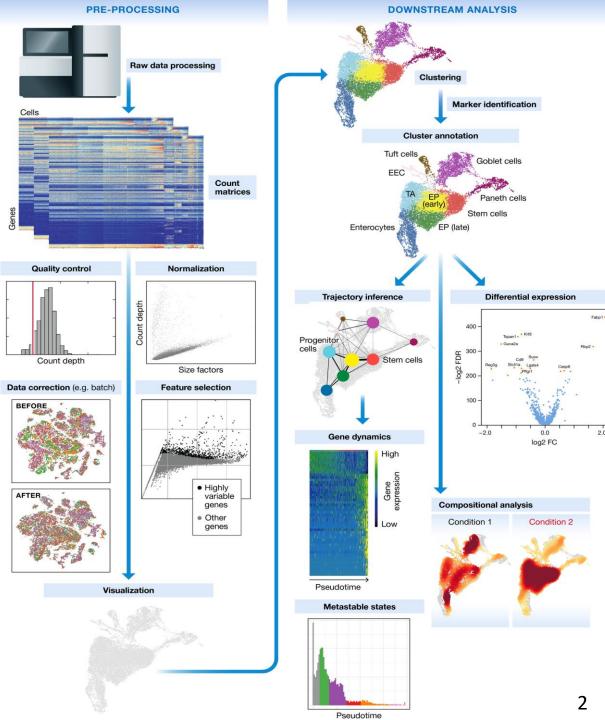
Biomedical Data Science: Single Cell Workshop

Donglu Bai TA Lecture for CBB 752 Biomedical Data Science: Mining and Modeling Spring, 2023 Yale University

Single-cell RNA-seq workflow

- Generation of the count matrix
- Quality control of the raw counts filter out poor quality cells
- **Clustering of filtered counts:** (cell types = different clusters)
- Marker identification and cluster annotation: identify gene markers for each cluster

Biological replicates are needed!



Luecken, MD and Theis, FJ. Current best practices in single-cell RNA-seq analysis: a tutorial, Mol Syst Biol 2019 (doi: https://doi.org/10.15252/msb.20188746)

Quality control set up

Goal:

- To filter the data to only include true cells that are of high quality
- To identify any failed samples

Generate quality metrics

Example dataset: comprised of pooled peripheral blood mononuclear cells from eight lupus patients, split into control and interferon beta-treated (stimulated) conditions

*	orig.ident $\ \ $	nCount_RNA 🌐	nFeature_RNA 🍦
ctrl_AAACATACAATGCC	ctrl_raw_feature_bc_matrix	2344	874
ctrl_AAACATACATTTCC	ctrl_raw_feature_bc_matrix	3125	896
Sample id		# of UMIs/cell	l # of genes/cel

Additional metrics:

- 1. Number of genes detected per UMI (novelty score)
- 2. Mitochondrial ratio

Quality control set up

• Novelty score

of detected genes/UMI = # of genes/cell / # of UMIs per cell

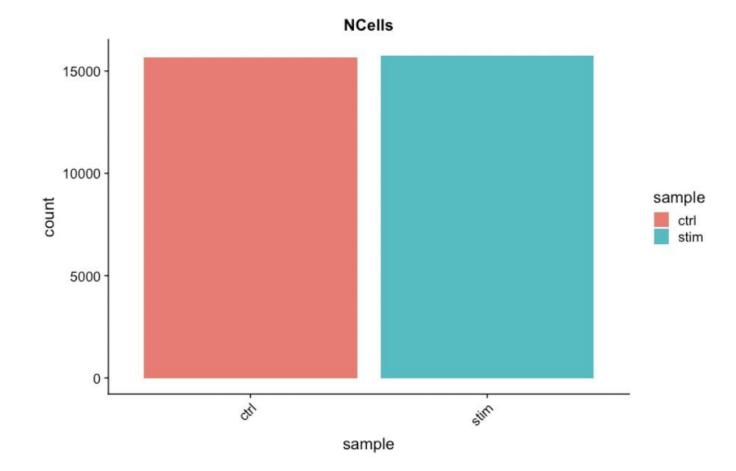
- Mitochondrial Ratio
- PercentageFeatureSet() searches for gene identifiers that begin with MT-

- Questions to consider:
- Why aren't we checking for doublets?
- What does high mitochondrial gene expression indicate?

Cell counts

-For this experiment, between 12,000-13,000 cells are expected

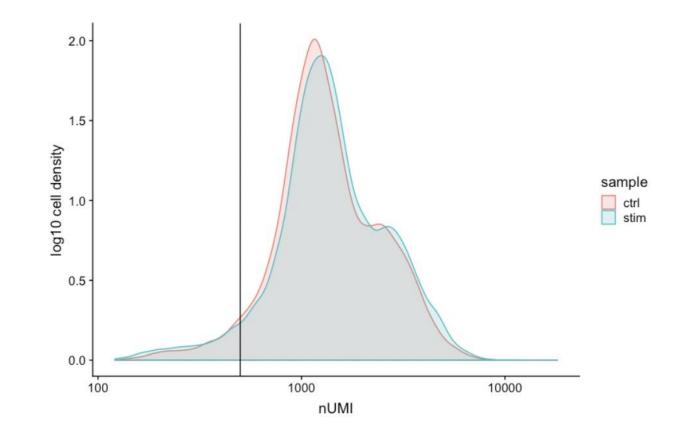
-We see over 15,000 cells per sample, which is quite a bit more than the 12-13,000 expected. We have some junk 'cells' present.



UMI counts (transcripts) per cell

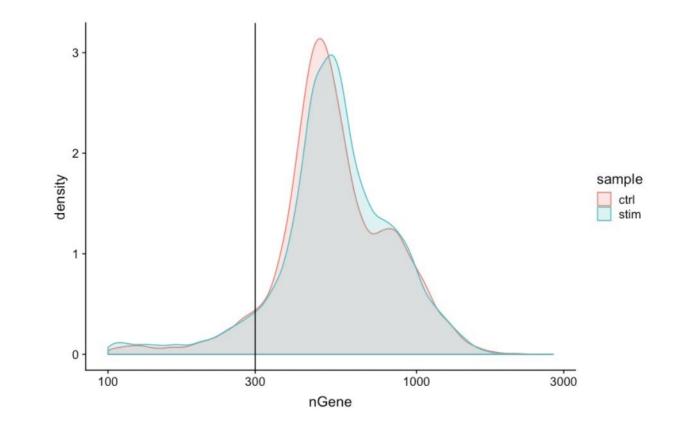
-The UMI counts per cell should generally be above 500, that is the low end of what we expect.

-Most cells in both samples have 1000 UMIs or greater



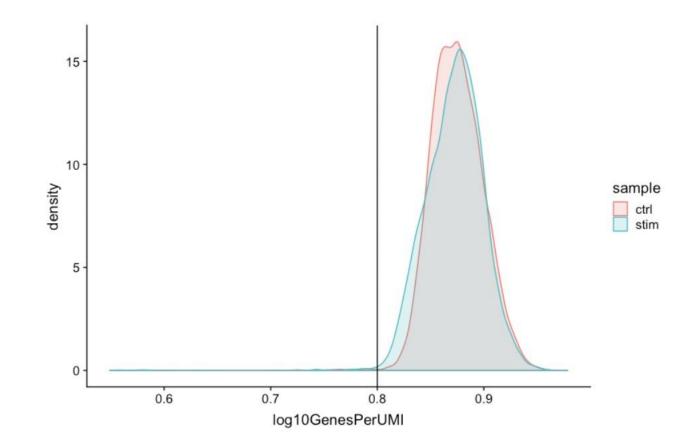
Genes detected per cell

-Similar expectations for gene detection as for UMI detection



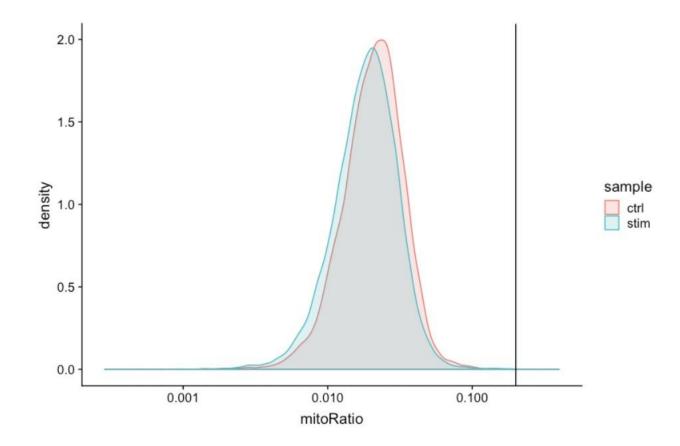
Complexity -Novelty score for assessing how complex the RNA species are

-Generally, we expect the novelty score to be above 0.8 for good quality cells



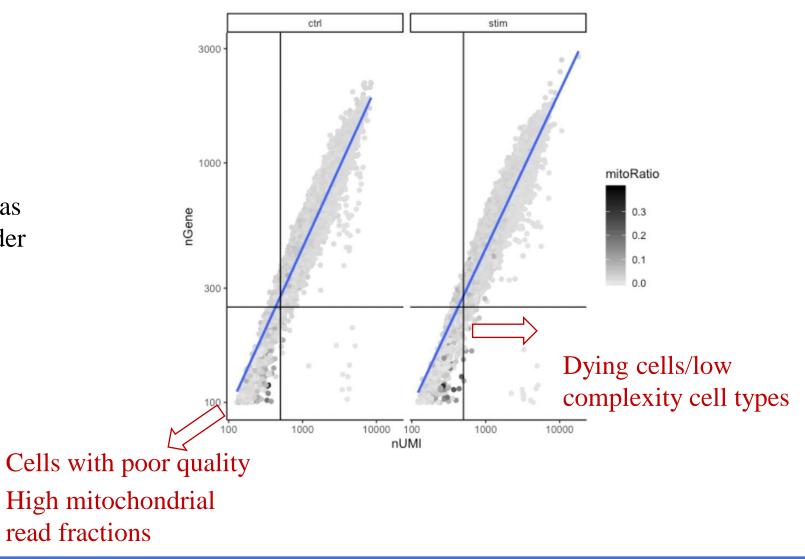
Mitochondrial counts ratio

-define poor quality samples for mitochondrial counts as cells which surpass the 0.2 mitochondrial ratio mark



Joint filtering effects

-A general rule of thumb is to set thresholds for individual metrics as permissive as possible and consider the joint effects of these metrics



Filtering

Cell-level filtering

of UMI >500
of Gene >250
-log10GenesPerUMI >0.8
-mitoRatio <0.2

Gene-level filtering -remove genes with zero counts from our data

counts <- GetAssayData(object = filtered_seurat, slot = "counts")</pre>

nonzero <- counts > 0

-output a logical matrix for each gene on if there are more than zero counts per cell
-keep only genes which are expressed in 10 or more cells; remove zero count

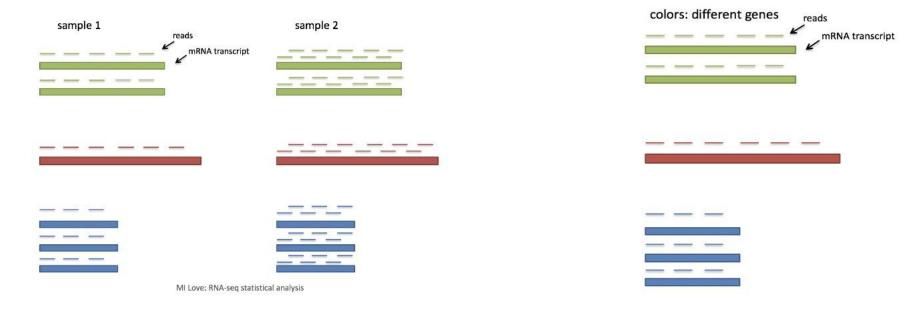
Sums all TRUE values and returns TRUE if more than 10 TRUE values per gene
keep_genes <- Matrix::rowSums(nonzero) >= 10

Only keeping those genes expressed in more than 10 cells
filtered_counts <- counts[keep_genes,]</pre>

Normalization and regressing out unwanted variation

Main factors to consider

-Sequencing depth



-Gene length

Normalization and regressing out unwanted variation

Methods for scRNA-seq normalization

-Scaling

multiply each UMI count by a cell specific factor to get all cells to have the same UMI counts

(not interested in comparing absolute counts between cells)

-Transformation

Pearson residuals for transformation

(construct GLM for each gene with UMI as the response and sequencing depth as the explanatory variable to obtain residuals with normalized data values)

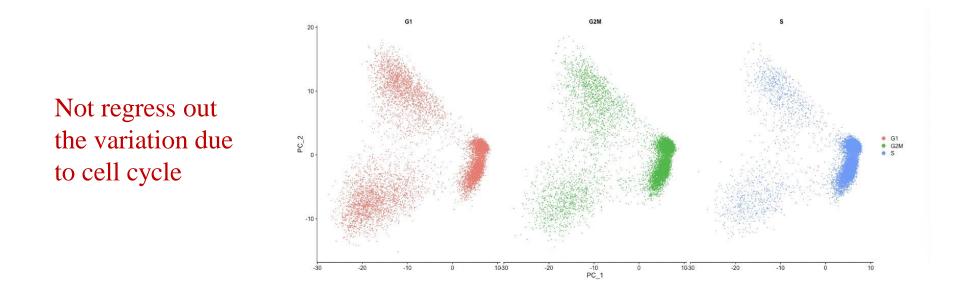
Normalization and regressing out unwanted variation

Explore sources of unwanted variation

-One most common biological data correction (uninteresting variation) is the effects of the cell cycle on the transcriptome

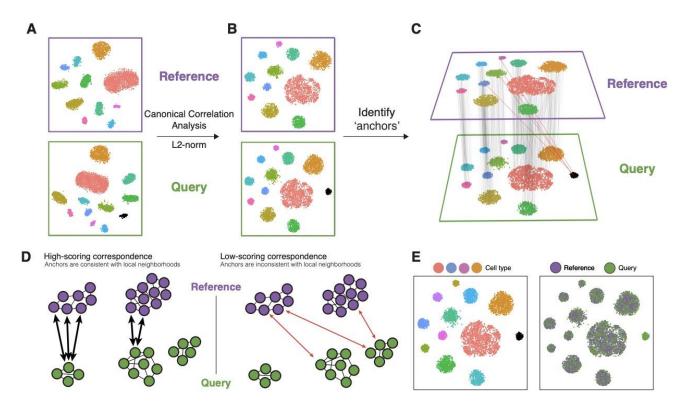
-Explore effects of cell cycle (CellCycleScoring() calculates cell phase scores)

-Determine if cell cycle is a major source of variation in our dataset using PCA



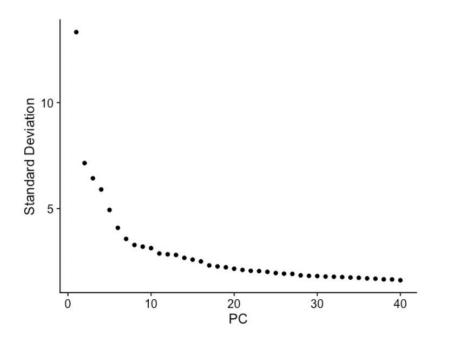
Integration

-Integrate the cells across conditions to ensure that cells of the same cell type cluster together (identify cell types that are present in all conditions for interpretable downstream analysis)



Clustering

Identify significant PCs



Clustering methods

-K-means clustering

Measure of similarity: Euclidean distance Quality function: Within cluster distance

-Graph-based clustering Memory effectiveness: Current methods aim to build sparse graphs Curse of dimensionality: All data become sparse in high-dimensional space

Spectral clustering

-Pre-processing

build Laplacian matrix L of the graph G -Decomposition

Find eigenvalues and eigenvectors Map vertices to corresponding components of second smallest eigenvectors

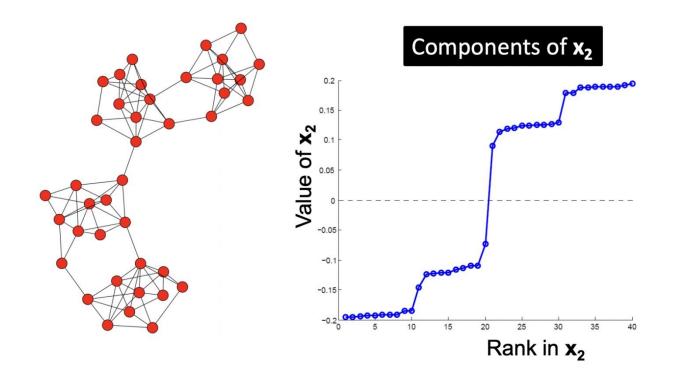
-Grouping

Identify clusters by splitting the sorted vector in two (split at 0 or median value) **Partition into k clusters**

-Recursive bi-partitioning

-Cluster multiple eigenvectors

Avoids the curse of dimensionality by projecting data into lower-dimensional space

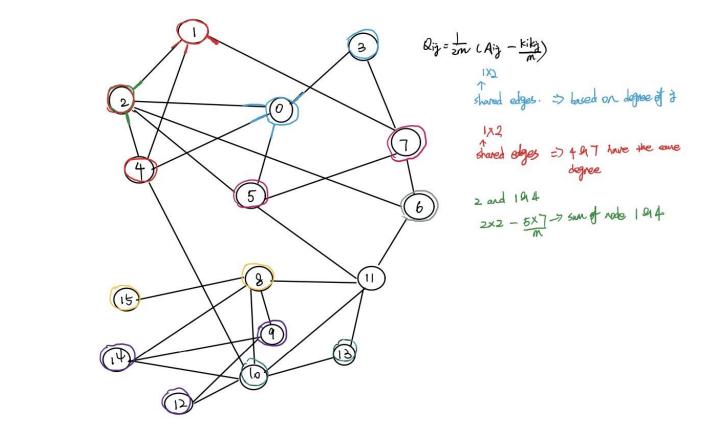


Louvain clustering

-The optimization of modularity

 $Q=rac{1}{2m}\sum_{ij}\left[A_{ij}-rac{k_ik_j}{2m}
ight]$

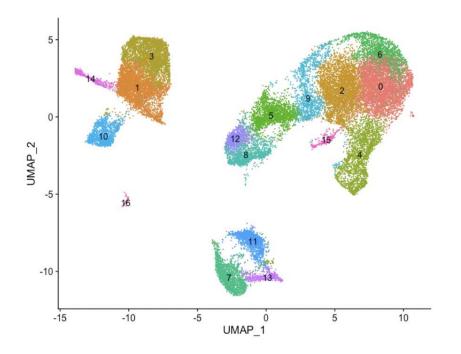
First small communities are found by optimizing modularity locally on all nodes; then each small community is grouped into one node and the first step is repeated



No need to specify k

Clustering quality control

Exploring known cell type markers



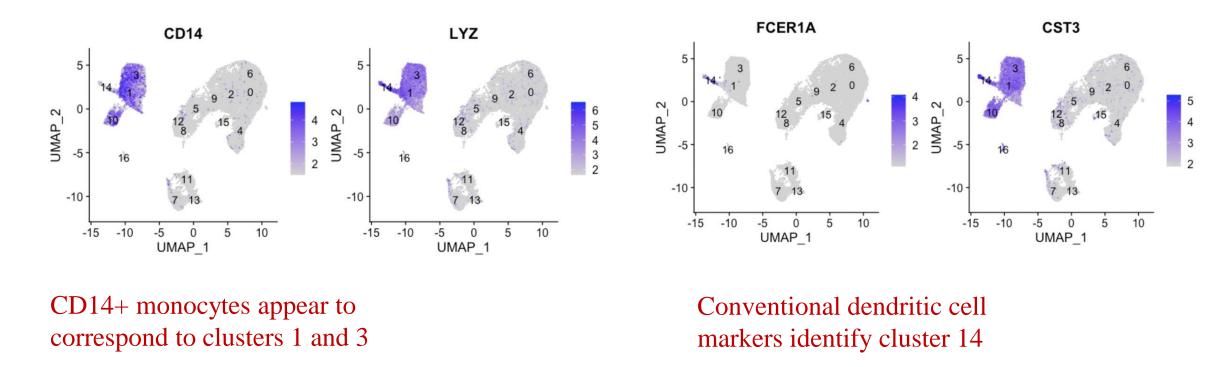
Cell Type	Marker	
CD14+ monocytes	CD14, LYZ	
FCGR3A+ monocytes	FCGR3A, MS4A7	
Conventional dendritic cells	FCER1A, CST3	
Plasmacytoid dendritic cells	IL3RA, GZMB, SERPINF1, ITM2C	
B cells	CD79A, MS4A1	
T cells	CD3D	
CD4+ T cells	CD3D, IL7R, CCR7	
CD8+ T cells	CD3D, CD8A	
NK cells	GNLY, NKG7	
Megakaryocytes	PPBP	
Erythrocytes	HBB, HBA2	

Explore cell type identities by looking for known markers

Clustering

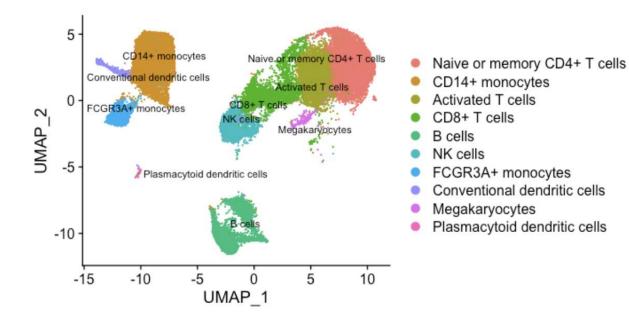
Exploring known cell type markers

The FeaturePlot() from Seurat makes it easy to visualize a handful of genes
The combined expression of our chosen positive or negative markers should give us an idea of which cluster corresponds to which cell type



Clustering

Exploring known cell type markers



-Experimentally validate intriguing markers

Explore a subset of cell types to discover subclusters of cells
Perform differential expression analysis between control and

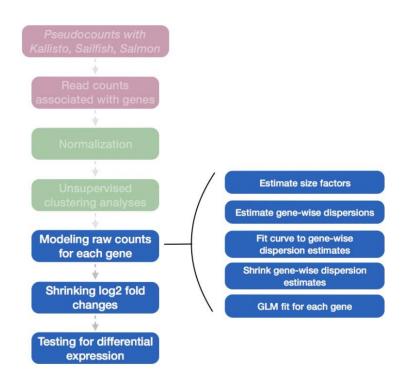
stimulations

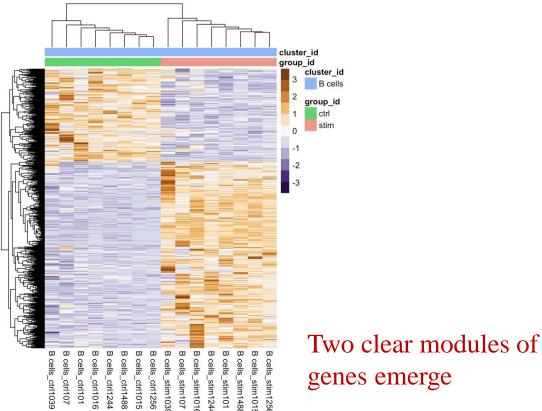
-Trajectory analysis or lineage tracing

DE analysis

DESeq2 for pseudobulk DE analysis

-normalizes the count data to account for differences in library sizes and RNA composition between samples





Any question?

Thanks for attention!