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An overview of common machine learning paradigms

Sapoval, N., Aghazadeh, A., Nute, M.G. et al. Current progress and open challenges for applying deep learning across the biosciences. Nat Commun 13, 1728 (2022). 



Sapoval, N., Aghazadeh, A., Nute, M.G. et al. Current progress and open challenges for applying deep learning across the biosciences. Nat Commun 13, 1728 (2022). 

An overview of commonly used DL architecture
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ØDeep Supervised Learning: Deep CNN/RNN for image 
classification/sequence classification

ØDeep Unsupervised Learning: Deep Autoencoder, Deep Generative 
Models

ØDeep Reinforcement Learning: AlphaGO, AlphaZero

ØExplainable AI (XAI) in biology

Follow up with Martin’s lecture structure: 



Deep Supervised Learning
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Building blocks of a CNN

Sarvamangala, D.R., Kulkarni, R.V. Convolutional neural networks in medical image understanding: a survey. Evol. Intel. 15, 1–22 (2022). 

CNN is mainly used for applications in image and speech recognition.

What makes CNNs so effective is their ability to learn a sequence of filters to extract 
more and more complex patterns. In particular, these convolutional filters are 
characterized by their compact support, and by the property of being translation-
invariant.
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Examples of COVID-19 in CT and x-ray images. First row: axial COVID-19 CT images with lesions in different positions 
and sizes. Second row: COVID-19 x-ray images. Third row: pneumonia x-ray images.

Example: Deep CNN models for predicting COVID-19 in CT and x-ray images

Chaddad A, Hassan L, Desrosiers C. Deep CNN models for predicting COVID-19 in CT and x-ray images. J Med Imaging (Bellingham). 2021 Jan;8(Suppl 1):014502. 
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Example: Deep CNN models for predicting COVID-19 in CT and X-ray images

Chaddad A, Hassan L, Desrosiers C. Deep CNN models for predicting COVID-19 in CT and x-ray images. J Med Imaging (Bellingham). 2021 Jan;8(Suppl 1):014502. 

Regions of interest (ROI) corresponding to ground-glass opacities (GGO), consolidations, and pleural effusions 
were labeled in 100 axial lung CT images from 60 COVID-19-infected subjects. These segmented regions were 
then employed as an additional input to six deep convolutional neural network (CNN) architectures, pretrained 
on natural images, to differentiate between COVID-19 and normal CT images. 
Also explored the model’s ability to classify x-ray images as COVID-19, non-COVID-19 pneumonia, or normal.



9Shuang Zhang, Rui Fan, Yuti Liu, Shuang Chen, Qiao Liu, Wanwen Zeng, Applications of transformer-based language models in bioinformatics: a survey, Bioinformatics 
Advances, Volume 3, Issue 1, 2023

An overview of important works related to TRANSFORMER in computational 
biology regime
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Example: DNABERT – Transformer model for predicting promoters and identifying 
TFBSs 

Yanrong Ji, Zhihan Zhou, Han Liu, Ramana V Davuluri, DNABERT: pre-trained Bidirectional Encoder Representations from Transformers model for DNA-language in 
genome, Bioinformatics

• Left: DNABERT uses tokenized k-mer sequences as input, which also contains 
a CLS token (a tag representing meaning of entire sentence), a SEP token 
(sentence separator) and MASK tokens (to represent masked k-mers in pre-
training). The input passes an embedding layer and is fed to 12 Transformer 
blocks. 

• Top: DNABERT adopts general-purpose pre-training which can then be fine-
tuned for multiple purposes using various task-specific data. 
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Graph convolution on protein structures. 
Left: Each residue in a protein is a node in a graph where the neighborhood of a node is the set of neighboring 
nodes in the protein structure; each node has features computed from its amino acid sequence and structure, 
and edges have features describing the relative distance and angle between residues. 
Right: Schematic description of the convolution operator which has as its receptive field a set of neighboring 
residues, and produces an activation which is associated with the center residue

Example: Protein Interface Prediction using Graph Convolutional Networks

Alex Fout, Jonathon Byrd, Basir Shariat, and Asa Ben-Hur. 2017. Protein interface prediction using graph convolutional networks. NIPS'17. 
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Example: Protein Interface Prediction using Graph Convolutional Networks

An overview of the pairwise classification architecture. 
Each neighborhood of a residue in the two proteins is processed using one or more graph 
convolution layers, with weight sharing between legs of the network. The activations generated 
by the convolutional layers are merged by concatenating them, followed by one or more regular 
dense layers.

Alex Fout, Jonathon Byrd, Basir Shariat, and Asa Ben-Hur. 2017. Protein interface prediction using graph convolutional networks. NIPS'17. 



Deep Unsupervised Learning
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14https://www.youtube.com/watch?v=ODEP3JhyZq4

https://www.youtube.com/watch?v=ODEP3JhyZq4
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RNA velocity workflow

• Based on the relative abundance of mature (spliced) RNA and unspliced RNA to estimate the 
rate of RNA splicing and degradation

• Use the 2 count matrices to infer the directionality of transcription events within cells

• Phase plots describing the dynamical transcription process -> convert into embeddings 
showing with top 2 PCs 

https://www.youtube.com/watch?v=ODEP3JhyZq4

https://www.youtube.com/watch?v=ODEP3JhyZq4
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Example: DeepVelo – Model Single-cell transcriptomic velocity using VAE

• Gene expression profile of an 
individual cell (𝑥) 

• RNA velocity ∂𝑥/∂𝑡
• Existing methods that assume 

linear gene interactions (i.e., 
∂𝑥/∂𝑡=𝐴𝑥 with matrix A)

• Train a VAE fA to capture the 
nonlinear gene regulatory 
relationships (e.g., multiple 
TFs coactivating gene 
transcription) and map gene 
expression state to the RNA 
velocity, expressed by 
∂𝑥/∂𝑡=𝐟𝐀(𝑥)

Chen Z et. al. DeepVelo: Single-cell transcriptomic deep velocity field learning with neural ordinary differential equations. Sci Adv. 2022
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The red circle represents the phase of drug discovery GANs will impact

• GANs is particularly useful for establishing 
potential directions in scientific study: we 
can generate molecules or try out potential 
protein structures using GANs.

• Molecules that GANs output are rarely 
stable or potentially useful, but we can 
subsequently use other deep learning 
models to screen the few promising 
molecules in a dataset. 

https://towardsdatascience.com/gans-for-driving-biological-research-d1c2d678036c

GANs for Biological Research

https://towardsdatascience.com/gans-for-driving-biological-research-d1c2d678036c


18

The 'generator' produces a specific type of data (e.g., an image, text, or a protein sequence). The 'discriminator" tries to distinguish 
between the artificial data created by the 'generator' and authentic or real data.

Subsequently, the generator uses the feedback provided by the discriminator to generate new data. The generator never processes 
or analyzes real data and the data it produces. Therefore, its learning relies solely on the outcome of the analyses carried out by the 
discriminator.

GANs architecture
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Example: ProteinGAN - A generative adversarial network that generates functional 
protein sequences

• Given a random input vector, the Generator network produces a protein sequence, which is scored by the Discriminator 
network by comparing it to the natural protein sequences. The generator tries to fool the discriminator by generating 
sequences that will eventually look like real ones (the generator never actually sees real enzyme sequences). 

• ProteinGAN learns the evolutionary relationships of protein sequences directly from the amino-acid sequence space and 
creates new, highly diverse sequence variants with natural-like physical properties. 

• 24% those new proteins are experimentally tested to be functional in vitro

Repecka, D., Jauniskis, V., Karpus, L. et al. Expanding functional protein sequence spaces using generative adversarial networks. Nat Mach Intell 3, 324–333 (2021).



Explainable AI (XAI) in biology

20



21

A tradeoff between accuracy vs. interpretability

Su In Lee | Explainable Artificial Intelligence in Biology and Medicine | CGSI 2019



22

• Comprehensibility: The extent to which extracted representations are humanly 
comprehensible, and thus touching on the dimensions of transparency considered 
earlier.

• Fidelity: The extent to which extracted representations accurately capture the 
opaque models from which they were extracted.

• Accuracy: The ability of extracted representations to accurately predict unseen 
examples.

• Scalability: The ability of the method to scale to opaque models with large input 
spaces and large numbers of weighted connections.

• Generality: The extent to which the method requires special training regimes or 
restrictions on opaque models.

Some dimensions to evaluating explainability of a model

Belle Vaishak, Papantonis Ioannis. Principles and Practice of Explainable Machine Learning. Frontiers in Big Data. 2021



23
Belle Vaishak, Papantonis Ioannis. Principles and Practice of Explainable Machine Learning. Frontiers in Big Data. 2021
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Example: An explainable artificial intelligence approach for decoding the enhancer 
histone modifications code and identification of novel enhancers in Drosophila

ChIP-seq data for histone modifications and STARR-seq enhancer annotations are combined and tiled 
into bins covering the Drosophila genome. Using these bins, traditional machine learning models (ML) 
and explainable AI models (XAI) can be trained to predict enhancer locations.

Wolfe, J.C., Mikheeva, L.A., Hagras, H. et al. An explainable artificial intelligence approach for decoding the enhancer histone modifications code and identification 
of novel enhancers in Drosophila. Genome Biol 22, 308 (2021). 
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Example: An explainable artificial intelligence approach for decoding the enhancer 
histone modifications code and identification of novel enhancers in Drosophila

Illustration of rules identified by explainable AI model to classify regions as either enhancers or non-enhancers in 
Drosophila. The rules were determined to be the most effective while remaining explainable when constrained to a 
maximum of three epigenetic modifications per rule, and a maximum of 50 rules. These parameters were chosen to 
ensure that the model was explainable while maintaining a high degree of predictive power.

Wolfe, J.C., Mikheeva, L.A., Hagras, H. et al. An explainable artificial intelligence approach for decoding the enhancer histone modifications code and identification 
of novel enhancers in Drosophila. Genome Biol 22, 308 (2021). 



Thanks for attention!
Q&A
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