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An overview of common machine learning paradigms

Machine learning scenarios

Supervised learning Unsupervised learning Reinforcement learning
cevoe o
X ypre p Agent nvironment
L(y pred;y true) © e
ML algorithm learns by comparing ML algorithm learns without labeled Agent (ML algorithm) learns by
predicted and actual values data (e.g. clustering, embedding) interacting with an environment

Sapoval, N., Aghazadeh, A., Nute, M.G. et al. Current progress and open challenges for applying deep learning across the biosciences. Nat Commun 13, 1728 (2022).



An overview of commonly used DL architecture

Key deep learning architectures
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Graph Generative Adversarial Denoising autoencoders (DAE) are autoencoder models that
NN (GNN) Network (GAN) learn low dimensional embeddings of noisy high dimensional
data, i.e. inputs that differ by a small amount of noise give rise
K Capture graph based Generate samples from to a similar embedding vector.
o dependencies in the data data distribution Attention mechanism mimics cognitive attention by learning
importance weights for the inputs based on the whole input
o context (e.g. in a task of translating codons to amino acids
S !’erform ISEEE Simultanoeusly train attention mechanism will learn to give higher weight to the
ey between nodes in generator and discriminator first two nucleid acids). Attention is the key part of transformer
= alayer models, but can also be applied in conjunction with other

layer types.

Convolutional layers have dimension which indicates the
dimension of learned filters. Thus, we can have a 1-dimensional
convolutional layer for sequences, 2-dimensional layer for
matrices, and so on.

Graph convolutional network (GCN) is a graph neural network
with convolutional layers defined by the topology of the graph.
Thus instead of passing neighboring sequence or matrix entries
through a filter, graph defined neighborhoods are used.
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Sapoval, N., Aghazadeh, A., Nute, M.G. et al. Current progress and open challenges for applying deep learning across the biosciences. Nat Commun 13, 1728 (2022).



Follow up with Martin’s lecture structure:

» Deep Supervised Learning: Deep CNN/RNN for image
classification/sequence classification

» Deep Unsupervised Learning: Deep Autoencoder, Deep Generative
Models

» Explainable Al (XAl) in biology
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Building blocks of a CNN

Input image Convolution Pooling Flattened Fully connected
layers layers layer layers

CNN is mainly used for applications in image and speech recognition.

What makes CNNs so effective is their ability to learn a sequence of filters to extract
more and more complex patterns. In particular, these convolutional filters are

characterized by their compact support, and by the property of being translation-
invariant.

Sarvamangala, D.R., Kulkarni, R.V. Convolutional neural networks in medical image understanding: a survey. Evol. Intel. 15, 1-22 (2022).



Example: Deep CNN models for predicting COVID-19 in CT and x-ray images

Axial COVID19
CT images

images

COVIDI19 x-ray

Pneumonia x-ray
images

Examples of COVID-19 in CT and x-ray images. First row: axial COVID-19 CT images with lesions in different positions
and sizes. Second row: COVID-19 x-ray images. Third row: pneumonia x-ray images.

Chaddad A, Hassan L, Desrosiers C. Deep CNN models for predicting COVID-19 in CT and x-ray images. J Med Imaging (Bellingham). 2021 Jan;8(Suppl 1):014502.



Example: Deep CNN models for predicting COVID-19 in CT and X-ray images

1. CT Scan ‘ 2. Load pretrained network 3. Replace final layers 4. Classification
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Mobile DT
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COVID-19 Non-COVID-19

Regions of interest (ROI) corresponding to ground-glass opacities (GGO), consolidations, and pleural effusions
were labeled in 100 axial lung CT images from 60 COVID-19-infected subjects. These segmented regions were
then employed as an additional input to six deep convolutional neural network (CNN) architectures, pretrained

on natural images, to differentiate between COVID-19 and normal CT images.
Also explored the model’s ability to classify x-ray images as COVID-19, non-COVID-19 pneumonia, or normal.

Chaddad A, Hassan L, Desrosiers C. Deep CNN models for predicting COVID-19 in CT and x-ray images. J Med Imaging (Bellingham). 2021 Jan;8(Suppl 1):014502.



An overview of important works related to TRANSFORMER in computational
biology regime

—{) Sequence analysis
~() Genome analysis
~{) Gene expression
() Proteomics

) Multi-omics

Spatial transcriptomics
—() Biomedical informatics
~() Drug discovery
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Shuang Zhang, Rui Fan, Yuti Liu, Shuang Chen, Qiao Liu, Wanwen Zeng, Applications of transformer-based language models in bioinformatics: a survey, Bioinformatics
Advances, Volume 3, Issue 1, 2023



Example: DNABERT — Transformer model for predicting promoters and identifying
TFBSs

b Classification result of Classification results of
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Yanrong Ji, Zhihan Zhou, Han Liu, Ramana V Davuluri, DNABERT: pre-trained Bidirectional Encoder Representations from Transformers model for DNA-language in 10

genome, Bioinformatics



Example: Protein Interface Prediction using Graph Convolutional Networks
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Graph convolution on protein structures.
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Left: Each residue in a protein is a node in a graph where the neighborhood of a node is the set of neighboring
nodes in the protein structure; each node has features computed from its amino acid sequence and structure,
and edges have features describing the relative distance and angle between residues.

Right: Schematic description of the convolution operator which has as its receptive field a set of neighboring
residues, and produces an activation which is associated with the center residue

Alex Fout, Jonathon Byrd, Basir Shariat, and Asa Ben-Hur. 2017. Protein interface prediction using graph convolutional networks. NIPS'17.
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Example: Protein Interface Prediction using Graph Convolutional Networks

Graph Graph

Convolution Convolution e Merge \
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An overview of the pairwise classification architecture.
Each neighborhood of a residue in the two proteins is processed using one or more graph
convolution layers, with weight sharing between legs of the network. The activations generated

by the convolutional layers are merged by concatenating them, followed by one or more regular
dense layers.

Alex Fout, Jonathon Byrd, Basir Shariat, and Asa Ben-Hur. 2017. Protein interface prediction using graph convolutional networks. NIPS'17.
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Deep Unsupervised Learning



RNA Velocity

Single-cell RNA-seq provides only static
snapshots of cellular states at the moment of the
measurement.

RNA velocity (La Manno et al. 2018; Bergen et al.

2020) can predict the direction and speed of
movement of cells in transcriptome space.

Application: analysis of cell dynamics —

developmental biology, tissue regeneration,
disease progression

https://www.youtube.com/watch?v=0DEP3JhyZq4

14


https://www.youtube.com/watch?v=ODEP3JhyZq4

RNA velocity workflow
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* Based on the relative abundance of mature (spliced) RNA and unspliced RNA to estimate the
rate of RNA splicing and degradation

e Use the 2 count matrices to infer the directionality of transcription events within cells

* Phase plots describing the dynamical transcription process -> convert into embeddings
showing with top 2 PCs

https://www.youtube.com/watch?v=0DEP3JhyZq4 15



https://www.youtube.com/watch?v=ODEP3JhyZq4

Example: DeepVelo — Model Single-cell transcriptomic velocity using VAE

DeepVelo methodology
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Chen Z et. al.

DeepVelo: Single-cell transcriptomic deep velocity field learning with neural ordinary differential equations. Sci Adv. 2022

Gene expression profile of an
individual cell (x)

RNA velocity 0x/0t

Existing methods that assume
linear gene interactions (i.e.,
0x/0t=Ax with matrix A)
Train a VAE f, to capture the
nonlinear gene regulatory
relationships (e.g., multiple
TFs coactivating gene
transcription) and map gene
expression state to the RNA
velocity, expressed by
0x/ot=f4(x)

16



GANs for Biological Research

* GANs is particularly useful for establishing
potential directions in scientific study: we
can generate molecules or try out potential
protein structures using GANs.

* Molecules that GANs output are rarely
stable or potentially useful, but we can
subsequently use other deep learning
models to screen the few promising
molecules in a dataset.

Stage Compounds
Discovery Q Tens of thousands
Preclinical

Clinical
Approval

The red circle represents the phase of drug discovery GANs will impact

https://towardsdatascience.com/gans-for-driving-biological-research-d1c2d678036¢ 17



https://towardsdatascience.com/gans-for-driving-biological-research-d1c2d678036c

GANSs architecture
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The 'generator' produces a specific type of data (e.g., an image, text, or a protein sequence). The 'discriminator" tries to distinguish
between the artificial data created by the 'generator' and authentic or real data.

Subsequently, the generator uses the feedback provided by the discriminator to generate new data. The generator never processes
or analyzes real data and the data it produces. Therefore, its learning relies solely on the outcome of the analyses carried out by the
discriminator.

18



Example: ProteinGAN - A generative adversarial network that generates functional
protein sequences

Random

vectors Natural protein sequences
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Generated protein sequences

Given a random input vector, the Generator network produces a protein sequence, which is scored by the Discriminator
network by comparing it to the natural protein sequences. The generator tries to fool the discriminator by generating
sequences that will eventually look like real ones (the generator never actually sees real enzyme sequences).

ProteinGAN learns the evolutionary relationships of protein sequences directly from the amino-acid sequence space and
creates new, highly diverse sequence variants with natural-like physical properties.

* 24% those new proteins are experimentally tested to be functional in vitro

19
Repecka, D., Jauniskis, V., Karpus, L. et al. Expanding functional protein sequence spaces using generative adversarial networks. Nat Mach Intell 3, 324-333 (2021).



Explainable Al (XAl) in biology



A tradeoff between accuracy vs. interpretability
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21
Su In Lee | Explainable Artificial Intelligence in Biology and Medicine | CGSI 2019



Some dimensions to evaluating explainability of a model

e Comprehensibility: The extent to which extracted representations are humanly
comprehensible, and thus touching on the dimensions of transparency considered
earlier.

e Fidelity: The extent to which extracted representations accurately capture the
opague models from which they were extracted.

e Accuracy: The ability of extracted representations to accurately predict unseen
examples.

e Scalability: The ability of the method to scale to opaque models with large input
spaces and large numbers of weighted connections.

e Generality: The extent to which the method requires special training regimes or
restrictions on opaque models.

22
Belle Vaishak, Papantonis loannis. Principles and Practice of Explainable Machine Learning. Frontiers in Big Data. 2021



Map of Explainability Approaches " |

Explainability Principles (examples)
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Belle Vaishak, Papantonis loannis. Principles and Practice of Explainable Machine Learning. Frontiers in Big Data. 2021



Example: An explainable artificial intelligence approach for decoding the enhancer
histone modifications code and identification of novel enhancers in Drosophila

MACHINE LEARNING
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ChlP-seq data for histone modifications and STARR-seq enhancer annotations are combined and tiled
into bins covering the Drosophila genome. Using these bins, traditional machine learning models (ML)

and explainable Al models (XAl) can be trained to predict enhancer locations.

Wolfe, J.C., Mikheeva, L.A., Hagras, H. et al. An explainable artificial intelligence approach for decoding the enhancer histone modifications code and identification 24

of novel enhancers in Drosophila. Genome Biol 22, 308 (2021).



Example: An explainable artificial intelligence approach for decoding the enhancer
histone modifications code and identification of novel enhancers in Drosophila
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Illustration of rules identified by explainable Al model to classify regions as either enhancers or non-enhancers in
Drosophila. The rules were determined to be the most effective while remaining explainable when constrained to a
maximum of three epigenetic modifications per rule, and a maximum of 50 rules. These parameters were chosen to
ensure that the model was explainable while maintaining a high degree of predictive power.

Wolfe, J.C., Mikheeva, L.A., Hagras, H. et al. An explainable artificial intelligence approach for decoding the enhancer histone modifications code and identification 25
of novel enhancers in Drosophila. Genome Biol 22, 308 (2021).






