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[Adapted from Mishra et al. Nat. BME (’20); Liu et al. PLOS CB (‘21)]



•Data and Signal Processing

•Feature Engineering
•Can we extract meaningful information?

•Modeling
•Can we address real world clinical and biological 
questions? 
•Can we refine phenotype-to-genotype linkages?
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Biosensor and Wearable Time Series
Strategies for Signal Processing
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[NIMH ABCD Wearable Time Series Example]
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As we zoom in, challenges begin to arise



Biosensor and Wearable Time Series
Strategies for Signal Processing
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[NIMH ABCD Wearable Time Series Example]
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Biosensor and Wearable Time Series
Strategies for Signal Processing
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[NIMH ABCD Wearable Time Series Example]
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Challenges

1. Missingness

2. Alignment/Sampling

3. De-noising
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Processing the Data: Missingness
Example 1
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Processing the Data: Missingness
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Processing the Data: Missingness
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Processing the Data: Sampling/Alignment

[Adapted and modified from Snyder Lab MOVES Data]

Example 1
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Processing the Data: Sampling/Alignment

1 2

[Adapted and modified from Snyder Lab MOVES Data]
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Processing the Data: Sampling/Alignment

[Top: Olsen et al. J. Royal Stat Soc. (‘18); Bottom: Giorgino, Jstatsoft (‘19)]
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[Adapted and modified from Snyder Lab MOVES Data]
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Processing the Data: Denoising

[Adapted and modified from SciKit-FDA]
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Processing the Data: Denoising

[Adapted and modified from SciKit-FDA]
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Processing the Data: Denoising

[Adapted and modified from SciKit-FDA]
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Encoded Time Series Retains Signal and Removes Outliers

Similar to an autoencoder architecture



Wearables and Biosensors

Feature Engineering and Modeling
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Wearable Sensors in Biomedical and Clinical Research

[Mishra et al. Nat. BME (‘20)]



Data Collected
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[Mishra et al. Nat. BME (‘20)]

Clinical Metadata



Interpretable Feature Engineering

• Resting Heart Rate (RHR)

• Heart rate over steps ratio (HROS)
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[Mishra et al. Nat. BME (‘20)]



Flu
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[Mishra et al. Nat. BME (‘20)]



Wearable Sensors in Biomedical and Clinical Research:
Evaluating Personalized Interventions
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[Liu*, Spakowicz* et al. PLOS Computational Biology (‘21)]



Bayesian Structural Time Series and Causal Impact
MODELING
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[Broderson et al. Annals of Applied Stat. (’15)]



Using a Bayesian Structural Time Series Framework for 
Modeling Biosensor Data to Evaluate Interventions

𝑦′𝑡 = 𝜇𝑡 + 𝑋𝑡𝛽 + 𝑒𝑡, 𝑒𝑡 ~ 𝑁(0, 𝜎𝑒
2)

𝜇𝑡+1 = 𝜇𝑡 + 𝛿𝑡, 𝛿𝑡 ~ 𝑁(0, 𝜎𝛿
2)

▪ 𝑦𝑡 ∶ weight

▪ 𝑋𝑡 ∶ Covariates (calories, weather, etc.)

▪ 𝑒𝑡 ∶ error term

▪ 𝜇𝑡 ∶ local level (unobserved trend)

▪ 𝛿𝑡 ∶ slope

𝑃 𝑦′
𝑛+1:𝑁

𝑦1:𝑛)𝑦𝑡
𝑦′𝑡

𝑋𝑡

Impact
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[Liu*, Spakowicz* et al. PLOS Computational Biology (‘21)]



Evaluating The Efficacy of Exercise Regimens in Diabetes Patients

HbA1c 8.6% to 6.9% HbA1c 5.3% to 5.2%Validated Blood sugar levels:

Data Processing

29

[Liu*, Spakowicz* et al. PLOS Computational Biology (‘21)]

Green: Glucose

Dotted red: Exercise

Blue confidence: 

Impact of exercise on glucose



Exploring phenotype-to-genotype linkages
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[Adapted from EMBL-EBI and Wikipedia: GWAS]



Exploring phenotype-to-genotype linkages
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Quantitative Traits
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