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Chitin binding domain

of chitinase from
A. T. Grigas, Z. L, L. Regan, and C. S. O’Hern, “Core packing of well-defined

Pyrococcus furiosus; 103 AA X-ray and NMR protein structures is the same,” to appear in Protein Science (2022)



To quantify differences between x-ray crystal structures and
NMR structures, we will focus on “core” residues.

(a) Compare average properties of high-resolution x-ray

crystal structures (5621) and high-quality NMR structures (6449).
(b) Compare NMR and x-ray crystal structures of the same
protein (702 pairs).



Fluctuations in x-ray crystal structures
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Features of protein cores: 1. fraction of core residues,
2. packing fraction, ...



Fraction of core residues 1n x-ray crystal structures
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Differences in packing features between NMR and x-ray crystal structures
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Are differences 1n packing features caused by methodological
1ssues or by differences in protein structure in crystalline vs.
solution conditions?
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Filter NMR structures by clashscore, backbone and sidechain dihedral
angle outliers, number of NOE restraints,...
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NMR and x-ray crystal structures pairs
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Unrestrained and NOE distance-restrained all-atom
MD simulations
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Conclusions

1. There 1s no agreed upon quality metric for NMR structures
2. When we consider full NMR data set, protein cores

are smaller and overpacked compared to those for x-ray
crystal structures.

3. When we limit NMR structures to those with large number
of restraints, P(f,) for NMR matches that for x-ray crystal
structures. However, NMR structures remain overpacked.

4. When we filter NMR structures according to number of
NOE restraints, clashscore, backbone and sidechain dihedral
angle outliers...P({¢)) is same for NMR and x-ray crystal
structures.

5. MD simulations suggest that there are no structures that
satisfy protein stereochemistry and a/l NOE restraints

6. Investigate all 702 NMR and x-ray crystal structure pairs



Protein Decoy Detection

A. T. Grigas, Z. Mei, J. D. Treado, Z. A. Levine, L. Regan, and C. S. O’Hern,
“"Using physical features of protein core packing to distinguish real proteins from
Decoys,” Protein Science 29 (2020) 1931.
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Distinguishing Features
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FIGURE 4 The average Global Distance Test (GDT) of
Critical Assessment of protein Structure Prediction (CASP)
predictions that correctly identify each given fraction of near core
residues with rSASA < 107", fiorrect, for CASP11 (blue squares),
CASP12 (orange triangles), CASP13 (red diamonds), and 3DRobot
(gray inverted triangles) structures. Error bars represent one SD
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FIGURE 5 Fraction of decoys f,ass in a Global Distance Test
(GDT) bin that are within the cutoffs for the X-ray crystal structure
packing features for submissions to CASP11 (blue squares),
CASP12 (orange triangles), and CASP13 (red diamonds) and
3DRobot structures (gray inverted triangles). The fraction of X-ray
crystal structures that fall within the packing feature cutoffs is
represented as an x (at fp,s = 0.92)



Method

Cutoffs

Core packing
Core/near-core packing
VoroMQA

SBROD

3DCNN

ProQ2

ProQ3

Abbreviations: AUC, area under the curve; CASP, Critical Assessment of protein Structure Pre-

Pearson
0.72

0.75

0.76

0.8

0.82

0.8

0.83

diction; GDT, Global Distance Test.

Spearman
0.72

0.75

0.78

0.8

0.82

0.82

0.84

Kendall tau
0.53
0.56
0.58
0.58
0.63
0.63
0.63

Avg error
15.2

12.9

17.2

17.24

12

27.2

17.7

AUC
0.7
0.85
0.89
0.9
0.9
0.94
0.93
0.95

TABLE 1 Performance of all of the
tested methods on the CASP13 dataset.
To estimate an average error for
VoroMQA, SBROD, ProQ2, and ProQ3,
the predicted scores were normalized so
that they ranged from 0 to 1. The AUC
depends on the cutoff that defines a
good versus a bad prediction. Thus, the
AUC values were averaged over GDT
cutoffs from 40 to 70



TABLE 2 Performance of all of the
tested methods on the 3DRobot decoy
dataset. VoroMQA, SBROD, ProQ2, and
ProQ3 return scores that do not range
from O to 1. To estimate an average
error, the predicted scores were
normalized so that they fall within 0 to
1. The AUC values were averaged over
GDT cutoffs from 40 to 70

Method

Cutoffs

Core/near-core packing
VoroMQA

SBROD

3DCNN

ProQ2

ProQ3

Abbreviations: AUC, area under the curve; GDT, Global Distance Test.

Pearson
0.8

0.87

0.81

0.93

0.76

0.74

Spearman
0.79
0.87
0.81
0.93
0.78
0.75

Kendall tau
0.6

0.69

0.61

0.77

0.58

0.55

Avg error

13.7
14.3
17.6
18

14.8
15.6

AUC
0.83
0.9
0.95
0.93
0.98
0.91
0.9
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FIGURE 7 Pearson correlation coefficients between the
predicted and actual Global Distance Test (GDT) of CASP13
structures following permutations of single features (along the
diagonal) and pairs of features (for the off-diagonal components).
The color ranges from purple (minimum) to yellow (maximum)
corresponding to the values of Pearson correlation coefficient



How do we obtain 100% correlation and zero error bars?



