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61

want to do more to
protect their privacy

96

of Americans shop
online

36%

feel they don't have
a choice in how apps
can use their data

70%

American adults use
social media

89.4%

of American surf
the internet

91~ 54

feel they have of Americans
“lost control” over worry about their
their data privacy online privacy and
data security

Sources: Pew Research Center, BigCommerce, Internet World Stats, Mobile Ecosystem Forum 2018, EpressVPN]



Where is all the health care
data coming from?
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What is privacy anyway?

* “the claim of individuals, groups, or institutions to determine for
themselves when, how, and to what extent information about them
is communicated to others” — Alan Westin (1967)

- Ownership: ““personal data’ means any information relating to an
identified or identifiable natural person (‘data subject’)” — GDPR
(2018)

. consent, the rights to be informed, of controlling/restricting access, of
rectification, and erasure



Who owns your health data?

* Legally, varies by state, but usually, not the patients
* In most states, legal ownership still resides in your healthcare provider

* HIPAA establishes standards for protecting “individually identifiable
health information”, and patients can “inspect, review and receive a
copy of his or her own medical records and billing records”



HIPAA PHI for de-identification

1. Names;

2. All geographical subdivisions smaller than a State, including street address, city, county, precinct, zip code, and their
equivalent geocodes

3. All elements of dates (except year) for dates directly related to an individual, including birth date, admission date,
discharge date, date of death;

4. Phone numbers;

5. Fax numbers;

6. Electronic mail addresses;

7. Social Security numbers;

8. Medical record numbers;

9. Health plan beneficiary numbers;

10. Account numbers;

11. Certificate/license numbers;

12. Vehicle identifiers and serial numbers, including license plate numbers;

13. Device identifiers and serial numbers;

14. Web Universal Resource Locators (URLs);

15. Internet Protocol (IP) address numbers;

16. Biometric identifiers, including finger and voice prints;

17. Full face photographic images and any comparable images; and

18. Any other unique identifying number, characteristic, or code

https://cphs.berkeley.edu/hipaa/hipaal8.html



Re-identification using genetic data

Ehe New York Eimes

Us.

How a Genealogy Site Led to the Front Door of
the Golden State Killer Suspect

Investigators used DNA from crime scenes and plugged that genetic
profile into an online genealogy database, tracing DNA to the suspect,
Joseph James DeAngelo.

By Thomas Fuller

PRINTEDITION Genealogy Site Led to the Suspect’s Front Door | April 27, 2018,

Page A19
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The Golden State Killer Is Tracked Through a “?H L -
Thicket of DNA, and Experts Shudder & K% 58 KX KX 58 BB
The arrest of a suspect has set off alarms among some scientists and -

. . . A hit 080 X3 an da
ethicists worried that consumer DNA may be widely accessed by law 1218 -2 3o
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By Gina Kolata and Heather Murphy

prRINTEDITION Stores of DNA That Anybody Can Pore Over  April 28, 2018,
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Table 2

List of popular DTC companies (in alphabetical order) providing health-related services based on

genomic data.
Year Number of
DTC Company . Main Services
Founded Individuals
Medical, Genealogical, Personal
23andMe (hitps:/amany 23andme com) 2006 =10 Millions
Ancestry
AncestryDINA s/ A ancestry.com Genealozical, Personal Ancestry
) Iy (http 2002 =16 Millions gical Iy
{dna’) (Autosomal only)
FamilyTreeDINA Genealogical, Personal Ancestry
) 19909 =1.1 Million B
(https-/wwnw familytreedna com) (Autosomal only)
GEDmatch -/www gedmatch com) 2010 >1.3 Million Genetic Genealogy Search
MMyHeritage Genealogical, Personal Ancestry
. Ita.g ) 2003 =3 Million B
(hitps-/www myheritage com} (Autosomal only)

Bonomi et al. Nature Genetics (2020)
https://www.sciencenews.org/article/genetic-genealogy-forensics-top-science-stories-2018-yir

Maternal great grandparents

Paternal
grandmother




Identity inference of genomic data using long-range fa-
milial searches

YAMIV ERLICH TAL SHOR .[TSIK PE'ER AMND SHAI CARMI

SCMEMNCE - 11 0ct 2018 - Vol 362, Issue 6415 - pp. 690-694 - DOE 10.1126/science.aaud332
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Biomedical data: To share ... or not?
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Privacy vs Utility
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Privacy leakage in functional genomics

GWAS
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Variants Traits

S

Mendelian Randomization

On Sharing Quantitative Trait GWAS Results . SIPIPRING T
in an Era of Multiple-omics Data and the Limits Bayesian method to predict individual SNP genotypes
from gene expression data

of Genomic Privacy

Hae Kyung Im,'* Eric R. Gamazon,? Dan L. Nicolae,234 and Nancy J. Cox3* Eric E Schadt'~, Sangsoon Woo>** & Ke Hao'-**

The American Journal of Human Genetics 20, 591-598, April 6, 2012 NATURE GENETICS VOLUME 44 | NUMBER 5 | MAY 2012
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Linking Attacks: Case of Netflix Prize

IETFL) IMDh

Names available for many users!

NTFLX-0 NTFLX-19 10/12/2008 IMDB-0 IMDB-173 4/20/2009 5
NTFLX-1 NTFLX-116 4/23/2009 3 MDEA IMDBAS 10/18/2008 0
NTFLX-2 NTFLX-92 5/27/2010 2 IMDB.2 IMDB.-341 st ]
NTFLX-1 NTFLX-666 6/6/2016 5

* Many users are shared
* The grades of same users are correlated
* Auser grades one movie around the same date in two databases

Anonymized Netflix Prize Training Dataset
made available to contestants



Linking Attacks: Case of Netflix Prize

m Names available for many users!

NTFLX-2 NTFLX-92 5/27/2010

IMDB-2 IMDB-341 5/27/2010 -
NTFLX-1 NTFLX-666 6/6/2016 5

* Many users are shared

+ The grades of same users are correlated

* A user grades one movie around the same date in two databases
* IMDB users are public

* NetFLIX and IMdB moves are public
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Linking attack: genotype can be linked to reveal phenotypes

Noisy attacked database D: Noisy data as information 1:
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Latent functional risk in genomics data
manifests over time
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Differential privacy o] e
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A mathematical definition for privacy that provides a provable
guarantee for the degree of privacy protection
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Privacy-preserving Binary Alignment Mapping (pBAM)
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Privacy-preserving Binary Alignment Mapping (pBAM)

(grounded in privacy and utility)
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Privacy & Security



Privacy is different than Security

* Collection of personal
information

Security

* Using and disclosing personal
information in authorised

manner

Confidentiality:
data being stored is
safe from unauthorised
access and use

Protection of
personal
information

* Data quality
* Integrity: data is reliable
and accurate

* Access to personal
information

* Availability: data is available for
use when it is needed

Figure: https://www.davidfroud.com/information-security-vs-privacy-are-the-
lines-blurring/
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Biomedical data storage needs

Data integrity: ensuring accuracy and reliability for data during its
entire life cycle

- Access control: appropriate access to those who need it, and not to
those who don’t

- Ownership rights: ability to access, create, modify, package, derive
benefit from, sell, or remove the data, and also the right to assign
these access privileges to others



Blockchain can be useful for data storage/sharing

Why?

* Decentralization - information on a blockchain is distributed across a network of computers,
prevents a single point of failure

* Immutability - once data is added to the blockchain, it cannot be altered or removed.
* Auditability - the ability to easily track and verify the history of the blockchain

Blockchain has many potential non-financial applications

Bloomberg

South Korea Aims to Boost Economy
With Digital ID on Blockchain

= Government to allow smartphones to replace existing ID cards
m Korea sees economic value of digital IDs at around 3% of GDP

Pharmacy

The next big thing in pharmacy
supply chain: Blockchain

With $200 billion lost to counterfeit drugs annually and
patient safety issues, a chain-of-custody log that blockchain
could enable holds promise.

By Sam Kim

October 16, 2022 at 5:00 PM EDT By Bill Siwicki | December 12, 2017 | 10:26 AM

25



Blockchain:

* Distributed ledgers of information

ra ®@- E * Synchronized across all participants
* Cryptographic links for data immutability
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Data
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’ What i1s blockchain?
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Blockchain: a solution for EHR sharing

Data owner
(eg, patient) Hospital
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Ng et al. Lancet Digital Health (2021)
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Contact tracing

Patient with COVID-19 Patient identifies contacts Contact triaged for
interviewed assignment

Interview-based

https://www.cdc.gov/coronavirus/2019-ncov/global-covid-19/contact-tracing-workflow.html

Contact assigned to local
contact tracer

Contact notified

O

S| =

App-based

':: \\ &

When A and B meet, their phones exchange a key code

.
0

(4]
l..l

When A becomes infected, he updates his status in the app and
gives his consent to share his key with the database

5]

(6]

d

So) 1_
0> e@ ' 1

Q\

B’s phone regularly downloads the database to check
for matching codes. It alerts her that somebody she has

been near has tested positive

Source: Apple/Google

(B[B[C]
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Utility practically

Exposure notification activation status by state

C o Exposure notification systems are widely available in 25 states and D.C.
Americans Split on P g ’
5 Mo state app State data not available App in pilot mode Under 5% [ 510% 10-15%
ContaCt TraC|ng App 1520% [20-25% [ 2530% [ Over30%

Percentage of U.S. smartphone users who would
or wouldn't use a contact tracing app for COVID-19

Will Use
50% ® 17%
Will Use Definitely

® 32%
Probably

Won't Use
® 20%
Definitely

® 30%
Probably

50%
Won't Use

Survey conducted between April 21-26 with a national sample
size of 793 smartphone users

Sources: Washington Post, University of Maryland

©@®O statista %a

MNorth Dakota’s figure represents active users, not tofal downloads. For 0.C.,, the broader metro area population was
used (rather than District residents only) because anyone living/working in D.C. may use this EN sysfem.

Map: Betsy Ladyzhets / MIT Technology Review - Source: State public health departments, US Census - Get the data - Created
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