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Supervised Deep Learning
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LeCun, Bengio, and Hinton, Deep Learning. Nature 2015 



Supervised Deep Learning

Supervised Machine Learning: 

Feature Representation + 

Classification/Regression Loss + 

Optimization (on training data)  

🡪 Prediction (on test data)

(hyper-parameter tuning with n-fold CV, n=5)

Supervised Deep Learning:

Input features and adaptively learned 

features by hidden layers + Mean Squared 

Error/Hinge Loss/Cross-Entropy Loss + SGD 

with Momentum (on large-scale training data) 

🡪 Good Prediction Performance (on test 

data)

(hyper-parameter tuning on a validation set)
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Fully Connected Layer
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Activation Functions
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DNN with sigmoid and tanh activation functions has serious vanishing 

gradient and saturation issue
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ReLU Activation Function 

Avoid vanishing gradient and less computationally expensive than sigmoid and 

tanh

But it might cause dead neuron and the activity is not bounded above
7



Softmax Activation Function
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Often used on top of a fully connected layer, which transforms an activity vector z

into probabilities of classifying x into K classes

The output units in a softmax group 

use a non-local non-linearity:

softmax 

group

this is called the “logit”



Loss Function: Cross-Entropy Loss
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The right cost function is the negative 

log probability of the target class.

C has a very big gradient when the 

target value is 1 and the output is 

almost zero.

A value of 0.001 is much better than 

0.0000001

The steepness of dC/dy exactly balances 

the flatness of dy/dz

Target Class



Loss Function: Mean Squared Error
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MSE is a very bad cost function for softmax output units. 

Why?



Loss Function: Hinge Loss
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The score for the wrong class must be at least 1 margin 

smaller than the score for the ground-truth class; 

Otherwise, there is a loss incurred



Deep Feedforward Neural Network with Sigmoid Hidden Units
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Backpropagation with a Computational Graph
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Train a Deep Neural Network with SGD

Split our training dataset into N mini-batches with batch size b

For Iteration = 1, …, Num_Max_Iterations

randomly choose a mini-batch Di

(you can also have two loops: outer loop over epochs, inner loop over mini-batches)
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DNN works much worse than a shallow CNN even 

on MNIST!

~1.0% vs. ~0.60%

Why?
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Hubel and Wiesel Experiment

16

https://www.youtube.com/watch?v=OGxVfKJqX5E

https://www.youtube.com/watch?v=OGxVfKJqX5E
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Deep learners should combine their

knowledge with large-scale data to

grow programs, encode essential

knowledge into network structures,

and let backpropagation and

stochastic gradient descent do the

heavy lifting.

Message from Last Lecture



Convolutional Neural Network: LeNet (1998)

18
LeCun et al., 1998



1D Convolution with W =5, F = 3, Stride = 2, 

Padding = 1

19
http://cs231n.github.io/convolutional-networks/

Output Size = 



1D Convolution over Sentences

20

Yoon Kim, Convolutional Neural Networks for Sentence 

Classification. EMNLP 2014



2D Convolutions

21https://github.com/vdumoulin/conv_arithmetic



2D Convolution Animations
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https://github.com/vdumoulin/conv_arithmetic

See the animation at 

https://github.com/vdumoulin/conv_arithmetic


2D 3x3 Convolution Applied to RGB Input of Size 5x5

23Picture credit: https://thomelane.github.io/convolutions/2DConvRGB.html



2D Convolutions in Numbers
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http://cs231n.github.io/convolutional-networks/

http://cs231n.github.io/convolutional-networks/


3D Convolution

25Picture credit: https://thomelane.github.io/convolutions/3DConv.html



Max Pooling

Average Pooling is also widely used, especially in NLP
26

http://cs231n.github.io/convolutional-networks/



Data Augmentation

27
Picture credit: https://nanonets.com/blog/data-augmentation-how-to-use-

deep-learning-when-you-have-limited-data-part-2/

Random erasing, horizontal flipping, rotation, scaling (with cropping), cropping, contrast, color 



Mixup
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Picture credit: https://www.dlology.com/blog/how-to-do-mixup-

training-from-image-files-in-keras/

Zhang et al., Mixup: beyond empirical risk minimization.

ICLR 2018.



Case Study: AlexNet
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NIPS 2012



AlexNet Network Structure
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Pay attention to the output Size and the number of parameters



Training AlexNet using SGD with Momentum and Weight 

Decay
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AlexNet with ReLU Converges Much Faster
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AlexNet vs. VGG
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Picture Credit: Fei-Fei, Johnson, and Yeung, Stanford cs231n, 2019  



VGG

34
Fei-Fei, Johnson, and Yeung, Stanford cs231n, 2017  



The deeper, the better?
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He et al., CVPR 2015



Learning Residual Feature Maps is Easier
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He et al., Deep Residual Learning for Image Recognition. CVPR 2015



Learning Residual is Easier
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He et al., Deep Residual Learning for Image Recognition. CVPR 2015



VGG 

vs. 

ResNet
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He et al., CVPR 2015



Picture Credit: Fei-Fei, Johnson, and Yeung, Stanford cs231n, 2019  39

NEC Labs America Model



Squeeze-and-Excitation Blocks

40
Hu et al., CVPR 2018.

conv



In Comparison to 1x1 Convolution

Picture credit: https://thomelane.github.io/convolutions/2DConvRGB.html



Double Descent Phenomena
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Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine learning  and the bias-variance trade-off. 

arXiv preprint arXiv:1812.11118, 2018. 



Conv2d in PyTorch
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Demonstration of training a simple CNN Classifier on 

CIFAR10 using PyTorch in Jupyter Notebook
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Implement Your Own Forward and Backforward in PyTorch
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Implement Your Own Forward and Backforward in PyTorch
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Implement Your Own Forward and Backforward in PyTorch
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What can we do with a pre-trained Deep CNN on ImageNet?

● Simple Transfer learning

○ We transfer our learned model on the ImageNet to a different domain, for e.g., fine-grained flower 

category classification

○ It only works when the transferred domain is closely related to the source domain of ImageNet

● Few-shot learning

○ In this task, for each class, we only have a few labeled training examples

○ We can use the learned feature embeddings or their (weighted) mean as prototype(s)

● Zero-shot learning

○ In this task, we don’t have any training example for some classes, but we have semantic descriptions 

about them

○ A simple idea: Output a 1000-class probabilities of a test image and use a convex combination of the 

semantic descriptions of the top k known classes to construct semantic features of the test image 48



Zero-shot Learning Example
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https://arxiv.org/pdf/1312.5650.pdf

https://arxiv.org/pdf/1312.5650.pdf


What do CNN (AlexNet-like) filters look like?
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Zeiler and Fergus, 2013:

Visualizing and Understanding Convolutional Networks 

An important convolutional operation called Transposed Convolution 

was invented in this paper, which will be discussed in Lec 5.
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Layer 4 Layer 5

Layer 2 Layer 3
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Memoryless models for sequences (Hinton’s Slide)

• Autoregressive models          
Predict the next term in a  
sequence from a fixed 
number of previous terms 
using “delay taps”.

• Feed-forward neural nets        
These generalize 
autoregressive models by 
using one or more layers of 
non-linear hidden units. e.g. 
Bengio’s first language 
model.

input(t-2) input(t-1) input(t)

hidden

input(t-2) input(t-1) input(t)



Beyond memoryless models (Hinton)
• If we give our generative model some hidden state, and if 

we give this hidden state its own internal dynamics, we get 
a much more interesting kind of model.
– It can store information in its hidden state for a long time.
– If the dynamics is noisy and the way it generates outputs from its 

hidden state is noisy, we can never know its exact hidden state.
– The best we can do is to infer a probability distribution over the 

space of hidden state vectors.

• This inference is only tractable for two types of hidden state 
model.
– The next three slides are mainly intended for people who already 

know about these two types of hidden state model. They show 
how RNNs differ.

– Do not worry if you cannot follow the details.



Linear Dynamical Systems (engineers love them!) (Hinton)

• These are generative models. They have a real-valued 
hidden state that cannot be observed directly. 

– The hidden state has linear dynamics with 
Gaussian noise and produces the observations 
using a linear model with Gaussian noise.

– There may also be driving inputs.

• To predict the next output (so that we can shoot 
down the missile) we need to infer the hidden state. 

– A linearly transformed Gaussian is a Gaussian. So 
the distribution over the hidden state given the 
data so far is Gaussian. It can be computed using 
“Kalman filtering”. 
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Hidden Markov Models (computer scientists love them!) (Hinton)

• Hidden Markov Models have a discrete one-of-N 
hidden state. Transitions between states are 
stochastic and controlled by a transition matrix. 
The outputs produced by a state are stochastic. 

– We cannot be sure which state produced a 
given output. So the state is “hidden”.

– It is easy to represent a probability 
distribution across N states with N numbers.

• To predict the next output we need to infer the 
probability distribution over hidden states.

– HMMs have efficient algorithms for inference 
and learning.
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A fundamental limitation of HMMs (Hinton)
• Consider what happens when a hidden Markov model generates data.

– At each time step it must select one of its hidden states. So with N 
hidden states it can only remember log(N) bits about what it 
generated so far.

• Consider the information that the first half of an utterance contains about 
the second half:

– The syntax needs to fit (e.g. number and tense agreement).

– The semantics needs to fit. The intonation needs to fit.

– The accent, rate, volume, and vocal tract characteristics must all fit.

• All these aspects combined could be 100 bits of information that the first 
half of an utterance needs to convey to the second half. 2^100 is big!



Recurrent neural networks (Hinton)
• RNNs are very powerful, because they 

combine two properties:

– Distributed hidden state that allows 
them to store a lot of information 
about the past efficiently.

– Non-linear dynamics that allows 
them to update their hidden state 
in complicated ways.

• With enough neurons and time, RNNs 
can compute anything that can be 
computed by your computer. 
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Do generative models need to be 
stochastic? (Hinton)

• Linear dynamical systems 
and hidden Markov models 
are stochastic models.

– But the posterior 
probability distribution 
over their hidden states 
given the observed data 
so far is a deterministic 
function of the data.

• Recurrent neural networks 
are deterministic. 

– So think of the hidden 
state of an RNN as the 
equivalent of the 
deterministic probability 
distribution over hidden 
states in a linear 
dynamical system or 
hidden Markov model.



From Standard Neural Networks to Recurrent Neural Networks 
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Recurrent Neural Networks (RNN)
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Vanilla Recurrent Neural Networks
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Different Architectures of RNN

63Picture Credit: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


Many-to-Many Vanilla RNN
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Training of Char-RNN (Teacher Forcing)

65
Picture Credit: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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Inference of Char-RNN (Exposure Bias) 

At test time, sample a character from the current model at each step, feed the 

current sampled character as input to the next time step 

70



Karpathy’s Char-RNN on Shakespeare Articles
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Source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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Source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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Source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


https://gist.github.com/karpathy/d4dee566867f8291f086

74

https://gist.github.com/karpathy/d4dee566867f8291f086


Why Vanishing and Exploding Gradient of Vanilla RNN Happens

75
Pascanu et al., On the difficulty of training recurrent neural networks. ICML 2013

Suppose we are using a many-to-many RNN for sequence labeling

is the immediate partial derivative of hidden activity vector  with respect to 

network weights 
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Gradient norm Clipping

Design a better architecture



Long Short-Term Memory

77

Picture Credit: https://www.cs.toronto.edu/~graves/asru_2013.pdf

https://www.cs.toronto.edu/~graves/asru_2013.pdf


Long Short-Term Memory

78Picture Credit: https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Bidirectional LSTM
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Picture Credit: https://www.cs.toronto.edu/~graves/asru_2013.pdf

https://www.cs.toronto.edu/~graves/asru_2013.pdf


Bidirectional LSTM
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Deep LSTM
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Picture Credit: https://www.cs.toronto.edu/~graves/asru_2013.pdf

https://www.cs.toronto.edu/~graves/asru_2013.pdf


Deep LSTM for Generating Complex Sequences 

Generating text with characters or words as symbols

Generating handwriting with sequences of pen coordinates (x, y) and pen on/off 

whiteboard as input 

83
Alex Graves, Generating Sequences With Recurrent Neural Networks. 2015

https://arxiv.org/pdf/1308.0850.pdf

https://arxiv.org/pdf/1308.0850.pdf


Deep Encoder-Decoder Networks:

Sequence-to-Sequence (Seq2Seq) Models
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Data Augmentation in Sequence-to-Sequence (Seq2Seq) 

Models for Machine Translation

85
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Summary of Topics Discussed

● Activation Functions

● Loss Functions

● Training deep feedforward neural networks with backpropagation and 

mini-batch SGD

● Convolution and pooling operations in CNN

● Network architectures such as AlexNet, VGG, ResNet

● Applications of supervised pre-trained CNNs

● Visualization of pre-trained CNN filters and receptive fields

● Recurrent Neural Networks, Sequence-to-Sequence Models

● Geoff Hinton, “Never stop coding.” Great discoveries are from 

practice.
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The End
Next lecture:

Deep Learning III:

Deep Generative Models, VAE, and GAN
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