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The Al Revolution is Driven by Deep Learning:
The ImageNet Challenge in Computer Vision

Imagenet classification with deep convolutional neural networks
A Krizhevsky, | Sutskever, GE Hinton - Communications of the ACM, 2017 - dl.acm.org

... We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution
images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test ...
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners
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The Al Revolution is Driven by Deep Learning:
Speech Recognition

Deep neural networks for acoustic modeling in speech recognition

Authors  Geoffrey Hinton, Li Deng, Dong Yu, George Dahl, Abdel-rahman Mohamed, Navdeep
Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Brian Kingsbury, Tara
Sainath

Publication date  2012/11/1
Journal |EEE Signal processing magazine
Volume 29

Description  Gaussian mixture models (GMMs) to determine how well each state of each HMM fits a
frame or a short window of frames of coefficients that represents the acoustic input. An
alternative way to evaluate the fit is to use a feed-forward neural network that takes
several frames of coefficients as input and produces posterior probabilities over HMM
states as output. Deep neural networks (DNNs) that have many hidden layers and are
trained using new methods have been shown to outperform GMMs on a variety of
speech recognition benchmarks, sometimes by a large margin. This article provides an
overview of this progress and represents the shared views of four research groups that
have had recent successes in using DNNs for acoustic modeling in speech recognition.

Total citations  Cited by 7057



The Al Revolution is Driven by Deep Learning:
Machine Translation
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B Our model reads an input sentence “ABC” and produces “WXYZ” as the output sentence. The
model stops making predictions after outputting the end-of-sentence token. Note that the LSTM reads the
input sentence in reverse, because doing so introduces many short term dependencies in the data that make the
optimization problem much easier.

Sutskever, Vinyals, and Le, NIPS 2014



The Al Revolution is Driven by Deep Learning:
Machine Translation

&lhe New Pork Eimes Magazine

FEATURE

The Great AL
Awakening

How Google used artificial intelligence to transform
Google Translate, one of its more popular services
— and how machine learning is poised to reinvent

computing itself.

Google's Neural Machine Translation System: Bridging
the Gap between Human and Machine Translation

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang
Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva
Shah, Melvin Johnson, Xiaobing Liu, tukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku
Kudo, Hideto Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei Wang, CIiff
Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff
Hughes, Jeffrey Dean

(Submitted on 26 Sep 2016 (v1), last revised 8 Oct 2016 (this version, v2))

Neural Machine Translation (NMT) is an end-to-end learning approach for automated
translation, with the potential to overcome many of the weaknesses of conventional phrase-
based translation systems. Unfortunately, NMT systems are known to be computationally
expensive both in training and in translation inference. Also, most NMT systems have
difficulty with rare words. These issues have hindered NMT's use in practical deployments
and services, where both accuracy and speed are essential. In this work, we present GNMT,
Google's Neural Machine Translation system, which attempts to address many of these
issues. Our model consists of a deep LSTM network with 8 encoder and 8 decoder layers
using attention and residual connections. To improve parallelism and therefore decrease
training time, our attention mechanism connects the bottom layer of the decoder to the top
layer of the encoder. To accelerate the final translation speed, we employ low-precision
arithmetic during inference computations. To improve handling of rare words, we divide
words into a limited set of common sub-word units ("wordpieces") for both input and
output. This method provides a good balance between the flexibility of "character"-
delimited models and the efficiency of "word"-delimited models, naturally handles
translation of rare words, and ultimately improves the overall accuracy of the system. Our
beam search technique employs a length-normalization procedure and uses a coverage



The Al Revolution is Driven by Deep Learning: Video Game
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nature

Letter | Published: 25 February 2015

Human-level control through deep
reinforcement learning

Volodymyr Mnih, Koray Kavukcuoglu &, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg
Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, loannis Antonoglou, Helen

King, Dharshan Kumaran, Daan Wierstra, Shane Legg & Demis Hassabis

Nature 518, 529-533(2015) | Cite this article
74k Accesses | 25633 Citations | 15617 Altmetric | Metrics



The Al Revolution is Driven by Deep Learning: Breakout Video Game




The Al Revolution is Driven by Deep Learning: Go Game

AlphaGo seals 4-1 victory over Go

randmaster L. | theguardian.com
grandmaster Lee Sedo puarden:

ARTIC LE o rosmuece,  D€EPMINd’s artificial intelligence astonishes fans to defeat human
= opponent and offers evidence computer software has mastered a
major challenge

Mastering the game of Go with deep
neural networks and tree search

David Silver'*, Aja Huang'*, Chris J. Maddison', Arthur Guez', Laurent Sifre', George van den Driessche',

Julian Schrittw !, loannis Antonoglou’ a Panneershelvam!, Marc Lanctot!, Sander Dieleman', Dominik Grewe',
John Nham?, Nal Kalchbrenner', llya Sutskever?, Timothy Lillicrap', Madeleine Leach', Koray Kavukcuoglu',

Thore Graepel' & Demis Hassabis'

The game of Go has long been viewed as the most challenging of classic games for artificial intelligence owing to its
enormous search space and the difficulty of evaluating board positions and moves. Here we introduce a new approach
to computer Go that uses ‘value networks’ to evaluate board positions and ‘policy networks’ to select moves. These deep
neural networks are trained by a novel combination of supervised learning from human expert games, and reinforcement
learning from games of self-play. Without any lookahead search, the neural networks play Go at the level of state-
of-the-art Monte Carlo tree search programs that simulate thousands of random games of self-play. We also introduce a
new search algorithm that combines Monte Carlo simulation with value and policy networks. Using this search algorithm,
our program AlphaGo achieved a 99.8% winning rate against other Go programs, and defeated the human European Go
champion by 5 games to 0. This is the first time that a computer program has defeated a human professional player in the
full-sized game of Go, a feat previously thought to be at least a decade away.

|

A The world's top Go player, Lee Sedol, lost the final game of the Google DeepMind challenge match. Photogmpl‘]:»]
Yonhap/Reuters



Learn How to Play Chess without Human Knowledge

SCIGIICG Contents ~ News ~ Careers ~ Journals ~

ARTICLE

A general reinforcement learning algorithm that
masters chess, shogi, and Go through self-play

David Silver':2"!, Thomas Hubert'”", Julian Schrittwieser'”", loannis Antonoglou', Matthew Lai', Arthur Guez', Marc Lanct...
+ See all authors and affiliations

doi:10.1038/nature2427

Mastering the game of Go without
human knowledge

David Silver', Julian Schrittwieser'*, Karen Simonyan'*, loannis Antonoglou', Aja Huang', Arthur Guez',
Thomas Hubert!, Lucas Baker!, Matthew Lai!, Adrian Bolton', Yutian Chen', Timothy Lillicrap', Fan Hui', Laurent Sifre!,
George van den Driessche', Thore Graepel' & Demis Hassabis'

Science 07 Dec 2018
Vol. 362, Issue 6419, pp. 1140-1144
DOI: 10.1126/science.aar6404

00600

Article Figures & Data Info & Metrics elLetters PDF

A long-standing goal of artificial intelligence is an algorithm that learns, tabula rasa, superhuman proficiency in

challenging domains. Recently, AlphaGo became the first program to defeat a world champion in the game of Go. The

tree search in AlphaGo evaluated positions and selected moves using deep neural networks. These neural networks were One program toru Ie them a“

trained by supervised learning from human expert moves, and by reinforcement learning from self-play. Here we introduce ; : : :

an algorithm based solely on reinforcement learning, without human data, guidance or domain knowledge beyond game Computers can beat humans at increasingly complex games, including chess and Go.
rules. AlphaGo becomes its own teacher: a neural network is trained to predict AlphaGo’s own move selections and also However, these programs are typically constructed for a particular game, exploiting its

the winner of AlphaGo’s games. This neural network improves the strength of the tree search, resulting in higher quality : : e :

move selection and stronger self-play in the next iteration. Starting tabula rasa, our new program AlphaGo Zero achieved properties, such as the symmetries of the board on which it is played. Silver et al. developed a
superhuman performance, winning 100-0 against the previously published, champion-defeating AlphaGo. program called AlphaZero, which taught itself to play Go, chess, and shogi (a Japanese

version of chess) (see the Editorial, and the Perspective by Campbell). AlphaZero managed to
beat state-of-the-art programs specializing in these three games. The ability of AlphaZero to

12



The Al Revolution is Driven by Deep Learning: Molecule (Drug) Synthesis

ARTICLE

doi:10.1038/nature25978

Planning chemical syntheses with deep
neural networks and symbolic Al

Marwin H. S. Segler’2, Mike Preuss® & Mark P. Waller?

To plan the syntheses of small organic molecules, chemists use retrosynthesis, a problem-solving technique in which
target molecules are recursively transformed into increasingly simpler precursors. Computer-aided retrosynthesis
would be a valuable tool but at present it is slow and provides results of unsatisfactory quality. Here we use Monte Carlo
tree search and symbolic artificial intelligence (Al) to discover retrosynthetic routes. We combined Monte Carlo tree
search with an expansion policy network that guides the search, and a filter network to pre-select the most promising
retrosynthetic steps. These deep neural networks were trained on essentially all reactions ever published in organic
chemistry. Our system solves for almost twice as many molecules, thirty times faster than the traditional computer-aided
search method, which is based on extracted rules and hand-designed heuristics. In a double-blind AB test, chemists on
average considered our computer-generated routes to be equivalent to reported literature routes.

Nature, Mar 2018

13



The Al Revolution is Driven by Deep Learning: Protein Structure Prediction

nature

Explore content v  About the journal v  Publish withus v

nature > articles > article

Article | Open Access | Published: 15 July 2021

Highly accurate protein structure prediction with
AlphaFold

John Jumper &, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,

Kathryn Tunyasuvunakool, Russ Bates, Augustin Zidek, Anna Potapenko, Alex Bridgland, Clemens

Meyer, Simon A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino Romera-Paredes, Stanislav

Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman, Ellen Clancy, Michal

Zielinski, ... Demis Hassabis <+ Show authors

Nature 596, 583-589 (2021) | Cite this article
1.02m Accesses | 6284 Citations ] 3429 Altmetric I Metrics

Abstract

Proteins are essential to life, and understanding their structure can facilitate a mechanistic

14



The Al Revolution is Driven by Deep Learning: Protein Structure
Prediction with AlphaFold2

15



Deep Learning for Personalized Medicine (joint work with Gerstein Lab)
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The Al Revolution is Driven by Deep Learning: Large Language Models (ChatGPT and GPT-4)

Exam GPT-4 GPT-4 (no vision) GPT-3.5
Uniform Bar Exam (MBE+MEE+MPT) 298 / 400 (~90th) 298 /400 (~90th) 213 /400 (~10th)
LSAT 163 (~88th) 161 (~83rd) 149 (~40th)
SAT Evidence-Based Reading & Writing 710/ 800 (~93rd) 710/ 800 (~93rd) 670/ 800 (~87th)
SAT Math 700 / 800 (~89th) 690 / 800 (~89th) 590/ 800 (~70th)

Graduate Record Examination (GRE) Quantitative
Graduate Record Examination (GRE) Verbal

163/ 170 (~80th)
169 /170 (~99th)

1577170 (~62nd)
165 / 170 (~96th)

1477170 (~25th)
154 /170 (~63rd)

Graduate Record Examination (GRE) Writing 476 (~54th) 4/6 (~54th) 4/ 6 (~54th)
USABO Semifinal Exam 2020 87/150 (99th - 100th)  87/150 (99th - 100th) 43 /150 (31st - 33rd)
USNCO Local Section Exam 2022 36/60 38/60 24/60
Medical Knowledge Self-Assessment Program 75 % 75 % 53 %
Codeforces Rating 392 (below Sth) 392 (below 5th) 260 (below 5th)
AP Art History 5 (86th - 100th) 5 (86th - 100th) 5 (86th - 100th)
AP Biology 5 (85th - 100th) 5 (85th - 100th) 4 (62nd - 85th)
AP Calculus BC 4 (43rd - 59th) 4 (43rd - 59th) 1 (Oth - 7th)
AP Chemistry 4 (71st - 88th) 4 (715t - 88th) 2(22nd - 46th)
AP English Language and Composition 2 (14th - 44th) 2 (14th - 44th) 2 (14th - 44th)
AP English Literature and Composition 2 (8th - 22nd) 2 (8th - 22nd) 2 (8th - 22nd)
AP Environmental Science 5 (91st - 100th) 5 (91st - 100th) 5 (91st - 100th)
AP Macroeconomics 5 (84th - 100th) 5 (84th - 100th) 2(33rd - 48th)
AP Microeconomics 5 (82nd - 100th) 4 (60th - 82nd) 4 (60th - 82nd)
AP Physics 2 4 (66th - 84th) 4 (66th - 84th) 3 (30th - 66th)
AP Psychology 5 (83rd - 100th) 5 (83rd - 100th) 5 (83rd - 100th)
AP Statistics 5 (85th - 100th) 5 (85th - 100th) 3 (40th - 63rd)
AP US Government 5 (88th - 100th) 5 (88th - 100th) 4 (77th - 88th)
AP US History 5 (89th - 100th) 4 (74th - 89th) 4 (74th - 89th)
AP World History 4 (65th - 87th) 4 (65th - 87th) 4 (65th - 87th)
AMC 10° 30/150 (6th - 12th) ~ 36/150 (10th - 19th) 36/ 150 (10th - 19th)
AMC 12} 60/ 150 (45th - 66th) 48/ 150 (19th - 40th) 30/ 150 (4th - 8th)
Introd yS ier (theory ge) 92 % 92 % 80 %
Certified Sommelier (theory knowledge) 86 % 86 % 58 %
Ad d ier (theory } ledge) 77 % 7% 46 %
Leetcode (casy) 31/41 31/41 12741
Leetcode (medium) 21/80 21/80 8/80
Leetcode (hard) 3/45 3/45 0/45
Table 1. GPT per on | exams. In each case, we simulate the

and p
conditions and scoring of the real exam. We rcporl GP’T4 s final score graded according to exam-
specific rubrics, as well as the percentile of test-takers achieving GPT-4's score.

https://cdn.openai.com/papers/gpt-4.pdf

Prompt: Can you write a proof that there are infinitely
many primes, with every line that rhymes?

GPT-4

Yes, I think I can,

Though it might take a clever plan.

I’11 start by noting Euclid’s proof,
Which shows that primes aren’t just aloof.
Assume we have a finite list,

0f primes, and that none have been missed.
Multiply them all together,

And add one, just to be clever.

The result will be a number,

That has no prime factors, oh wonder!

But every number has a prime,

That divides it, it’s just a matter of time.
So we’ve found a contradiction,

And our finite list needs eviction.

There must be infinitely many primes,

And that’s the end of my rhyming lines.s

Prompt: Draw a unicorn in TiKZ.

GPT-4 [Produces IATEX compiling to
following picture.]

https://arxiv.org/pdf/2303.12712.pdf 17




New Algorithm Can Create Movies From Just a Few Snippets of Text

By Science

February 28, 2018

Comments

VEWAS: E [] | SHARE: [ & @ '

have developed an algorithm that creates videos from text
snippets.

The first stage of the process involves a "generator" neural
network using text to produce a blurry image of the background
with an unfocused blob where the main action occurs. The
second stage derives a video from both this "gist" and the text,
producing a short video.

A second network functions as a "discriminator” during training
by watching the generated video alongside a real video of the
action described in the text, and is taught to pick the real one.
This network's critical ability improves over time, with its

Anew algorithm creates videos from text feedback setting a higher standard for the generator network.
snippets.

The team trained the algorithm on 10 types of scenes, and a

Credit: ShareGrid/Unsplash = . : A i
simple classification algorithm correctly guessed the intended

action among six choices about 50% of the time.

18



N Meta Al

A sample video generated by
Meta’s new AI text-to-video
model, Make-A-Video. The
text prompt used to create
the video was “a teddy bear
painting a portrait.”

Image: Meta

19



(a)

Figure 5: Adversarial examples generated for AlexNet [9].(Left) is a correctly predicted sample, (center) dif-
ference between correct image, and image predicted incorrectly magnified by 10x (values shifted by 128 and
clamped), (right) adversarial example. All images in the right column are predicted to be an “ostrich, Struthio
camelus”. Average distortion based on 64 examples is 0.006508. Plase refer to http://goo.gl/huaGPb
for full resolution images. The examples are strictly randomly chosen. There is not any postselection involved.

Computer Science > Computer Vision and Pattern Recognition
Intriguing properties of neural networks

Christian Szegedy, Wojciech Zaremba, llya Sutskever, Joan Bruna, Dumitru Erhan, lan Goodfellow, Rob Fergus
(Submitted on 21 Dec 2013 (v1), last revised 19 Feb 2014 (this version, v4))

Deep neural networks are highly expressive models that have recently achieved state of the art performance on speech and visual recognition
tasks. While their expressiveness is the reason they succeed, it also causes them to leam uninterpretable solutions that could have counter-
intuitive properties. In this paper we report two such properties.

First, we find that there is no distinction between individual high level units and random linear combinations of high level units, according to
various methods of unit analysis. It suggests that it is the space, rather than the individual units, that contains of the semantic information in
the high layers of neural networks.

Second, we find that deep neural networks learn input-output mappings that are fairly discontinuous to a significant extend. We can cause the
network to misclassify an image by applying a certain imperceptible perturbation, which is found by maximizing the network's prediction error.
In addition, the specific nature of these perturbations is not a random artifact of learning: the same perturbation can cause a different network,
that was trained on a different subset of the dataset, to misclassify the same input.

20
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Deep Learning Methods Can Be Easily Fooled

BUSINESS CULTURE GEAR IDEAS SCIENCE SECURITY TRANSPORTATION

TOM SIMONITE SECURITY 8B8.25.2817 11:88 AM

Even Artificial Neural Networks Can Have Exploitable 'Backdoors'

Malicious machine learning can hide nasty surprises.

GETTY IMAGES
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Behind the Scene: Deep Learning

Deep Learning:
o The driving force of all these technological advancements

o The root cause of all these controversial debates and potential dangers

23



Deep Learning is a Subfield of Machine Learning

e What is Machine Learning

o Machine learning is about teaching computers to perform tasks by only showing them
data/examples without explicitly programming instructions

o Machine learning, data science, and computer science are more and more related to each
other

o Machine Learning: Instead of programming computers, let computers learn to program by
themselves by showing them some examples

m Feature Representation + Objective Function + Optimization (training data)
1 Generalization (test data) ”



Three Types of Machine Learning Tasks

e Supervised Learning:

o Given training examples of input feature vectors and corresponding target outputs, predict
outputs on future inputs. For e.g., classification, regression, time series prediction.

e Unsupervised Learning:

o Given only input feature vectors, automatically discover representations, structures, etc. For
e.g., clustering, data compression, outlier detection

e Reinforcement Learning:
o Given sequences of [ inputs from an environment, actions from a fixed set, and occasional

scalar rewards ], learn to select action sequences in a way that maximizes the expected sum
of (discounted) future reward

25



Machine Learning Models

e Supervised Learning:

o Linear Regression, Logistic Regression, Naive Bayes, Linear Discriminant Analysis, k Nearest
Neighbor, (kernel) SVM, Decision Tree, Random Forest, Multilayer Perceptron (Neural
Network for classification/regression), Conditional Random Field

e Unsupervised Learning:
o K-means, Gaussian Mixture Model, Hierarchical Clustering Methods, Principal Component

Analysis, Independent Component analysis, Vector Quantification (Data Compression), Latent
Dirichlet Allocation, (Denoising) Autoencoder, (Restricted) Boltzmann Machines

e Reinforcement Learning:

o Q Learning, Policy Gradient Methods, REINFORCE

26



What is Deep Learning

Deep learning
o One of many research areas in Machine Learning

o Deep Learning focuses on learning data representations (adaptive features) using deep neural
networks

o Deep neural networks are standard neural networks with many hidden layers

o Deep learning can be applied to any type of learning task of machine learning

27



Since deep learning is a modern name of deep
neural network invented decades ago, | will review
the history of (deep) neural network and introduce
the backpropagation algorithm for training deep
learning models.

28



Modeling a Biological Neuron
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A biological and an artificial neuron (via https://www.quora.com/What-is-the-differences-between-

artificial-neural-network-computer-science-and-biological-neural-network)

https://towardsdatascience.com/the-differences-between-artificial-
and-biological-neural-networks-a8b46db828b7




A Linear Neuron

blas ith mput
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Binary Threshold Neuron

McCulloch-Pitts (1943): influenced Von Neumann.

o First compute a weighted sum of the
inputs. 17

q

o Then send out a fixed size spike of activity
if the weighted sum exceeds a threshold.

output

z :b+2xl-wi 0
i

_{1ifZZO

O otherwise

threshold
weighted input —
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A Sigmoid Neuron

It gives a real-valued
output that is a smooth
and bounded function of

its total input.

o It has a nice
probabilistic
interpretation ([0, 1]).

o It has nice derivatives
that make learning

easy (discuss it later).

z:b+2xiwi y= :
i —2%
e
1
Tooad
y 0.5
0 | z .
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Rosenblatt’'s Perceptron (1958)

e Alinear neuron

Learning algorithm for binary classification with a binary output neuron (1 or 0):
1. Initialize the weights and threshold to 0 or small random values

2. For each example i in the training set, perform the following steps:

o Calculate the model output for input i using the current model based on the linear neuron
o If the output is correct, do nothing

o If the model incorrectly outputs 0, add the feature vector of i to the weight vector

o If the model incorrectly outputs 1, minus the feature vector of i to the weight vector

[ (ground-truth label — predicted label) * input feature vector x ]
3. Repeat step 2 until some convergence criteria is met

33



Perceptron can’t even solve XOR!

Input

Output

0
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A geometric view of what binary threshold neurons cannot do

e Imagine “data-space” in which the axes 01® o 1,1
correspond to components of an input
vector. W\
ei o)
o Each input vector is a point in this ghtpla”e outét 4t =1
space. Put =g T—~—
: : . O ®
o A weight vector defines a plane in 0,0 1,0
data-space.

The positive and negative cases

o The weight plane is perpendicular to cannot be separated by a plane

the weight vector and misses the
origin by a distance equal to the
threshold.

35



What should we do? Handcraft Features (~1960s).

In this representation, our training set becomes

$1(x)
P2(x)
P3(x)

i
i
I

1

2

122

Bomb Toy _
output units

e.g. class labels

non-adaptive

P1(x)  ¢Pa(x) @3(x) | t hand-coded
0 0 0 |0 ‘ features
0 1 0 |1
1 0 0 |1
1 1 1 |0 input units

e.g. pixels
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Learning with Hidden Units (Hinton)

Networks without hidden units are very limited in the input-output mappings they can learn
to model.

o More layers of linear units do not help. Its still linear.

o Fixed output non-linearities are not enough.
We need multiple layers of adaptive, non-linear hidden units. But how can we train such

nets?

o We need an efficient way of adapting all the weights, not just the last layer. This is
hard.

o Learning the weights going into hidden units is equivalent to learning features.

o This is difficult because nobody is telling us directly what the hidden units should do. 37



Second generation neural networks (~1985,

multilayer

Back-propagate

error signal to get error signal

derivatives for
learning

perceptron with backpropagation)

Compare outputs with
correct answer to get

4—‘ outputs

hidden
layers

4—’ input vector

Rumelhart, Hinton, and Williams, Nature 1986
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Benefits of MLP with Backpropagation

Backpropagation allows neural networks to design their own features and
multiple layers of features adaptively

No domain knowledge is needed. You just need to show the computer some
training examples.

Backpropagation is an efficient algorithm for computing how weight vectors
should be updated to effect the output error

o Instead of naively updating one weight at a time, BP computes the gradient of the weights in
parallel and updates all weights through an efficient forward pass and backward pass
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The idea behind backpropagation (Hinton)

We don’t know what the hidden units ought to do, but we can
compute how fast the error changes as we change a hidden activity.

o Instead of using desired activities to train the hidden units, use
error derivatives w.r.t. hidden activities.

o Each hidden activity can affect many output units and can
therefore have many separate effects on the error. These
effects must be combined.

We can compute error derivatives for all the hidden units efficiently
at the same time.

o Once we have the error derivatives for the hidden activities, its
easy to get the error derivatives for the weights going into a
hidden unit.
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Output layer

Hidden layer

Backpropagating dE/dy (Hinton)

J’JT

oF dy j OF oF
o a0,
g 459 Vi
OE ~~dz; OF OE
e Al NSk
oy; ]. dy; 0z, 0z,
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A Linear Neuron in Matrix-Vector Form

weight
vector
|
T
Y= wl-xl- =W X
t 1
neuron’s Input
vector

estimate of the
desired output
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The Delta Rule For a Linear Neuron

Define the error as the gl Z (" — n)2
squared residuals summed - — 2 Y
netraining

over all training cases:
OFE R 5)/” dEn

Now differentiate to get error ow, 2 - ow, dy"

derivatives for weights
== X (" =)")
n

The batch delta rule changes
ights | i OF

the.welghts |n. prqportlon to AWZ' _ ¢ _ Zg xn(tn

their error derivatives awl.

summed over all training

cases

-")
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The derivatives of a logistic neuron

e The derivatives of the logit, z,
with respect to the inputs and
the weights are very simple:

z=b+ inwl- y= I
i l+e ~
Oz Oz
ow; OX; yiu=—y

44



The derivatives of a logistic neuron

y= : =(1+e %)

i+e <

dy  —1(-e %) _( 1 ]{ e - ] B
L - = y(1-y)
dz  (1+e %)? I+e © J\+e * e

e’  (l+e -1 (1+e %) -1
Z B Z B Z

because

—Z

l+e 1+e l+e © 1+e

45



Using the chain rule to get the derivatives needed
for learning the weights of a logistic unit

e To learn the weights we need the derivative of the output with
respect to each weight:

oz dy

OW Bl ow.: dz =%y {1=y)
. A /delta-rule ~_
4 ' nl..n n n n
o gﬁwiﬁy,,, g,y(Tm( ")

extra term = slope of logistic
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BP in a Computational Graph

http://colah.github.io/posts/2015-08-Backprop/
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BP in a Computational Graph

%O\ o~
=0 =2
N oA

Forward-Mode Differentiation (:—X)

« )
/Bo\ P o
g—§=1 Lo [HEEEE o). X
0X C (a+B+7)(0+€+()
g Mg

Reverse-Mode Differentiation ('%Z)

o )
/O\ /O\
0z
_/BO_>_60_>
(@ +B+9)(0 +e+C) C 0Z
o &

http://colah.github.io/posts/2015-08-Backprop/
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Regularized Deep Autoencoder in 2005

Chapter 2

Regularized Autoencoder

~83K parameters

~1 month training on
9K USPS digits with
a Desktop machine

from 2003 to 2005
. 256

Figure 4.3: The configuration of the autoencoder and RAN for digit data.
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Modern Deep Convolutional Neural Networks (2012-now, big data +
deep CNN + rectified linear + data augmentation + dropout + GPUs)

Deep learning on GPU (Krizhevsky et al. NIPS12)
Revolutionary success on the ImageNet Challenge

N il_.‘..:‘.. 4' -- 3 A :. . L
cetosaanntss R“-“.::' -v./ " 4 W
. - ~NE | e—, -+
a8 S . 192 128 2048 5 \dense
27 128 P T g—
/ 5 -
AN\, 13 13
- X i “eta, 2\
4 T, ..
S W - — -
24 5 3} 43 3{ 1.} | .
. - E 4 e 1 dense dens y
. i 27 N 13 13
B | - L
' 192 192 128 Max | |
Max 128 Max pooling 2048 2048

o f(x) = 7 = max(0, )

60 million parameters and 650,000 neurons 50



Parameter growth of large language models based on deep learning

Number of parameters

1t
100b
[
]
T-NLG
17b
«AnviDia 4
MegatronlM
8.3b
10b ‘
5] w
OpenAl WASHINGTON
GPT2 Grover-Mega .
1.5b 15b https://deci.a
! B
Ai2
b Transformer e
Gooﬁe ELMo s XLM
BERT-Large 465™ p1.pNN®ES™ RoBERTa
340m 4 330m 355m
XLNET ~
Ai2 340m -
e DistilBERT
o = 7 eem
9‘"\ L nnvesiny
b é

January-18 April-18 July-18 October-18 February-19 May-19 August-19  December-19 March-20 June-20

Image Credit:
i/blog/sota-dnns-overview/
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Fully Connected Layer
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Activation Functions

Slgm0|d Leaky ReLU )
max(0.1x, x)
T i 10

vt Maxout
max(wi z + by, wa x + by)

ELU )
i x>0
ae®—1) <0 -=—xoH i

tanh(x)

RelLU
max (0, x)

—

Good default choice
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DNN with sigmoid and tanh activation functions has serious vanishing
gradient and saturation issue
y

Grad = y(1-y)

Grad = 1-y2




RelLU Activation Function

Avoid vanishing gradient and less computationally expensive than sigmoid and
tanh

But it might cause dead neuron and the activity is not bounded above
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Softmax Activation Function

Z.
e l
The output units in a softmax group

use a non-local non-linearity: Ji 2 : ezj

# %i # softmax jegmup
group
Zj

Dy, 1-3)
. 7 TRy - yi yi
this is called the “logit aZi

Often used on top of a fully connected layer, which transforms an activity vector z
into probabilities of classifying x into K classes %



Loss Function: Cross-Entropy Loss

The right cost function is the negative
log probability of the target class.

C has a very big gradient when the
target value is 1 and the output is
almost zero.

A value of 0.001 is much better than
0.0000001

The steepness of dC/dy exactly balances
the flatness of dy/dz

C= —th logyj

PN
Target Class

57



Loss Function: Mean Squared Error

MSE = — 3 (% — Vi)’

MSE is a very bad cost function for softmax output units.
Why?
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Deep Feedforward Neural Network with Sigmoid Hidden Units

& ' po? by

visible units

DNN

y

h3
w3

h2
w2

h1

w1
X
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Backpropagation with a Computational Graph

— Loss =Squared Error = Y «
w4 h
-~
——» O
w3\ * ., Z3
vl
5 -
> d
w2\ * /22
h1="
-

60



Train a Deep Neural Network with SGD

Split our training dataset into N mini-batches with batch size b
For lteration = 1, ..., Num_Max_Iterations
randomly choose a mini-batch D,

w i

L
Vi1 = 0.9-'01'—0.0005-6-11)1—e-<a >
D;

Wit1 = Wi+ Vit1

where 7 is the iteration index, v is the momentum variable, ¢ is the learning rate, and <gﬁ

is
)
the average over the ith batch D; of the derivative of the objective with respect to w, evaluated at
w;.

(you can also have two loops: outer loop over epochs, inner loop over mini-batches)
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Convolutional Neural Network: LeNet (1998)

C3: f. maps 16@10x10

C1: feature maps S4: f. maps 16@5x5
INPUT 6@28x28 =

32x32 S2: f. maps CS: layer F6:layer QUTPUT

T
4 ITF SN\

l Full conAedmn ’ Gaussuan connections
Convolutions Subsampling Convolunons Subsamplmg Full connection

LeCun et al., 1998 -



1D Convolution with W =5, F = 3, Stride = 2,
Padding = 1

Output Size = (W — F + 2P)/S + 1

http://cs231n.github.io/convolutional-networks/
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1D Convolution over Sentences

wait

for

the
video

and

do

nt

""""

rent

1t

n x k representation of
sentence with static and
non-static channels

Convolutional layer with
multiple filter widths and
feature maps

................
.............
..........

.......
........
------
......
......
........

Yoon Kim, Convolutional Neural Networks for Sentence
Classification. EMNLP 2014

I I |
Max-over-time Fully connected layer
pooling with dropout and
softmax output
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2D Convolutions

N.B.: Blue maps are inputs, and cyan maps are outputs.

No padding, no strides  Arbitrary padding, no strides

No padding, strides Padding, strides Padding, strides (odd)
https://github.com/vdumoulin/conv_arithmetic

Full padding, no strides
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2D Convolution Animations

See the animation at

https://github.com/vdumoulin/conv arithmetic
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2D 3x3 Convolution Applied to RGB Input of Size 5x5

Input

Picture credit: https://thomelane.github.io/convolutions/2DConvRGB.html
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2D Convolutions in Numbers

http://cs231n.github.io/convolutional-networks/
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3D Convolution

Input

Kerne| OUtput

Picture credit: https://thomelane.github.io/convolutions/3DConv.html
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Max Pooling

224x224x64 . )
P—— Single depth slice
A
pool % 1112 4
max pool with 2x2 filters
, 5|6 |7 |8 and stride 2 6 | 8
1 1 3(2(1]|0 3| 4
112 |3 ]| 4
> N 112
e downsampling
112 >
224 y

Pooling layer downsamples the volume spatially, independently in each depth slice of the input volume. Left: In this example, the
input volume of size [224x224x64] is pooled with filter size 2, stride 2 into output volume of size [112x112x64]. Notice that the
volume depth is preserved. Right: The most common downsampling operation is max, giving rise to max pooling, here shown
with a stride of 2. That is, each max is taken over 4 numbers (little 2x2 square).

http://cs231n.github.io/convolutional-networks/

Average Pooling is also widely used, especially in NLP .



Data Augmentation

Random erasing, horizontal flipping, rotation, scaling (with cropping), cropping, contrast, color

Picture credit: https://nanonets.com/blog/data-augmentation-how-to-use- | 71
deep-learning-when-you-have-limited-data-part-2/



[0,0.89, 0.11, 0]

x0.11

[0,0,1,0]

-

x 0.89

[0,1,0,0]

Mixup

Z
Y

Az; + (1 — M)z, where z;, z; are raw input vectors
Ay + (1= Ny, where y;, y; are one-hot label encodings

Zhang et al., Mixup: beyond empirical risk minimization.
ICLR 2018.

Picture credit: https://www.dlology.com/blog/how-to-do-mixup-
training-from-image-files-in-keras/
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From Standard Neural Networks to Recurrent Neural Networks

y

A

[
>

\ 4

n
>

[
>

A

Let's make the model easily extendable to model sequences with arbitrary
lengths by weight sharing

\ 4

Xt
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Recurrent Neural Networks (RNN)

At time step t, the hidden units accumulate past information about the

input sequence. Hidden activity vector h; only depend on current
input x;and previous hidden activity vector h,_, g

hy|= fW(ht—h 33t)

newstate  / old state input vector at

. o —> R\NN
some time step

some function
W W W W with parameters W

Xt




Vanilla Recurrent Neural Networks

' hy = fW(ht—la fvt)

ho | RN/>

- " hy = tanh(Wiphy 1 + Wepy)

Yt = Whyht
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Many-to-Many Vanilla RNN

y y . YT
1 2
ho > > > -
W W W W
X X - B
1 2
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Training of Char-RNN (Teacher Forcing)

“ ” l‘lll “I" “_ "

target chars: ‘e o T
10 05 0.1 0.2 Pr(x) = [ [ Pr(:s1lv)
output layer (R 0.3 0.5 15 e
-3.0 -1.0 1.9 -0.1
4.1 j 1 -1.1 2.2 5
! ! T T W_ny Ge=by+ 3 Wanyhy
n=1
0.3 1.0 0.1 -0.3 _ A
hidden layer | -0.1 - 0.3 - 05 [V="" 09 ye = V(9)
0.9 0.1 -0.3 0.7
exp (9f)
Pr(zit1 = kly) = yf = —
T T T T W_xh > o1 exp (3F)
1 0 0 0 ’
: 0 1 0 0 — 1 Tt41
input layer | : 1 1 L(x) tz_:l 08 Yy
0 0 0 0 B
. a‘c(x) — Kk _ 5
input chars:  “p” “e” o “@ = gk =Yt k,Zes1

An example RNN with 4-dimensional input and output layers, and a hidden layer of 3 units (neurons). This diagram shows the
activations in the forward pass when the RNN is fed the characters "hell" as input. The output layer contains confidences the
RNN assigns for the next character (vocabulary is "h,e,l,0"); We want the green numbers to be high and red numbers to be low.

77
Picture Credit: http://karpathy.qgithub.io/2015/05/21/rnn-effectiveness/




Forward through entire sequence to

BaCkprOpagat|on through tlme compute loss, then backward through

entire sequence to compute gradient

71T\

Slide Credit: Fei-Fei, Johnson, and Yeung, Stanford cs231n, 2019
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Truncated Backpropagation through time

Loss

//t [ T \ \\ Run forward and backward
through chunks of the

sequence instead of whole
sequence

Slide Credit: Fei-Fei, Johnson, and Yeung, Stanford cs231n, 2019
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Truncated Backpropagation through time

Loss
/‘f 1T X\\\‘\ < Carry hidden states
forward in time forever,
but only backpropagate

I I I I N I I I I for some smaller

number of steps

———
30

Slide Credit: Fei-Fei, Johnson, and Yeung, Stanford cs231n, 2019



Truncated Backpropagation through time

Slide Credit: Fei-Fei, Johnson, and Yeung, Stanford ¢s231n, 2019



Inference of Char-RNN (Exposure Bias)

At test time, sample a character from the current model at each step, feed the
current sampled character as input to the next time step

uen “I" “In “on
Sample \ 4 } '

03 .25 A1 1
13 .20 A7 .02
Softmax .00 05 68 .08

84 .50 .03 79

t t t t

1.0 0.5 0.1 0.2

2.2 0.3 0.5 -1.5
output layer 1.0 1.9 -0.1

41 1.2 -1.1 2.2

4

| g

03 1.0 01 |w hnl-0.3
hidden layer | -0.1 » 0.3 » =05 [—1*| 0.9

0.9 0.1 -0.3 0.7

N T O A O

1 0 0 0
. 0 1 0 0
input layer 0 0 1 1

0 0 0 0
input chars:  “h" “e" ;" ‘"

Slide Credit: Fei-Fei, Johnson, and Yeung, Stanford cs231n, 2019
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Why Vanishing and Exploding Gradient of Vanilla RNN Happens
hy = fw(hi1, T¢)
|

hy = tanh(Wpphy 1 + Wopxy)
Y = Whyht

Suppose we are using a many-to-many RNN for sequence labeling
E=L(h) €=, &

20 — 21<k<t(5h, 7, 96)

dh, dh; :

Dby > isk b = Ht2i>kW,Z;ldmg(tanh’(Whhh,&-_l + Wenzi))

o

is the immediate partial derivative of hidden activity vector with respect to
00 network weights

Pascanu et al., On the difficulty of training recurrent neural networks. ICML 2013 %



Vanilla RNN Gradient Flow

Bengio et al, “Learning long-term dependencies with gradient descent
is difficult”, IEEE Transactions on Neural Networks, 1994

Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

N
W—’O:-_: tanh W—>O;-__: tanh W—*Q;—:_ tanh W—>O<—_> tanh
h0<_ > itjck “——» h1 = > stack “——» h2 = > stack “7—> h3 - > jtchk k—_» h‘4
— 1 A R G s e
%, X, K X,

Computing gradient
of h, involves many
factors of W

(and repeated tanh)

Largest singular value > 1:
Exploding gradients

Largest singular value < 1:
Vanishing gradients

Gradient norm Clipping

Algorithm 1 Pseudo-code for norm clipping
g 2
if ||g|| > threshold then

S threshold 4
<_ T T
g el &

end if

Design a better architecture
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Long Short-Term Memory

it =0 (Wit + Whihi—1 + Weice—1 + b;)
fi=o (Wwf.’ltt + thht_1 -+ chct_1 - n bf)
ct = fici—1 + ig tanh (Wyewy + Whehi—1 + be)
0 = 0 (Waot + Whohi—1 + Weoct + o)

h: = o tanh(c;)

Picture Credit: https://www.cs.toronto.edu/~graves/asru 2013.pdf
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Long Short-Term Memory

)
A

H
4 R .
3l ® ® » & g =0 (Wyims + Whihi—1 + Weicr—1 + bi)
T % ? =0 (foxt + thht_1 + chct_l . bf)
(o] Lo (] (0] ct = ficr—1 + i tanh (Wyexy + Whehi—1 + be)
Ny _>J - h,
| 4 Ot =0 (onmt -+ Whoht—l + Wcoct I bo)

@ h: = o tanh(c;)

1 0 — > <

Neural Network Pointwise Vector

Layer Operation Transfer Concatenate Copy

Picture Credit: https://colah.qithub.io/posts/2015-08-Understanding-LSTMs/ 86




Long Short Term Memory (LSTM): Gradient Flow
[Hochreiter et al., 1997]

Uninterrupted gradient flow!

b
y \ /[ \ &
- - ©O—> - 0] - - »@—=>+—=>C —
Co- & Cr f C5 f %
. . |
i i
W—»#g} W*#g} (O] tainh
—\\—> st?ck o —\—’ st?ck 0 6i—w ht .
. | . | .
In between:
Highway Networks
Similar to ResNet! g="T(x,Wr)

y=g(~)H(x,W1.1)+(l—g)(-);c

Srivastava et al, “Highway Networks”,
ICML DL Workshop 2015

Slide Credit: Fei-Fei, Johnson, and Yeung, Stanford cs231n, 2019 87



Bidirectional LSTM

Outputs ce Y1 Yt 1) (N
_)
# = H(W —>$t+W—>7{ h_ 1+b—>)
Backward Layer 4— e @ &=
ho=H (W, g+ Wﬁ B +bg)
_>
= WTL}yht +W(I7yht+by
Forward Layer @ e @

Inputs ce T i 47 Tit1

Picture Credit: https://www.cs.toronto.edu/~graves/asru 2013.pdf
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- o - = -y,

— e o e e s e e e EEe B e B B e B B EEe B B Sae Bae B Eae B B Eae Eae B Em

Peptide
Pos. 1:

Amino
Acid
Embedding

Peptide
Pos. 2:

Amino
Acid
Embedding

Bidirectional LSTM

— o mE— e O EEe EE e EEe EE e e EE e e e EEe EE e EEe EE e G Eae e Eee e s

Peptide
Pos. 9:

Amino
Acid
Embedding
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Deep LSTM

- Yt—1 Yt Yt+1 - - -

=H (Whn 1pn b2+ Whnpn B | + b"[j:

.. gt = WhNyhiv + by

- Tt—1 Tt Tt41 - - -
90

Picture Credit: https://www.cs.toronto.edu/~graves/asru 2013.pdf




Deep LSTM for Generating Complex Sequences

Generating text with characters or words as symbols
Generating handwriting with sequences of pen coordinates (x, y) and pen on/off
whiteboard as input

Outputs

Hidden Layers

Inputs

Alex Graves, Generating Sequences With Recurrent Neural Networks. 2015
https://arxiv.org/pdf/1308.0850.pdf
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neural network
encoder

Deep Encoder-Decoder Networks:
Sequence-to-Sequence (Seq2Seq) Models

neural network
decoder

w <EOS>

||—»||—»|»—4|—»||—»|1|—41|—4|

L x

S —>

A B C <EOS> z

Figure 1: Our model reads an input sentence “ABC” and produces “WXYZ” as the output sentence. The
model stops making predictions after outputting the end-of-sentence token. Note that the LSTM reads the
input sentence in reverse, because doing so introduces many short term dependencies in the data that make the
optimization problem much easier.

loss = ||x-X]|2= ||x-d(2)|]? = || x-dex)|]?

Illustration of an autoencoder with its loss function.
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Data Augmentation in Sequence-to-Sequence (Seq2Seq)
Models for Machine Translation

w

X Y Z <EOS>
A A A A A
> - — > ——> > —
T T T 7y 7y 7y 7y 7y
A B & <EOS> w X Y pA

Figure 1: Our model reads an input sentence “ABC” and produces “WXYZ” as the output sentence. The
model stops making predictions after outputting the end-of-sentence token. Note that the [LSTM reads the|

[input sentence in reverse, because doing so introduces many short term dependencies in the data that make the
optimization problem much easier.

T/
p(y1, - yrrles, . o) = [ [ p(Welv v, - - ge1)
=i

it = 0 (Waizs + Whihi—1 + Weici—1 + bi)
Jt =0 (Wasze + Whphe—y + Wepce—1 + by)
representation v of the input sequence (z1, ..., z7) ¢t = frer—1 +ip tanh (W + Whehi—1 + be)
0t = 0 (WeoTt + Whohi—1 + Weoct + bo) 93
ht = o tanh(ct)



Learning Residual Feature Maps like in LSTM

X
weight layer
F(x) l relu =
weight layer identity

Figure 2. Residual learning: a building block.

He et al., Deep Residual Learning for Image Recognition. CVPR 2015
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Learning Residual is Easier

256-d

A

, 64

relu

| 3x3, 64 |
l relu

| 1x1, 256

He et al., Deep Residual Learning for Image Recognition. CVPR 2015
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VGG-19 34-layer plain 34-layer residual

image image image
- =
sae 224
[(ewea ]
pook. 2
=
[dcomim ]
v
output ’1”
e IS o, 356
¥
Csewm]
¥
[ 30 com, 25
. 2
[ com. 256
pool. 72
output ¥
e 28 B0 conw, 512
ﬁ
33 corw, 513
[ conw 522
e
33 conw, 512
ﬁ
33 conw, 532
[0 cmw.s2
ooy pool. 72
oy e 40%

Figure 3. Exampl k archi for ImageNet. Left: the
VGG-19 model [41] (19.6 billion FLOPs) as a reference. Mid-
dle: a plain network with 34 parameter layers (3.6 billion FLOPs).
Right: a residual rk with 34 ¢ layers (3.6 billion
FLOPs). The dotted shortcuts increase dimensions. Table 1 shows
more details and other variants.

VS.
ResNet

He et al., CVPR 2015
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Squeeze-and-Excitation Blocks

F,. (W)
(I ——— I

X U /jﬁﬁbl
1x1xC 1x1xC ///
7/ X
o conv B F/\
Residual
w' W
(e ¢ C
c’ X
_ _ s s
U, = V. % X = E V. *X". ResNet Module
s=1

Zo=Eyy(thp) = T WZZUC 7 )

i=1 3=1

s=Fc(z2,W)=0(g9(z, W)) = 0(W26(W;12))

_—~—

Xe = Fscale(uc, Sc) = S¢ Ug,

—~

X = [X1,X5,s = ;%0

Hu et al., CVPR 2018.

17

Residual

HxWxC

Global pooling

¥

FC

+

ReLU

!

FC

i

Sigmoid

Scale

HXWXC

HXWXC

1x1xC
¢
1%l X=—
=
c
I1xX1x—
r
1x1xC

1x1xC
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Double Descent Phenomena

>
o

under-fitting over-fitting

under-parameterized

over-parameterized

. Test risk Test risk
'CMD '—;,43 “classical” “modern”
'OE QE regime interpolating regime
N
~ o Training risk ~ Training risk:
sweet spot\:. - _ T~ .L/interpolation threshold
Capacity of Capacity of H

Curves for training risk (dashed line) and test risk (solid line). (A) The classical U-shaped risk curve arising from the bias-variance trade-off. (B) The
double-descent risk curve, which incorporates the U-shaped risk curve (i.e., the “classical” regime) together with the observed behavior from using high-

capacity function classes (i.e., the “modern” interpolating regime), separated by the interpolation threshold. The predictors to the right of the interpolation
threshold have zero training risk.

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine learning and the bias-variance tradeoff.
PNAS. 2019.
Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, llya Sutskever. Deep Double Descent: Where Bigger

Models and More Data Hurt. ICLR 2020. 98



Final Remarks: What makes deep learning revive?

® Deep learning is a modern name for deep neural networks

e \Why deep neural networks revive (AlexNet, ResNet, Transformer, GPT-3,
ChatGPT, GPT+4, ...)

O

Good model: has the intrinsic advantage of learning hierarchical distributed feature
representations (CNN, RNN, Transformer)

Powerful computers and big data enable us to build models with huge capacity
Data augmentation (using heuristics to create more data to fill the input data distribution space)

Parameter learning without vanishing gradient or saturated activation functions (rectified linear
hidden units) and regularizations (dropout and batch normalization)

Good open-source tools: cuda-convnet2, Torch, Caffe, TensorFlow, and PyTorch
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Summary

The ongoing Al revolution is driven by deep learning. Hidden units,
backpropagation, convolutions, and attention mechanisms are great
inventions in neural networks.

A deep model + big data + powerful computers -> Success

A quote about machine learning by Prof. Pedro Domingos from University of
Washington, “Learning is more like farming, which lets nature do most of the
work. Farmers combine seeds with nutrients to grow crops. Learners combine
knowledge with data to grow programs.” This is also true for deep learning.

Deep learners should combine their knowledge with large-scale data to grow
programs, encode essential knowledge into network structures, and let
backpropagation and stochastic gradient descent do the heavy lifting. 100



Thank You

Next lecture:

Deep Learning: Part |l
Deep Generative Models - VAE, GAN,
LLMs
Mar 29, 2023
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