woman man 9

man man woman
with glasses without glasses without glasses

woman with glasses
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GAN for Video Generation

Foreground Stream

3D convolutions

Noise
100 dim

9%
423
sy,

@
Background Stream “y
2D convolutions

Video Generator Network: We illustrate our network architecture for the generator. The
input is 100 dimensional (Gaussian noise). There are two independent streams: a moving foreground
pathway of fractionally-strided spatio-temporal convolutions, and a static background pathway of
fractionally-strided spatial convolutions, both of which up-sample. These two pathways are combined
to create the generated video using a mask from the motion pathway. Below each volume is its size

e

Foreground
Tanh

m®}+(1—r?)®b—'

Mask
Sigmoid

Replicate over Time

Background

v Tanh

and the number of channels in parenthesis.

s,

3
%y

Generated Video
Space-Time Cuboid

Vondrick et al., Generating Videos with Scene Dynamics, NIPS 2016.
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GAN for Music Generation

Engel et al., GANSYNTH: ADVERSARIAL NEURAL AUDIO SYNTHESIS. ICLR
2019. https://openreview.net/pdf?id=H1xQVn0O9F X

Generated Music Samples: https://magenta.tensorflow.org/gansynth
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Conditional GAN

( Discrimintor o) | @)
00000
\
00009 ©0000),
(o 0 @OO®
00000
-eesee@0d00

https://arxiv.org/pdf/1411.1784.pdf
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Domain Adaptation

target encoder

Fatl
source 33] ! m

1R ﬂ
iy
"
\

E 7 target
/

>

Picture Credit: Tzeng et al., Adversarial Discriminative Domain Adaptation, CVPR 2017.

We have a lot of (labeled) training data in a
source domain, and we plan to deploy our
learned model in the source domain to a target
domain that has a different data distribution
from the one in the source domain.
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Adversarial Feature Learning for Domain Adaptation

Pre-training Adversarial Adaptation Testing
kY )

; I =
domain ! Target ' ! ;:_’
label I CNN + ' @
1 o @©

O

A\ .

4 /source images

source images
+ labels

class
label

Classifier

target images

Discriminator

\. J\

An overview of our proposed Adversarial Discriminative Domain Adaptation (ADDA) approach. We first pre-train
a source encoder CNN using labeled source image examples. Next, we perform adversarial adaptation by learning a target
encoder CNN such that a discriminator that sees encoded source and target examples cannot reliably predict their domain
label. During testing, target images are mapped with the target encoder to the shared feature space and classified by the source
classifier. Dashed lines indicate fixed network parameters.

Tzeng et al., Adversarial Discriminative Domain Adaptation, CVPR 2017. 56



CycleGAN

ac ¥ ¥ ¢
/—\ - - - /_\ -
Dx Dy T Y N 2 N P ¢ y
H G t F | P
X /—\ Y < = X . Y cycle-consistency
\_/ cycle-consistency | PeLT \ ﬂ\ ..... loss
F loss 5 /‘

(a) (b) | (©)

(@) Our model contains two mapping functions G : X — Y and F' : Y — X, and associated adversarial
discriminators Dy and Dx. Dy encourages G to translate X into outputs indistinguishable from domain Y, and vice versa
for Dx and F'. To further regularize the mappings, we introduce two cycle consistency losses that capture the intuition that if
we translate from one domain to the other and back again we should arrive at where we started: (b) forward cycle-consistency
loss: z — G(z) — F(G(z)) = z, and (c) backward cycle-consistency loss: y — F(y) = G(F(y)) = y

Zhu et al., Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. ICCV 2017.
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CycleGAN Results

Zebras i Horses Summer 7_ Winter

Monet 7_ Photos

. i’i ﬁﬁ}%&g‘
e AR LR B
zebra —) horse -

horse —> zebra

o3|
f: sw ‘ﬁ":\.’:‘-’ v

B St . .

Photograph Monet Van Gogh Cene Ukiyo-e

Given any two unordered image collections X and Y, our algorithm learns to automatically “translate” an image

from one into the other and vice versa: (left) Monet paintings and landscape photos from Flickr; (center) zebras and horses

from ImageNet; (right) summer and winter Yosemite photos from Flickr. Example application (bottom): using a collection
of paintings of famous artists, our method learns to render natural photographs into the respective styles.

Zhu et al., Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. ICCV 2017.
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Text2Video: Goals and Challenges

Build a conditional generative model to generate videos from text capturing
different contextual semantics of natural language descriptions

Capable of capturing both static content and dynamic motion features of
videos

Challenges
— It’s hard to condition on text, a big gap

— It is hard to build powerful video generator
— No publicly available dataset

How? Integrating VAE and GAN
https://www.cs.toronto.edu/~cuty/Text2VideoAAAI2018.pdf
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Model Overview

 We introduce an intermediate step called ‘Gist’” Generation.

e The model is trained end-to-end.

Noise Noise

Text input :> VAE |:> Generated Gist |:> Video GAN |:> Generated

ﬁ Video

Text input

Gist Generation Video Generation
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What does the Gist do?

* Gist captures the static features of a video.

* Gist generation gives a sketch.

Noise

U

Video GAN

i}

Text input

Generated

|:> Video
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The Complete Text2Video Model

RNN Encoder

t: kitesurfing t: kitesurfing t: kitesurfing
t: kitesurfing =
- at beach at beach Textzr-llter at beach
at beach ‘ ‘
....... RNN Encoder RNN Encoder ‘é RNN Encoder

= :
' — — ‘ Real?
Vi : ' \ - I - ’ % Vldeo Generator ‘-:‘1 — — Fal:e?
CNN Encoder CNN Decoder Gist Encoder ~N(0,1) Real Sample i Video Discriminator
zv

Framework of the proposed text-to-video generation method. The gist generator is within the green box. The encoded
text is concatenated with the encoded frame to form the joint hidden representation 24, which is further transformed into z,. The
video generator is within the yellow box. The text description is transformed into a filter kernel (Text2Filter) and applied to
the gist. The generation uses the feature z,. Following this point, the flow chart forms a standard GAN framework with a final
discriminator to judge whether a video and text pair is real or synthetic. After training, the CNN image encoder is ignored.

Li, Min, Shen, and Lawrence, AAAI 2018
https://www.cs.toronto.edu/~cuty/Text2VideoAAAI2018.pdf
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Generated Video Samples

Play golf on grass

Play golf on snow g i !E !! !I

Play golf on water
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Text: Playing Golf on

— grass field

— SNOW

— water

More Examples

Gist

¥ -

Video
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More Examples

Playing golf Playing golf in swimming pool Swimming in swimming pool
n E A‘ V E

Sailing on the sea Sailing on snow Sailing on grass Running on the sea Running on sand

E
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More Examples

Kitesurfing on the sea

! ;‘~

Kitesurfing on grass
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An Improved Text2Video Model

Person go/ﬁr:g in the field

\ Text
\\encoder/“' % denotes
ﬂ\ convolution
= r = operation
QI o, D,
= —_— — G =
|f1 fz fk .
D.®
1
1 1]
S
D. 2]
2 -
| -
- 4 5.0 S |, Real (or)
_/ 2 § Fake
: =
'-'-
(f) g
D
m
;

[lustration of our Text-Filter conditioning strategy. -

Balaji, Min, Bai, Chellappa, and Graf. Conditional GAN with Discriminative Filter Generation for Text-to-Video Synthesis. [JCAI 2019.



Generated Videos
TFGAN Baseline

[V §

A large green circle is moving in a zigzag A large yellow square is movingin a
path towards east diagonal path in the northeast direction

A large red triangle is moving in a A large red triangle is moving in a zigzag
straight line towards north and a large path towards south and a large blue
yellow square is moving in a zigzag path triangle is moving in a zigzag path

towards west towards west
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Generated Videos

People
swimming in the
pool

Play golf on
grass

A boat sailing
in the sea

Li et al. Previous
(2018) Model

Play golf on
grass
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People swimming in pool

<
.
‘:ﬁi"

Person skiing in ocean

Stir vegetables
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Media Reports from Science, MIT Technology Review,
Communications of ACM, etc.

SCleIlCC Home News Journals Topics Careers

§ FRONTIERS OF & & \ Nomination period now
3 Fundacié BBVA ‘ open for the 11th edition
e Bl

SHARE

©:00

Artificial intelligence is moving into movie production. SHAREGRID/UNSPLASH

New algorithm can create movies from just a
few snippets of text

By Matthew Hutson | Feb. 23,2018, 4:35 PM

Li, Min, et al., AAAI 2018



Problems of GAN

The minmax training of GAN doesn’t necessarily converge in practice:

If we have a perfect discriminator in the beginning, the gradient of the loss function
with respect to generator parameters is close to zero and the learning is very slow

If we have a very bad discriminator, we don’t get much useful feedback from the
discriminator.

Training can be unstable.

Mode collapse: the generator only generates a subset of training data distribution
modes to fool the discriminator and fails to explore other modes.
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GAN Minimizes JS-Divergence to Update G

P(x)
Q(x)

for VAE

N
Dk.(P||Q) = Z P(x) log

1 p+gq p+q f
— or GAN
D;s(pllg) = 'Z_DKL(p” =X+ DKL(q”
0.40 - KL-divergency JS-divergency vanish gradient
0.35
1000 4 KL 81 JS
0.30
800 4
0.25 - -
0.20 - 6001
0.15 1 400
0.10 1 200 %
0.05 - i ol
¢ % % & & & 5 =% i % ¥ » © 5 =
| mean of q mean of q

-10 0 10 20 30 40

Picture Credit: https://medium.com/@jonathan hui/gan-wasserstein-gan-wgan-gp-6ala2aa1b490 3




Wasserstein Distance

The Wasserstein distance of p and q is the minimum cost of transporting mass in
converting the shape of a data distribution g to the shape of a data distribution p. It is also
called Optimal Transport Cost or Earth Mover Distance.

3
1145 1 | 5 -
2 7 18t et Fan]
{3 (6+6+6+6+2x9=42) = oo 0o
2 i 6|3 1110102
Bl et Aol
{1145 1]4(5]2 Y, 2|oi1i0io
1 2 8 7 8 9 10 alolol sl o
"""" 6+6+6+8+9+7=42)
Mool 1R e 7i8i0}10
2 i8] 2|8 111i0i1;iH1
1 415 1]4]5|6 Y, 2|0i1io0io0
i 8 B 7 8 9 10 sl ol gl 11 4

Picture Credit: https://medium.com/@jonathan hui/gan-wasserstein-gan-wgan-gp-6a1a2aa1b490
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Wasserstein Distance

The Wasserstein distance of p and q is the minimum cost of transporting mass in
converting the shape of a data distribution g to the shape of a data distribution p. It is also
called Optimal Transport Cost or Earth Mover Distance.

1+1=2)
1 1 P2 2
i >
3 4 6 7
(3+3=6)
2 1 2 1
>
3 4 6 ¥

Picture Credit: https://medium.com/@jonathan hui/gan-wasserstein-gan-wgan-gp-6a1a2aaib490
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Wasserstein Distance

The Wasserstein distance of p and q is the minimum cost of transporting mass in
converting the shape of a data distribution g to the shape of a data distribution p. It is also
called Optimal Transport Cost or Earth Mover Distance.

3 .
N WEB)=__inf  Eaye[lz-ul],
froseep e eneees }_d YEII(P-,P,)
1 4 5 | i i 5 ) . . . .
> II(Pr, Pg) denotes the set of all joint distributions y(x, y) whose marginals are
11213 71819110 .
£ : respectively Pr and Pg.
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Comparing Wasserstein Distance with KLD and JSD

Vix,y)e P,x=0andy ~ U0, 1)
Vix,y) €0, x=0,0<0<landy~ U,1)

When @ # O:
1
Du(PIQ)= 3, 1-logg =+oo
1.0 § x=0,y~U(0,1)
_— P 1
i— Dx@IP)= 3, 1-logg =+oo
0.8 x=0,y~U(0,1)
1 1 1
Dis(P.Q)=>( Y, l-log—+ 3 1-log—>)=1log2
S 2 x=0,y~U(0,1) 172 x=0,y~U(0,1) 172
W(P, Q) = |6
0.4
But when @ = 0, two distributions are fully overlapped:
0.2
Dk (P||Q) = Dg(Q||P) = Dys(P,Q) =0
0.0 - W(P,Q) =0=|0]

0.0 0.2 0.4 0.6 0.8 1.0

Picture Credit:https://lilianweng.qithub.io/lil-log/2017/08/20/from-GAN-to-WGAN. html
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Wasserstein GAN (WGAN) Minimizing Wasserstein Distance
between pyand p,

Using the Kantorovich-Rubinstein duality, we can simplify the calculation tc

W (P, Pg) = ”fS“11P<1 Exz~p, [f(T)] — Eznp, [f ()]

[f(z1) = fz2)| < |21 — 2.

Arjovsky et al., Wasserstein Generative Adversarial Networks. ICML 2017.
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GAN

WGAN

WGAN vs. GAN

Discriminator/Critic Generator
wdii 1og D (29) +1og (1- D (G (2)))] }i:; og (D (G ()
Va3 [£@®) - f(e (z9))] Vo3 f(a(0))

In WGAN, we have a critic with a scalar output without log
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WGAN vs. GAN

1.0 - - - T T r T
— Density of real

08| —— Density of fake |
—— GAN Discriminator
—— WGAN Critic

0.6 R

Vanishing gradients 1
in regular GAN

0 2 4 6 8

Arjovsky et al., Wasserstein Generative Adversarial Networks. ICML 2017.
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Training Algorithm of WGAN

Algorithm 1 WGAN, our proposed algorithm. All experiments in the paper used
the default values a = 0.00005, ¢ = 0.01, m = 64, ncritic = 9.

Require: : «, the learning rate. ¢, the clipping parameter. m, the batch size.
Neritic; the number of iterations of the critic per generator iteration.
Require: : w, initial critic parameters. 6, initial generator’s parameters.
1: while # has not converged do
for t = 0, «eey Neritic do
Sample {z(!)}™, ~ P, a batch from the real data.
Sample {z(¥}™  ~ p(z) a batch of prior samples.
9w Vo [ Doicg Ju(@®) — £ 372 Fu(ge(2P))]
w < w + a - RMSProp(w, gu)
w <« clip(w, —¢, ¢)
end for
Sample {z()}™, ~ p(z) a batch of prior samples.
96 <~V >ivy fu(gs(2™))
11: 6 < 6 — a - RMSProp(0, gg)
12: end while 81

—
1=




The Latest GAN Architectures - StyleGAN2 & Style GAN-XL

' pll "o a f,
4

.
Jacamar Golden Retriever

I B

https://arxiv.org/abs/1912.04958 https://arxiv.org/pdf/2202.00273.pdf
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Denoising Diffusion Probabilistic Models and Flows (Not Covered)

GAN: Adversarial < || x Discriminator ” Generator 1,
. X
training D(x) G(z)
VAE: maximize X | —»> Encoder Z — x/
variational lower bound 94 (2(x)
Flow-based models: x| Flow A oz . Inllfrse o x!
Invertible transform of f(x) f(2)
distributions
Diffusion models:_ X0 Xy - Xo 7
Gradually add Gaussian - --- - - - [ —-—----- RREoREE - ------—
noise and then reverse

Image Credit: https://lilianweng.github.io/posts/2021-07-11-diffusion-models/



Summary of Topics Discussed

Attention: Transformer

VAE

GAN

Adversarial Domain Adaptation, CycleGAN
Text2Video Synthesis

Wasserstein GAN
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The End

Thank You!
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