
Genomics Part II

Applications of Sequencing Technology

Biomedical Data Science: Mining and Modeling CB&B 752 • MB&B 452 Matt Simon 1/25/23

Overview

- Genomics I (Monday's lecture): Focus on sequencing technology and genomes.
- Genomics II: (Today's lecture): Focus on applications of sequencing technology.
 - 1. Annotation of the genome in chromatin
 - 2. RNA-seq methods and applications
 - 3. Topics suggested on Monday.

What types of genomic annotation do we have/want?

~3 billion bp

ARAMANI CACITA TITOTANI CIGITA GIR GIRATTICANI TITOTANI ARACCITRANI GIRATTICANI CICIA GIRATTICAN

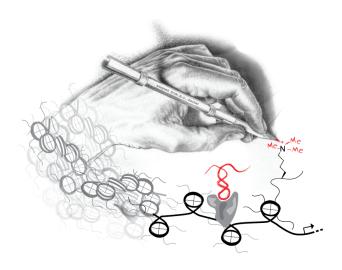
Genes:

- Coding, noncoding, miRNA, etc.
- Isoforms
- Expression

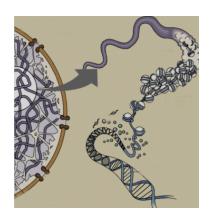
Genetic variation:

- SNPs and CNVs

Sequence conservation


Regulatory sequences:

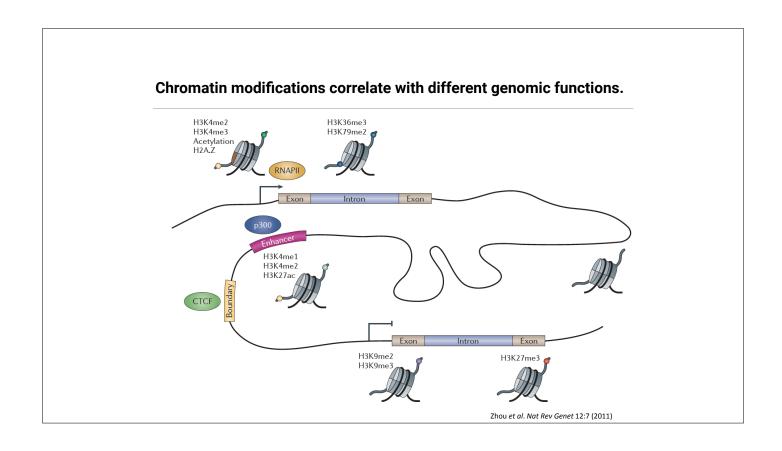
- Promoters
- Enhancers
- Insulators

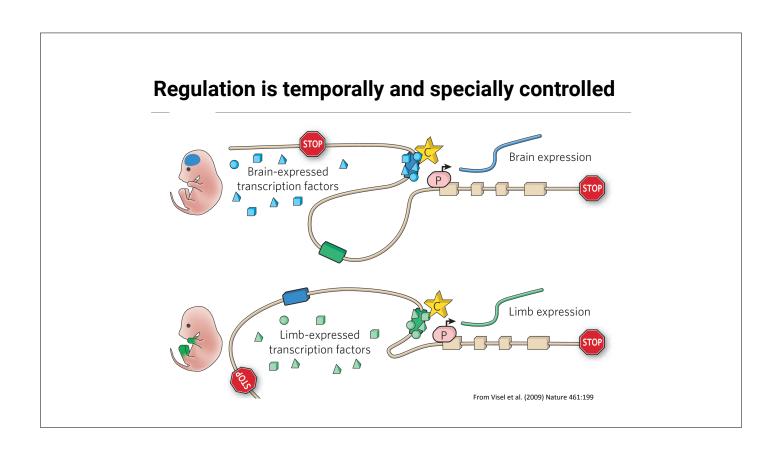

Epigenetics:


- DNA methylation
- Chromatin

Part 1. How do cells annotate their genomes?

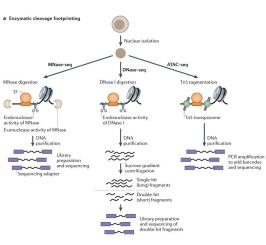
DNA in the cell is packaged into chromatin





Modeled nucleosome based on Luger et al., Nature 1997 389, 251.

Summary and nomenclature of common covalent modifications.

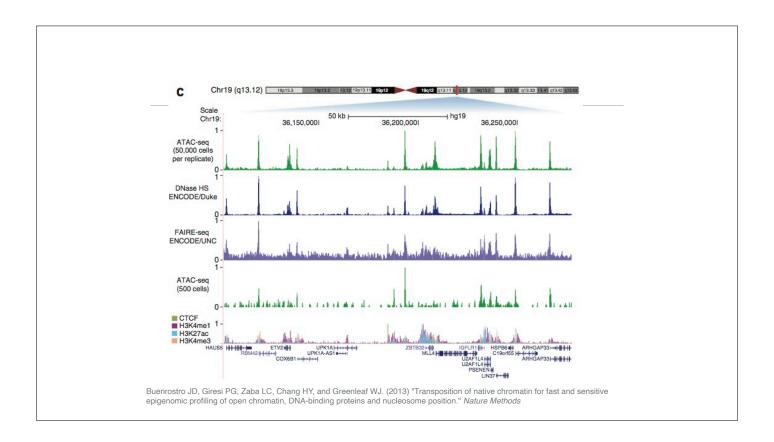

Using sequencing to annotate the genome

- 1. Where are the cis-acting regulatory elements in DNA?
 - A. DNase I hyper-sensitivity mapping (DNase-Seq).
 - B. **FAIRE** to map regulatory elements.
 - C. ATAC-Seq to map regulatory elements.
- 2. How does the chromatin composition vary across the genome?
 - D. ChIP-seq of transcription factors (or in high res, ChIP-exo)
 - E. CUT&RUN and CUT&Tag for small scale/single cell analysis.
- 3. Where is RNA polymerase transcribing?
 - F. **ChIP-Seq** of polymerase.
 - G. GRO-Seq, PRO-Seq, TT-seq and NET-Seq to measure RNA polymerase activity.
- 4. What sites are methylated in the genome?
 - H. Bisulfite-Seq to measure mC levels.
 - I. Methyl-Seq to measure mC levels.
- 5. How is the genome folded in the nucleus?
 - J. Hi-C to measure ligation/contact frequencies.
 - K. 3C/4C/5C to measure looping at specific loci.

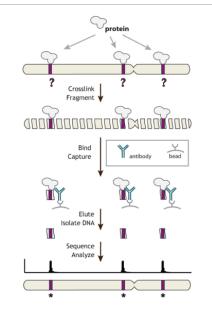
Targeted approaches v Global approaches

Promoter Basal transcriptional machinery Enhancer Insulator (EB) Gene B P Gene A

Using differences in biochemical properties of regulatory elements to identify them by Seq


Zentner GE, Henikoff S. High-resolution digital profiling of the epigenome. Nat Rev Genet. 2014;15: 814–827. doi:10.1038/nrg3798

Transcription factor binding

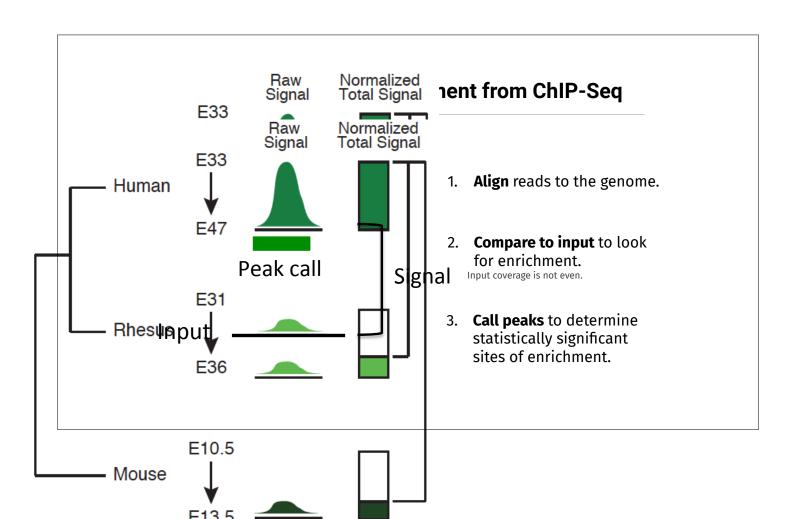

frequently deforms the B-form DNA, making it hypersensitive to DNase I and transposases.

Changes in **accessibility of chromatin** can provide
information about regulation

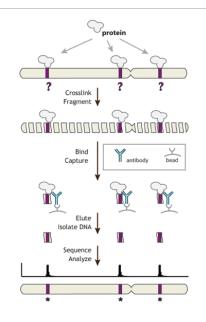
- -ATAC-seq (shown)
- -MNase-Seq (shown).
- -DNase-Seq (shown).
- -FAIRE-Seq (not shown).

Localization of *specific proteins* in the genome with chromatin immunoprecipitation (ChIP-Seq)

 Crosslink the cells with formaldehyde to "fix" factors in place.


Exception: Native ChIP with histone antibodies.

2. **Shear chromatin** to smaller pieces.

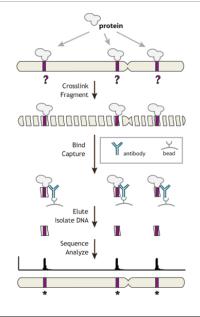

Shear size determines resolution. Note: ChIP-exo uses an exonuclease at a later step to increase resolution.

Enrich target using an antibody.

Enrichment is only as good as the antibody.

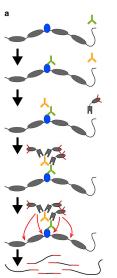
Limitations of ChIP-Seq

- Cross linking efficiency is not necessarily uniform.
- 2. Enrichment is dependent on the quality of antibody.
 - e.g., Site and degree of histone modifications.
- 3. Enrichment is dependent on the accessibility of the epitope.

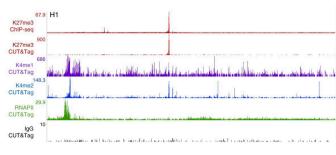

Comparing different sites to each other in the genome can be problematic.

4. Output is **descriptive**.

Hard to infer function without more

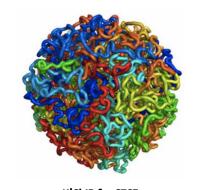

experimentation.

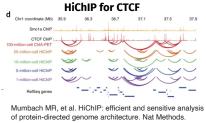
Extensions of ChIP



- Using a nuclease to achieve higher resolution (ChIP-exo).
- Analysis of small samples or single cells (CUT&RUN or CUT&Tag).
- 3. Extension to RNA factors.

CUT&Tag



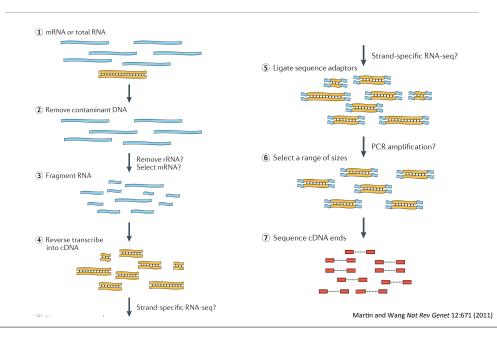

Concept: Use factor-specific antibodies to target a transposes to direct the addition of DNA tags.

Kaya-Okur...& Henikoff (2019) CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat Commun

Mapping genome folding (and rearrangements)

b Ligation product detection methods

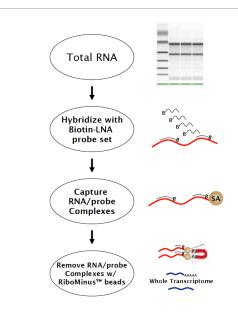
3C	4C	5C	ChIA-PET	Hi-C
One-by-one All-by-all	One-by-all	Many-by-many	Many-by-many	All-by-all
();	(€	DNA shearing Immunoprecipitation	Biotin labelling of ends DNA shearing
PCR or sequencing	Inverse PCR sequencing	Multiplexed LMA sequencing	Sequencing	Sequencing


Dekker, J., Marti-Renom, M. A. & Mirny, L. A.. Nat Rev Genet 14, 390-403 (2013).

Nine principles of sequencing methodology

- 1. **Global approaches** can be (mostly) comprehensive, but require more sequencing.
- 2. **Targeted approaches** can provide better coverage of features of interest but require prior information.
- 3. **Biochemical enrichment** provides many opportunities, but generally requires more starting material.
- 4. **Enzymes** can often provide more sensitive approaches to target specific types of nucleic acids, but are limited by the efficiency and specificity of the enzymes that are available.
- 5. Single nucleotide information can be revealed through **mutations** or the **location of the end** of a read.
- 6. **Chemistry** can often be used to reveal latent information in a sequencing experiment.
- 7. Unique molecular identifiers (UMIs) can provide additional information about each read.
- 8. Many sequencing methods are **modular** and can be combined with one another.
- 9. Each **sequencing platform** has unique advantages and challenges.

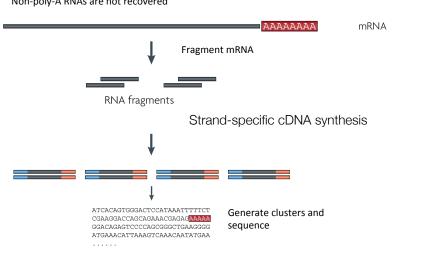
Part 2: RNA-Seq and applications of RNA-Seq



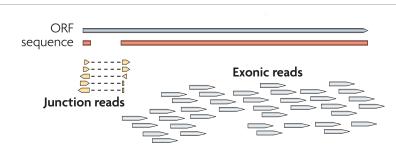
How is RNA-Seq different from standard DNA-seq?

- Wide dynamic range of RNA concentrations.
- RNA is strand specific (unlike dsDNA)
- RNA degrades easily (RNase and spontaneous chemical hydrolysis)
- RNA is processed (e.g., capped, spliced, polyA)
- RNA can have modifications that can block RT or be invisible (e.g., tRNAs).
- There are a wide range of sizes or RNAs and specialized protocols are necessary for studying shorter RNAs (e.g., miRNA, short capped RNAs)
- RNA has secondary structure (possible blocks to reverse transcriptase).

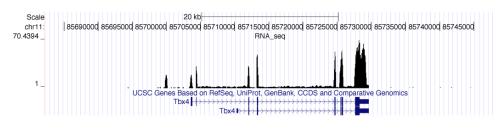
Ribosomal RNA will dominate the sequenced reads unless removed or avoided



polyA-based RNA-seq workflow


Capture poly-A RNA with poly-T oligo attached beads (100 ng total) (2x)

- RNA quality must be high degradation produces 3' bias
- Non-poly-A RNAs are not recovered


RiboMinus

RNA-Seq reads map mostly to exons

Martin and Wang Nat Rev Genet 12:671 (2011)

How does one analyze RNA levels from RNA-Seq?

Use existing gene annotation:

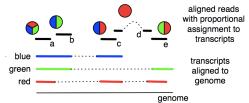
Align to genome plus annotated splices Depends on high-quality gene annotation Which annotation to use: RefSeq, GENCODE, UCSC? Isoform quantification? Identifying novel transcripts?

Reference-guided alignments:

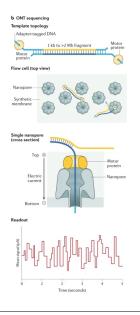
Align to genome sequence Infer splice events from reads Allows transcriptome analyses of genomes with poor gene annotation

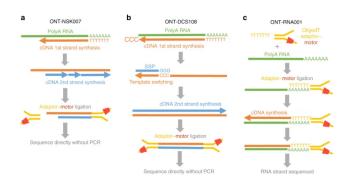
De novo transcript assembly:


Assemble transcripts directly from reads Allows transcriptome analyses of species without reference genomes


RNA-seq reads contain information about the abundance of different transcript isoforms

Normalization:


Internal: Reads or Fragments per kilobase of feature length per million mapped reads (RPKM or FPKM)


External: Reads relative to a standard "spike"

Direct RNA sequencing using ONT

Soneson C, et al. Nat Commun. 2019 Jul 31;10(1):3359. doi: 10.1038/s41467-019-11272-z. PMID: 31366910; PMCID: PMC6668388.

Long reads identify each RNA transcript isoform.
Potential to identify RNA modifications directly.
Can measure the length of RNA polyA tail.
In principle avoids challenges/biases of library preparation.

Examples of applications of RNA-seq

Characterizing transcriptome complexity Alternative splicing RNA modifications RNA structures

Differential expression analysis Gene- and isoform-level expression comparisons

Novel RNA species lncRNAs and eRNAs Pervasive transcription

Translation Ribosome profiling Allele-specific expression

Measuring RNA half-lives and decay Examining protein-RNA interactions

Examining protein-RNA interactions

Effect of genetic variation on gene expression
Imprinting
RNA editing
Novel events

Nine principles of sequencing methodology

- 1. **Global approaches** can be (mostly) comprehensive, but require more sequencing.
- 2. **Targeted approaches** can provide better coverage of features of interest but require prior information.
- 3. **Biochemical enrichment** provides many opportunities, but generally requires more starting material.
- 4. **Enzymes** can often provide more sensitive approaches to target specific types of nucleic acids, but are limited by the efficiency and specificity of the enzymes that are available.
- 5. Single nucleotide information can be revealed through **mutations** or the **location of the end** of a read.
- 6. **Chemistry** can often be used to reveal latent information in a sequencing experiment.
- 7. Unique molecular identifiers (UMIs) can provide additional information about each read.
- 8. Many sequencing methods are **modular** and can be combined with one another.
- 9. Each **sequencing platform** has unique advantages and challenges.

Examples of how to target sub-populations of RNAs

1. Deplete unwanted RNAs

- A. Ribo-minus etc. to remove rRNA.
- B. Enzymatic removal using targeted enzymes (e.g., RNase H, Cas9)
- C. Globally degrade unwanted RNAs (e.g., uncapped RNAs with a 5'-to-3' exonuclease.

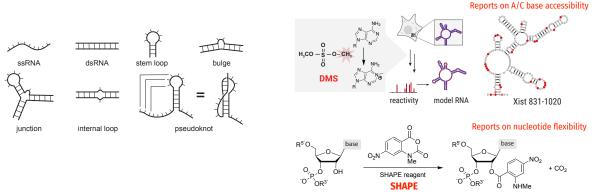
2. Enrich/amplify specific transcripts.

- D. Use targeted RT primers.
- E. Biochemically enrich RNAs/cDNAs using capture hybridization.
- F. Use knowledge of 5' and 3' modifications (e.g., miRNA with 5'-phosphate and 3'-hydroxyl)

3. Select newly made RNAs

- G. Fractionate chromatin-associated RNAs.
- H. Only consider intron-containing RNAs
- I. Immunoprecipitate RNA PollI engaged RNAs.
- J. Metabolic labeling with short pulses.

4. Select modified RNAs

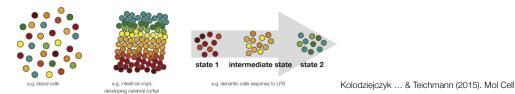

- K. Immunoprecipitate with a modification-specific antibody.
- L. Use chemistries that induce RT-stops or mutations.

5. Select RNAs from specific cells.

- M. Microdissect cells or FACS sort cells of interest.
- N. TU-tagging (targeted metabolic labeling of RNAs in certain cells)
- O. Single-cell RNA-seq (scRNA-seq)

Biochemical Computational

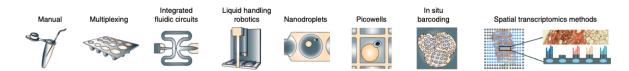
Examining RNA structure with chemical probing


RNA can fold into elaborate structures.

Accessible nucleotides (e.g., those in ssRNA) are often more reactive than base-paired nucleotides to chemical reagents.

Chemical modifications cause reverse transcription termination or mutations that can be read out using sequencing.

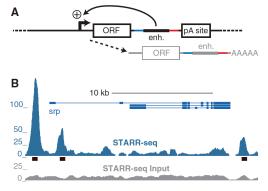
Reviewed in: Strobel, E. J., Yu, A. M. & Lucks, J. B. High-throughput determination of RNA structures. Nat Rev Genet 19, 615-634 (2018).


Examining cell heterogeneity with scRNA-seq

Bulk RNA-seq averages over the RNA content of many cells masking differences.

These differences can be revealed by sequencing the RNA from individual cells using single cell RNA-seq (scRNA-seq)

Analysis of RNA transcripts in individual cells can reveal rare cell populations and lineage trajectories.



Aldridge S, Teichmann SA. Single cell transcriptomics comes of age. Nat Commun. 2020 Aug 27;11(1):4307. doi: 10.1038/s41467-020-18158-5. PMID: 32855414; PMCID: PMC7453005

Almost any assay can be adapted to sequencing!

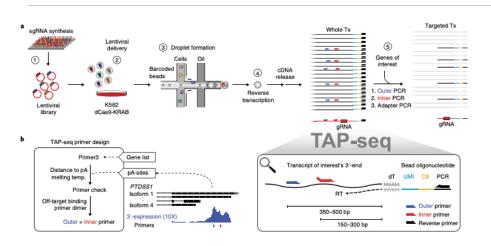

- CRISPR screens
- Massively parallel reporter assays (MPRA)

Fig. 1. STARR-seq genomewide quantitative enhancer discovery. (A) STARR-seq reporter setup [enh., enhancer candidate; ORF, open-reading frame (here: GFP); pA site, polyadenylation site; +, transcriptional activation]. (B) STARR-seq (blue) and input (gray) fragment densities in the srp locus. Black boxes denote predicted enhancers ("peaks"). (C) STARR-seq and luciferase signals are linearly correlated: R^2 , coefficient of determination and Pearson correlation coefficient (PCC

Arnold CD, Gerlach D, Stelzer C, Boryń ŁM, Rath M, Stark A. Science. 2013 Mar 1;339(6123):1074-7. PMID: 23328393

Example. Targeted Perturb-Seq

Schraivogel D, Gschwind AR, Milbank JH, Leonce DR, Jakob P, Mathur L, Korbel JO, Merten CA, Velten L, Steinmetz LM. Targeted Perturb-seq enables genome-scale genetic screens in single cells. Nat Methods. 2020 Jun;17(6):629-635. doi: 10.1038/s41592-020-0837-5. Epub 2020 Jun 1. PMID: 32483332; PMCID: PMC7610614.

Summary

- Genomics I: Deep sequencing gives us access to information on a genomic level.
- Genomics II: These approaches provide a diverse set of tools to study life at a genomic scale.
- * Sophisticated use of data from genomics requires an integrated understanding of the biological experiment, sample preparation and down stream computational analyses of the data.