Gerstein lab experience with Interpretable Models Integrating Genomics and Epigenomics Features which can Serve as Distinct Biomarkers of Key Molecular Mechanisms Demonstrating Changes with Aging

We developed a deep generative single-cell Deep Mixed-Modal Clustering and Imputation method for uniformly fusing heterogeneous single-cell modalities from multiple sources to dissect a cell atlas across multiple brain regions and identify epigenome and transcriptome perturbations in a cell-type-specific manner. Distinct from existing methods, our noise-aware model evaluates each modality's sensitivity in separating various cell types and flexibly weight them for robust clustering and imputation. 

To integrate epigenomics into our aging analysis, we have analyzed ATAC-seq data from PFC brain bulk tissues to extract features, for males and females separately, demonstrating more open chromatin with large variability with aging. For this, we measured the Gini score, representing inequality, across individuals for each peak split by age group. Changes in chromatin variability were demonstrated with aging using Gino score. More recently, our group used their developed epigenetic biomarker “DNAm PhenoAge” to predict the ages of different tissues from four individuals in the EN-TEx database1. We showed that (A) different tissues of the same individuals have quite different predicted ages, suggesting that different tissues age at different speeds, yet the predicted age is still highly correlated with the chronological age, and (B) the model is accurate for capturing changes in tissues with chronological age.

To enhance the understanding of deep neural networks (DNNs) and their learning process in relation to personalized medicine2, we developed an DNN architecture integrating importance score calculations for genomic and epigenomics features to accurately predict regulatory elements3, 4. Furthermore, we have successfully applied a DNN-encoder-decoder architecture on transcriptomic datasets to extract predictive features that serve as distinct biomarkers of key molecular mechanisms for asthma5. Moreover, we developed a rank-statistic-based interpretation scheme that allows us to functionally annotate hidden nodes and prioritize them relative to disorders6. Our model improved disease prediction by 6-fold compared to additive polygenic risk scores for schizophrenia, highlighted key genes for schizophrenia and other disorders, and allowed imputation of missing transcriptome information from genotype alone7. 

We have much experience in scaling up our machine learning approaches8 to a large scale. Specifically, we were the lead analysis group for various NIH consortia, including ENCODE9,10 PsychENCODE11, modENCODE12, Pan-Cancer Analysis of Whole Genomes (International Cancer Genome Consortium/The Cancer Genome Atlas)13, and SCORCH. Our cell-type-specific gene expression signatures have been widely used by PsychENCODE to prioritize risk factors in multiple disorders.
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