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2D 3x3 Convolution Applied to RGB Input of Size 5x5

Input

Picture credit:

https://thomelane.github.io/convolutions/2DConvRGB.html
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AlexNet Network Structure
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® Long Short-Term Memory
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Figure 1: Our model reads an input sentence “ABC” and produces “WXYZ” as the output sentence. The

NeuraLlays:work gggrt;:cs; T\r/aer:;?;r Concatenate Copy  model stops making predictions after outputting the end-of-sentence token. Note that the LSTM reads the
) . input sentence in reverse, because doing so introduces many short term dependencies in the data that make the
Picture Credit; optimization problem much easier.

https://colah.qgithub.io/posts/2015-08-Understanding-LSTMs/ 4



https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Bidirectional LSTM
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Sequence-to-Sequence Model for Machine Translation

hy = f(ilft:ht—l)

c=q({h1, - ,h1.}),

1.2 0.2
0.5 4.3
0.7 0.3
0.2 0.1
This  restaurant

= = (I 3

o B

0.5

0.3

0.2

2.5

1.0

0.3

0.3

IS

8.9

great.

X = t8 R

T
p(y) =[] (e | {w1,- - w1}, 0),
=1

p(ye | {y1, -, ye—1},¢) = 9(Yye—1, S¢,€)

?

22



Encoder-Decoder with Attention for Machine Translation
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Bahdanau ef al.,, NEURAL MACHINE TRANSLATION BY JOINTLY LEARNING TO ALIGN AND TRANSLATE. ICLR 2015.



Self Attention: Transformer

e Self Attention: use word representations in a sequence to attend to word

representations at different positions in the same sequence
o  Capture long-range dependencies in a sequence more efficiently

e Scaled dot-product attention

o Transformer views encoder representations of an input sequence as Key-Value (K, V) pairs
and employs multi-head scaled dot-product attention

-
Attention(Q, K, V) = softmax( LS vV
n

Vaswani et al., Attention Is All You Need. NIPS 2017.



Multi-Head Scaled Dot-Product Attention in Transformer

Multi-head attention jointly attend to information from Multi-Head Attention
different representation subspaces at different positions.
°E Concat
Attention(Q, K, V) = softmax( QK WV 4 ¥
n Scaled Dot-Praduct "
Attention
MultiHead(Q, K, V') = Concat(head, .., heady, ) W© [Gf@[‘;;; (’C‘l“p
where head; = Attention(QW;Q, K WZ-K , VWZ.V) ¥ ¥ ¥
V K Q

Where the projections are parameter matrices WiQ € Rowoet Xdi WK ¢ RiuotetXdie 7V g Rbmotet Xdo
and WO ¢ R?dv X dmoser



Encoder of Transformer

Add & Norm LayerNorm(x + SubLayer(x))

N Add & Norm
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Transformer-based Massive Language Models

Random 25.0%
Average human rater 34.5%
GPT-3 5-shot 43.9%
Gopher 5-shot 60.0%
Chinchilla 5-shot 67.6%
Average human expert performance 89.8%
June 2022 Forecast 57.1%
June 2023 Forecast 63.4%

Massive Multitask Language Understanding (MMLU). We report the average 5-shot
accuracy over 57 tasks with model and human accuracy comparisons taken from Hendrycks et al.
(2020). We also include the average prediction for state of the art accuracy in June 2022/2023 made
by 73 competitive human forecasters in Steinhardt (2021).

https://arxiv.org/pdf/2203.15556.pdf
13



Directed Probabilistic Generative Models with Hidden Units

We want to train a directed generative model p

generative network

p(h)

p(h, |h

I+1)

inference network

q(hl+1| hI )

p(x,h) = p(x|h1)p(hy|h2)...p(h)
q(h[x) = g(h1|x)q(hz|h1)...q(h.|h._;)

e Our goal is to learn the model parameters to maximize the log-probability of data x
Learning: learn the model parameters maximizing log p(x)

@)

(@)

Inference: infer the hidden states from p(h | x)

14



Variational Inference

We want to train a directed generative model p

generative network inference network
p(h)
Variational Bound of Log-
Likelihood P(x) p(h,|h,) ath, |h)

p(x, h) = p(x|h1)p(hy|h2)...p(h)
q(h[x) = q(h1[x)q(hz|h1)...q(h.[h 1)

mgaxEﬁ(m) Inpy(z) = m?xEﬁ(m) ln/pg(m,z)dz.

Z

. pg(m,z)
]En 1 _ D p— ]E’* ]E ].
max By |Inpo(2) —min D(q(2) ||p9(2|$))] max Lp(a) [max )M TG)

Every data point x has its own variational parameters (q(z)): flexible but not scalable. 5



Amortized Variational Inference

All data points share a variational inference network Q parameterized by a neural network.

Variational Bound of Log- log PH (iE) — log Z P9 (;L', h,)

Likelihood P(x)

We want to train a directed generative model p h
generative network inference network P@ (:U, h)
p(h) > Qo (h|x)log
p(h [h,) q(h_Ih)
= Egllog Py(z,h) —log Q4 (h|z)]
p(x, h) = p(xIh1)p(ha[h)...p(he) — E(-’E, 0, Qb) :

q(h|x) = q(h1|x)q(h2|h1)...q(h |h, 1)

By rewriting the bound as

E(a:, 9, (]5) — log Pg(l‘) — KL(Q¢(h|a7), Pg(h|$)),16



The Reparameterization Trick Using a Deterministic Function Mapping

z ~ q4(2|x?) = N(z; u?, 6*"I)
Z=p+0 ©®e¢,wheree ~ N(0,I)
Original form Reparameterised form

!
Q
N
©
S

O X
= aL/a(P]
| _ _ _ o o o L e e e e e e e e e e e -
: Deterministic node [Kingma, 2013]
[Bengio, 2013]
. - Random node [Kingma and Welling 2014]

[Rezende et al 2014]

Kingma and Welling, Auto-Encoding Variational Bayes. ICLR 2014
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Variational Inference with the Reparameterization Trick
log pp (x1), -+, x(V)) =377 | log pg(x(¥)

log pe(x'”) = D r(q4(z|x")||pe(z|x'")) + L(0, ¢;xV)

log pe(x'") > L(0, ;%)) =E,, (5% [~ log g6 (2[x) + log pe(x, z)]

ELBO:

L6, $:x") = —Dic1(ag(2lx)][po(2)) + By gpxi0) |08 p6(x12)]

Kingma and Welling, Auto-Encoding Variational Bayes. ICLR 2014 18



Variational Autoencoder with a Isotropic Multivariate Gaussian Prior

L0, ¢:x) = ~Dic1(ag(2lx)][Po(2)) + By upxio) [ o816 (x]2)]

p(z) =N(0,1)
p(z|z) = N(f(2),cI) feF c>0
f* = argmaxE, .. (log p(x]2))
feF
_ 2
= argmaxE,. (_llm f(2)]] )
feF i 2c
, 1< | L
L£(0,¢;x\V) ~ 5 Z (1 - log((crj(%))Q) — (M(“‘))Q _ (UJE_@))E) 4 - Z log pe (x[z(+1)
I=1

where 7"

Kingma and Welling, Auto-Encoding Variational Bayes. ICLR 2014 19



Variational Autoencoder with a Isotropic Multivariate Gaussian Prior

Reconstructe
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’ Y
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Probabilistic Encoder
4y (2[x)
Mean w Sampled
latent vector
Probabilistic
X —> Decoder > %/
po(x|z)
o
Std. dev
_ An compressed low dimensional

zZ=p+oQe representation of the input.
e ~N(0,I)

Picture Credit: https://lilianweng.qgithub.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html
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VAE Loss

N(0, I) Lam—

\/h
S| I S s

X o =h(x) X= f(z)

loss = C||x-X]|* + KLIN(; ,0),N(0,)] = C||x-f(x) || + KL[N(g(x), h(x)), N(0, 1) ]

Picture Credit: https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
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Training VAE Using Mini-batch Variational Inference with the
Reparameterization Trick

Algorithm 1 Minibatch version of the Auto-Encoding VB (AEVB) algorithm. Either of the two
SGVB estimators in section 2.3|can be used. We use settings M = 100 and L = 1 in experiments.

0, ¢ < Initialize parameters
repeat
XM « Random minibatch of M datapoints (drawn from full dataset)
e + Random samples from noise distribution p(e€)
g Vg,q«,[lM(Q, ¢; XM | €) (Gradients of minibatch estimator (8))
0, ¢ < Update parameters using gradients g (e.g. SGD or Adagrad [DHS10])
until convergence of parameters (6, ¢)
return 6, ¢

Kingma and Welling, Auto-Encoding Variational Bayes. ICLR 2014 22



VAE for Generating MNIST Digits
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Picture Credit: http://kvfrans.com/variational-autoencoders-explained/
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Learned 2D Manifold by VAE
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VAE with Convolutional and Transposed Convolutional Layers

mean vector

sampled
latent vector

R

Encoder - Decoder

Network Network
N ~

(conv) (deconv)

standard deviation
vector

Picture Credit: http://kvfrans.com/variational-autoencoders-explained/
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Autoencoder vs. Variational Autoencoder

neural network neural network

encoder decoder

X X =d(z)

loss = [|x-X|[2= [|x-d@@)|]? = ||x-de())|]

Picture Credit: https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
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Autoencoder vs. Variational Autoencoder

training 1 encoder
process — e

— encoded vector

| (in latent space)

decoder

input d
generation sam pler decoded content
process

(reconstructed input /

generated content)
sampled vector

(from latent space)

Picture Credit: https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
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Autoencoder vs. Variational Autoencoder

N\
| W,
T
encoded data can be decoded
( ) without loss if the autoencoder
~—r has enough degrees of freedom
A encoder decoder
@ ‘\
from the @
o e s
“training” data for onl ! W without explicit regularisation,
g for new some points of the latent space
the autoencoder

are “meaningless” once decoded

Picture Credit: https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73 28
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Autoencoder vs. Variational Autoencoder

neural network

neural network
decoder

encoder

X X=d(z)

loss = ||x-x]|]? + KL ,N(©O,1)1 = || x-d(2) |]> + KLI ,N(0,1)]

Picture Credit: https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
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Autoencoder vs. Variational Autoencoder

N\ Pt fom g gge O O
Space ;
L L © -
o te i e
Lose po;:z'& ot °
e ok similer O
once decoded
N poinds Hhat are close

in the Latent space are
Similar once decoded

irregular latent space x « regular latent space

Picture Credit: https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
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Autoencoder vs. Variational Autoencoder

f‘—.g

what can happen without regularisation x V what we want to obtain with regularisation

Picture Credit: https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
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Autoencoder vs. Variational Autoencoder

\
\
\
’

Picture Credit: https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
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Problems of VAE: Overlapping Latent Space

Picture Credit: https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73 33
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Conditional VAE (There Are Other Conditioning Priors)

[KLIN (p(Y. X). S(Y. X)) |N(0, 1))
N

(V. X) ][y, X)
v

V=G X

Decoder

(")

+

*

Encoder | |sample ¢ from (0. 1) |

()

Left: a training-time conditional variational autoencoder imple-
mented as a feedforward neural network, following the same notation as
Figure 4. Right: the same model at test time, when we want to sample from

P(Y|X).

Picture Credit: https://arxiv.ora/pdf/1606.05908.pdf
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Conditional VAE (There Are Other Conditioning Priors)

log po(y|x) > —KL (g4 (z|x,y)||pe(z|x)) + Eq, (2x,y) [ l0g o (y|x, 2)]

and the empirical lower bound is written as:

L

~ 1

Levae(x,y; 0, ¢) = —KL (q4(2|x,y)||pe(z|x)) + 7 E log po(y|x,zY),
=1

z) = g4(x,y,eV), ) ~ N(0,I) and L is the number of samples.

. . : " . 35
Sohn et al., Learning Structured Output Representation using Deep Conditional Generative Models. NIPS 2015.



The Reparameterization Trick in VAE

p(z) =N(0,1)
p(x|z) = N(f(2),cl) feF c>0

Let’s forget about variational inference for maximizing log p(x) but focus on the
probability distribution of p(x|z) itself, we can easily sample from p(x|z), which leads
to a nice GENERATIVE model and transforms a simple Gaussian distribution to a
complex data distribution py(x) through a one-to-one mapping f: z — x

A direct approach to aligning our generated data distribution p,(x) with real data
distribution p,(x) is to perform moment matching, for e.g., minimizing maximum
mean discrepancy in a high-dimensional feature space induced by a kernel (kernel
MMD).

36



Transform a Simple Distribution to a Complex Distribution

» GENERATIVE »

NETWORK

HE EEE EEEEEEE

Input random variable The generative network Output random variable The output of the
(drawn from a simple transforms the simple (should follow the targeted generative network
distribution, for random variable into distribution, after training once reshaped.
example uniform). a more complex one. the generative network).

Picture Credit:https://towardsdatascience.com/understanding-generative-adversarial-networks-gans-cd6e4651a29
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An Indirect Approach for Comparing Distributions

p(z) = N(0,1)
p(z|z) = N(f(2),cl) feF c>0

e Transform a simple Uniform/Gaussian distribution p(z) to a complex data
distribution p4(x) through a one-to-one mapping f: z — x

e An indirect approach is to assume that we have an oracle discriminator that can
perfectly discriminates whether or not a data point is from the real data
distribution. We can make use of this oracle discriminator to improve our
generative network such that our generated data distribution perfectly aligns
with the real data distribution.

e In practice, we don’t have this oracle discriminator, but we can treat it as a deep
neural network and learn it from data. 38



Generative Adversarial Network (GAN)

e The goal of the discriminator D is to discriminate whether a sample comes from
the real data distribution (training data) or the generated data distribution
(generated data).

e The goal of the generator G is to transform a simple (e.g., Gaussian, Uniform)
distribution to a real data distribution such that the generated sample will fool
the discriminator.

e This is a minmax two-player game. In a global optimum, D will output ¥2
everywhere and py(X) = py(x)

Goodfellow et al., Generative Adversarial Nets. NIPS 2014.
39



Generative Adversarial Network (GAN)

Bl Forward propagation (generation and classification) Hl Backward propagation (adversarial training)
o © o ©
© 5, o ° © 5 o o
0 0 o o ©oo0o _©
5% © = » LAY » » w0 B%0 .
o o GENERATIVE o ®o 0 o0 DISCRIMINATIVE 0¥ o Y0 00 .
° o © NETWORK @ ° NETWORK 4 o
< < | 00 & < <= 90 &
o o .- 0O
o %0 "o
> »> '
Input random The generative network The generated distribution The discriminative network The classification error
variables. is trained to maximise the and the true distribution are is trained to minimise the is the basis metric for the
final classification error. not compared directly. final classification error. training of both networks.

Picture Credit:https://towardsdatascience.com/understanding-generative-adversarial-networks-gans-cd6e4651a29
Goodfellow et al., Generative Adversarial Nets. NIPS 2014. 40
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Generative Adversarial Network (GAN)

Y/ Y/ N/

(a) ) © (d)

RRE T

Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) p, from those of the generative distribution py (G) (green, solid line). The lower horizontal line is
the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain
of . The upward arrows show how the mapping = G(z) imposes the non-uniform distribution pg on
transformed samples. G contracts in regions of high density and expands in regions of low density of p,. (a)
Consider an adversarial pair near convergence: p, is similar to pua, and D is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D*(x) =

— Paa(®)___ () After an update to G, gradient of D has guided G(2) to flow to regions that are more likely

Pdaa(®) +pg(x)
to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a
point at which both cannot improve because p; = pgaa. The discriminator is unable to differentiate between
the two distributions, i.e. D(x) = %

Goodfellow et al., Generative Adversarial Nets. NIPS 2014.
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Optimal D of Generative Adversarial Networks

mcir‘n max V(D,G) = Egppa(z)log D(z)] + E,np, (2)[log(1 — D(G(2)))].

y = alog(y) + blog(l —y)
b

L ~ . . =15
]f y =da log(y) + b log(l y), the Optlmal y IS )% = lfy* Find optimal y* by setting y’ = 0.
=yt =2 s
a + b g 1 _Z+b
A g
y*=a—+b

Optimize D(x) = pr(x) log D(x) + p,(x) log(1 — D(x)), we get
pr(x)
pr(x) + pg(x)

= D) =

Goodfellow et al., Generative Adversarial Nets. NIPS 2014. 42



Generative Adversarial Network (GAN)
mcir‘n max V (D, G) = Egprppa(e) 108 D(®)] + E,p, (2)[log(1l — D(G(2)))].

D
rrgn V(D*,G) = / (p,(x) log D*(x) + p,(x) log(1 — D*(x)))dx

— (01 p’"—(x) I pg—(X))d
/x (p ot o+ TP L e )

Pr+ Dg Pr +pg

DKL(pr” ) )

1
2
1 pr(x) ) ( 2p,(x) )
== [ p,®10 d
2(/ R e R T

_1 pr(x)
=3 (1og2+ /p,(x) log —————— o) + pg(x)

Dys(p,llp,) = ) + DKL(pg”

1 Pg(x)
o) ( log2 + /pg(x) log 2 + 1@ —dx

= % ( log4 + mén V(D*, G))

m(%n V(D*,G) = 2D;s5(p,llpy) — 21og 2
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Optimal Solution of Generative Adversarial Networks

minmax V(D, G) = Egnpy(@)108 D(@)] + Exnp, (2 log(1 — D(G(2))]

D

With p = q, the optimal value for D and V' is

D=L =1
ptq 2

: ) 1 1
mén mgx V(D, G) = Ex.p, (v llog 5] + Erp, @) [log(1 — E)]
= —2log?2

Goodfellow et al., Generative Adversarial Nets. NIPS 2014.
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Training Algorithm of GAN

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our
experiments.

for number of training iterations do
for k£ steps do

e Sample minibatch of m noise samples {z(1), ..., 2(™} from noise prior p,(2).
e Sample minibatch of m examples {x(%),... ("™} from data generating distribution
pdata(m)-

e Update the discriminator by ascending its stochastic gradient:

Vo, 2 3" [iogD (+9) + 105 (1- D (6 ()]

end for

e Sample minibatch of m noise samples {z(!), ..., 2(™)} from noise prior p,(2).
e Update the generator by descending its stochastic gradient:

Vo, 3 oe (120 (6 ())).

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

Goodfellow et al., Generative Adversarial Nets. NIPS 2014.
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Real Image/Video Data is often Supported in a Low-D

Manifold
For e.g. MNIST digits, ImageNet Images, Videos, although the pixel space is very

high-dimensional.

It's easy to find a perfect discriminator to separate high-dimensional data
supported in low-dimensional space.

: / 7 0.0
: 1.0
0 g'g
0042 0.4
0.4 sa ¥

0.6
X 0.8 1.0 0.0

Picture Credit:https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-WGAN.html 46
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orignal GAN generator’s gradient
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https://lilianweng.github.io/lil-log/2017/08/20/from-GAN-to-WGAN.html

lan Goodfellow et al., “Generative

Training GANs: TWO-pIayer game Adversarial Nets”, NIPS 2014

Minimax objective function:
min max [Emwmm log Dy, (z) + E,p(z) log(1 — Dg, (G, (z)))]

0, 0Oa

Alternate between:

1. Gradient ascent on discriminator
Gradient signal

mea.x [EENPdata log Dy, () + E,pz) log(1 — D9d(G99 (Z)))} dominated by region
a where sample is

2. Gradient descent on generator 4 already good
n;in Ezwp(z) log(l — ng (Gag (Z)))

When sample is likely:
fake, wanttolearn

In practice, optimizing this generator objective from it to improve /f,x
does not work well! generator. But "
gradient in this region-

iS relatlvely ﬂat! o 0.2 0.4 - 0.6 0.8 10

Slide Credit: Fei-Fei Li, Justin Johnson, and Serena Yeung, cs231n 2017 47



lan Goodfellow et al., “Generative

Training GANS: TWO-player game Adversarial Nets”, NIPS 2014

Minimax objective function:
min max [Egnp,, , 108 Do,(2) + Eanp() log(1 — Do, (G, (2))]

0, 64 _ _ -
Aside: Jointly training two

) networks is challenging,
Alternate between: can be unstable. Choosing

1. Gradient ascent on discriminator objectives with better loss
e | By, 108 Do, () + Barp(z) 108(1 — D, (G, (2))) | Esczpes hebs tning

6, is an active area of
research.

—  log(1 - D(G(z)))

2. Instead: Gradient ascent on generator, different

objective . .
J maszwp(z) 108(D6d(G09 (z))) This is unstable with

O large variance of gradient!!!

Instead of minimizing likelihood of discriminator being correct, NOW  High gradiént signal

maximize likelihood of discriminator being wrong.
Same obijective of fooling discriminator, but now higher gradient

signal for bad samples => works much better! Standard in practice.

—  —logD(G(z))

‘ = [X] w &

-3

-4
0.0 0.2

[ow gradient signal

Slide Credit: Fei-Fei Li, Justin Johnson, and Serena Yeung, cs231n 2017 48



Deep Convolutional GAN (DCGAN): CNN Generator

128

3
'_L‘
256 —— \

Stride 2 16

32 Stride 2

CONV 2

G(2)

DCGAN generator used for LSUN scene modeling. A 100 dimensional uniform distribu-
tion Z is projected to a small spatial extent convolutional representation with many feature maps.
A series of four fractionally-strided convolutions (in some recent papers, these are wrongly called

deconvolutions) then convert this high level representation into a 64 x 64 pixel image. Notably, no
fully connected or pooling layers are used.

Radford et al., UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE
ADVERSARIAL NETWORKS. ICLR 2016



Generated Samples of DCGAN

3 y "li £, L‘,‘,ﬁ: i

oy -

"-;i!l ;W ; gL

Generated bedrooms after five epochs of training. There appears to be evidence of visual

under-fitting via repeated noise textures across multiple samples such as the base boards of some of
the beds.
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Interpolation Results of DCGAN
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Latent Vector (z) Manipulation Results of DCGAN

\‘, A .

smiling
woman

man man woman
with glasses without glasses without glasses

woman with glasses
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GAN for Video Generation

Foreground Stream /'
3D convolutions
g,
g
2
& Foreground
> ’:g Tanh
s, 3,
iy g, g, 4,
t’@?/ @f‘{"sj w/zed,/ 6"6}, \ _l
ﬁglﬁ mef+(l—-m)ob—
%ﬁ‘v T ﬁ"ﬁr
24, V"G/
Mask )
LU Sigmoid Generated Video
B2y "*%5@ - Space-Time Cuboid
2
w%gej -
Q"a Replicate over Time
Background Stream %
2D convolutions g, Background

pe
v Tanh

Video Generator Network: We illustrate our network architecture for the generator. The
input is 100 dimensional (Gaussian noise). There are two independent streams: a moving foreground
pathway of fractionally-strided spatio-temporal convolutions, and a static background pathway of
fractionally-strided spatial convolutions, both of which up-sample. These two pathways are combined
to create the generated video using a mask from the motion pathway. Below each volume is its size
and the number of channels in parenthesis.

Vondrick et al., Generating Videos with Scene Dynamics, NIPS 2016.
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GAN for Music Generation

Engel et al., GANSYNTH: ADVERSARIAL NEURAL AUDIO SYNTHESIS. ICLR
2019. https://openreview.net/pdf?id=H1xQOVnO9FX

Generated Music Samples: https://magenta.tensorflow.org/gansynth
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Conditional GAN

o\

- 0000®

scriminator D(xly) .

00000

00009,

@19!’&!0" G(zly) l. . . . .}
00000

T

~

- 00000 00000,

-

"

https://arxiv.orq/pdf/1411.1784.pdf
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Domain Adaptation

4 )

n We have a lot of (labeled) training data in a
source BD] ; m E " target source domain, and we plan to deploy our
/

%mﬂ % learned model in the source domain to a target
' o

domain that has a different data distribution

from the one in the source domain.
\_

Picture Credit: Tzeng et al., Adversarial Discriminative Domain Adaptation, CVPR 2017.

»
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Adversarial Feature Learning for Domain Adaptation

Pre-training Adversarial Adaptation Testing
4 ) /;ource images ) )
source images e T
+ labels ! Source !
) I CNN ! targetimage ~- P
o 1 _ - — S~ oo !
& - 2 domain | T HE T
= class 8 |— | Target | & | class
— 1
E label targetimages E label : ChiN___.: :E : label
o E L-- 1 o :
Target =)
CNN
AN A N\ v

An overview of our proposed Adversarial Discriminative Domain Adaptation (ADDA) approach. We first pre-train
a source encoder CNN using labeled source image examples. Next, we perform adversarial adaptation by learning a target
encoder CNN such that a discriminator that sees encoded source and target examples cannot reliably predict their domain
label. During testing, target images are mapped with the target encoder to the shared feature space and classified by the source
classifier. Dashed lines indicate fixed network parameters.

Tzeng et al., Adversarial Discriminative Domain Adaptation, CVPR 2017. -



CycleGAN

G I?!\Y Dx Q
/\ - - /\ -
D X D Y z Y N 7|7 Y X Y
H G t F | 7
X /\ Y X Y X X Y cycle-consistency
\—/ cycle-consistency [...s \ *.\s ----- loss
F loss /.

(a) | (b) | (¢)

(a) Our model contains two mapping functions G : X — Y and F' : Y — X, and associated adversarial
discriminators Dy and Dx. Dy encourages G to translate X into outputs indistinguishable from domain Y, and vice versa
for Dx and F'. To further regularize the mappings, we introduce two cycle consistency losses that capture the intuition that if
we translate from one domain to the other and back again we should arrive at where we started: (b) forward cycle-consistency
loss: z — G(z) — F(G(z)) = z, and (c) backward cycle-consistency loss: y — F(y) = G(F(y)) = y

Zhu et al., Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. ICCV 2017.
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CycleGAN Results

Zebras T Horses . Summer _ Winter

Monet 5_ Photos

horse — zebra

Photograph Monet Van Gogh = Cezanne
7 Given any two unordered image collections X and Y, our algorithm learns to automatically “translate” an image
from one into the other and vice versa: (left) Monet paintings and landscape photos from Flickr; (center) zebras and horses
from ImageNet; (right) summer and winter Yosemite photos from Flickr. Example application (botfom): using a collection
of paintings of famous artists, our method learns to render natural photographs into the respective styles.

Zhu et al., Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. ICCV 2017.
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Text2Video: Goals and Challenges

Build a conditional generative model to generate videos from text capturing
different contextual semantics of natural language descriptions

Capable of capturing both static content and dynamic motion features of
videos

Challenges
— It’s hard to condition on text, a big gap
— It is hard to build powerful video generator
— No publicly available dataset

How? Integrating VAE and GAN
https://www.cs.toronto.edu/~cuty/Text2VideoAAAI2018.pdf
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Model Overview

 We introduce an intermediate step called ‘Gist’” Generation.

* The modelis trained end-to-end.

Text input :>

Noise

U

VAE

Gist Generation

|:> Generated Gist |:>

Noise

U

Video GAN

]

Text input

Video Generation
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What does the Gist do?

* Gist captures the static features of a video.

* Gist generation gives a sketch.

Noise

U

Video GAN

)

Text input

Generated

|::> Video
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The Complete Text2Video Model

RNN Encoder

t: kitesurfing t: kitesurfing
t: kitesurfing t beach t beach
at beach - m @ eac @ eic TethFllter

Kitesurfing RNN Encoder RNN Encoder

= ~ v
' ’ - i /VIdeo Generator ‘_:‘ S—_—

CNN Encoder

t: kitesurfing

at beach

RNN Encoder

= Real?
Fake?

CNN Decoder Gist Encoder ny, ~ N(0,1) Real Sample i Video Discriminator
Zy

Framework of the proposed text-to-video generation method. The gist generator is within the green box. The encoded
text is concatenated with the encoded frame to form the joint hidden representation 24, which is further transformed into z4. The
video generator is within the yellow box. The text description is transformed into a filter kernel (Text2Filter) and applied to
the gist. The generation uses the feature z,. Following this point, the flow chart forms a standard GAN framework with a final
discriminator to judge whether a video and text pair is real or synthetic. After training, the CNN image encoder is ignored.

Li, Min, Shen, and Lawrence, AAAI 2018
https://www.cs.toronto.edu/~cuty/Text2VideoAAAI2018.pdf
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Generated Video Samples

Play golf on grass u

Play golf on snow

Play golf on water 1
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Text: Playing Golf on

— grass field

— SNOW

— water

More Examples

Gist

¥ -
£ -
B -

Video
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More Examples

Playing golf Playing golf in swimming pool Swimming in swimming pool

nNE =S

Sailing on the sea Sailing on snow Sailing on grass Running on the sea Running on sand

E
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More Examples

Kitesurfing on the sea

! Y

Kitesurfing on grass
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An Improved Text2Video Model

Person golfing in the field

% denotes
convolution
operation

w

* D1(f)

. Real (or)
Fake

D_(f
* 0

uoneualeduod aanjea,

[lustration of our Text-Filter conditioning strategy. -

Balaji, Min, Bai, Chellappa, and Graf. Conditional GAN with Discriminative Filter Generation for Text-to-Video Synthesis. IJCAI 20109.



Generated Videos
TFGAN Baseline

A large green circle is moving in a zigzag A large yellow square is moving in a
path towards east diagonal path in the northeast direction

A large red triangle is movingin a A large red triangle is moving in a zigzag
straight line towards north and a large path towards south and a large blue
yellow square is moving in a zigzag path triangle is moving in a zigzag path

towards west towards west
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Generated Videos

People
swimming in the
pool

Play golf on
grass

A boat sailing
in the sea

Li et al.
(2018)

Play golf on
grass

Previous
Model
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People swimming in pool

Generated Videos

Person skiing in ocean

Stir vegetables
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Media Reports from Science, MIT Technology Review,
Communications of ACM, etc.

SCieIlCG Home News Journals Topics Careers

FRONTIERS OF  |& :‘:::?::'::,:‘:zw:dm

SHARE

Advertisement

©:00

Artificial intelligence is moving into movie production. SHAREGRID/UNSPLASH

New algorithm can create movies from just a
few snippets of text

By Matthew Hutson | Feb. 23,2018, 4:35 PM

Li, Min, et al., AAAI 2018
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Problems of GAN

The minmax training of GAN doesn’t necessarily converge in practice:

If we have a perfect discriminator in the beginning, the gradient of the loss function
with respect to generator parameters is close to zero and the learning is very slow

If we have a very bad discriminator, we don’t get much useful feedback from the
discriminator.

Training can be unstable.

Mode collapse: the generator only generates a subset of training data distribution
modes to fool the discriminator and fails to explore other modes.
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GAN Minimizes JS-Divergence to Update G
P(x)

Dk (P||Q) = Z P(x)log ——=

1

Dustpllg) = 5D @l Z54) +

2

P

-10

0 10 20 30 40

1000

Picture Credit: https://medium.com/@jonathan hui/gan-wasserstein-gan-wgan-gp-6ala2aalb490

Q( ) for VAE
p + q for GAN
5 DKL qll——
v
KL-divergency JS-divergency vanish gradient
KL JS
o
o
0 5 1 15 20 25 3 3 0 5 o 15 20 25 3 3
mean of q mean of q
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Wasserstein Distance

The Wasserstein distance of p and q is the minimum cost of transporting mass in
converting the shape of a data distribution q to the shape of a data distribution p. It is also
called Optimal Transport Cost or Earth Mover Distance.

3
2 6 K
e ]
1145 P15
1|28 7 |8 |19 [10
f g | (6+6+6+6+2x9=42) zialeln
2 | 6 6|3 1l1i0io0}2
1{4!5 14|52 Yilzlol1laio
1 2 8 7 8 9 10 3l o0ioiz2io
"""" : 6+6+6+8+9+7=42)
3 | 7:i8:i9:i10
| R s
j2i 186; 2|3 1]11i0i1iH1
{1145 1] 4 6
: i 5 | 5 L Y le|oi1 B0
1 2 3 7 8 9 10 3| 0ioi1ii1

Picture Credit: https://medium.com/@jonathan hui/gan-wasserstein-gan-wgan-gp-6ala2aalb490
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Wasserstein Distance

The Wasserstein distance of p and q is the minimum cost of transporting mass in
converting the shape of a data distribution q to the shape of a data distribution p. It is also
called Optimal Transport Cost or Earth Mover Distance.

(1+1=2)
1 1 C 2 2
: >
3 4 6 7
(3+3=6)
2 1 2 1
.
3 4 6 7

Picture Credit: https://medium.com/@jonathan hui/gan-wasserstein-gan-wgan-gp-6ala2aalb490
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Wasserstein Distance

The Wasserstein distance of p and q is the minimum cost of transporting mass in
converting the shape of a data distribution q to the shape of a data distribution p. It is also
called Optimal Transport Cost or Earth Mover Distance.

3 .
i dhg WP = _inf  Epyyen[llo =3l
2 6 : P 6 g Z,Yy 3/ )
e S yEII(P,Py)
1]4]s P1d i e :
Tl T W Mo I1(Pr, Pg) denotes the set of all joint distributions y(x, y) whose marginals are
t{2s 7 [ 8 9|10 _
n & respectively Pr and Pg.
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Comparing Wasserstein Distance with KLD and JSD

VYix,y) €P,x=0andy ~ U(0, 1)
Yix,y) €0, x=0,0<0<landy~ U0, 1)

When 9 # 0:
1
Du(Pl@) = Y, 1-logy=+oo
1.0 7 x=0,y~U(0,1)
— P 1
— O De(@IP)= Y, 1-logy=+oo
0.8 x=0,y~U(0,1)
Dys(P, 0) 1(2 110g1+ > 110g1)10g2
is(P, Q) = = -log — -log —) =
0-61 2 x=0y~U(0,1) 172 x=0,y~U(0,1) 172

W, Q) = 16|
0.4-

But when @ = 0, two distributions are fully overlapped:

DgL(P||Q) = Dk (QI|IP) = Dys(P, Q) =0
WP, 0)=0=9|

0.2 4

0.0

0.0 0.2 0.4 0.6 0.8 1.0

Picture Credit:https://lilianweng.qithub.io/lil-log/2017/08/20/from-GAN-to-W GAN.html
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Wasserstein GAN (WGAN) Minimizing Wasserstein Distance
between p,and p,

Using the Kantorovich-Rubinstein duality, we can simplify the calculation tc

W(P,Pg) = ||fs|}lp< 1 Eqznp, [ f(Z)] — Eznp, [ f(2)]

f(z1) — f(z2)| < |21 — 22|

Arjovsky et al., Wasserstein Generative Adversarial Networks. ICML 2017.
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GAN

WGAN

WGAN vs. GAN

Discriminator/Critic Generator
vgdlf;[logp(x<>)+log(l D (6 (x)))] vo—z log (D (G (=)))
%i[ (2®) — f(G (29))] o,—nz f(e ("))

In WGAN, we have a critic with a scalar output without log
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WGAN vs. GAN

1.0 - - - T T T T
— Density of real

08l —— Density of fake I
— GAN Discriminator
——  WGAN Critic

0.6

-0.2| /’/ Vanishing gradients
- in regular GAN
—0.4l—" - ' ' ‘ ' '
-8 -6 -4 -2 0 2 4 6 8

Arjovsky et al., Wasserstein Generative Adversarial Networks. ICML 2017.
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Training Algorithm of WGAN

Algorithm 1 WGAN, our proposed algorithm. All experiments in the paper used
the default values a = 0.00005, ¢ = 0.01, m = 64, Ncritic = 9.

Require: : «, the learning rate. ¢, the clipping parameter. m, the batch size.
Neritic, the number of iterations of the critic per generator iteration.
Require: : wq, initial critic parameters. 6, initial generator’s parameters.
1: while 6 has not converged do
for t =10, s Missivic dO
Sample {z()}7, ~ P, a batch from the real data.
Sample {z()}7, ~ p(z) a batch of prior samples.
9w — Vy [% Zz1 fw(x(i)) - % Z:ll fw(QG(z(i)))]
w + w + o - RMSProp(w, gq)
w « clip(w, —c¢, ¢)
end for
Sample {z(¥}™, ~ p(z) a batch of prior samples.
10:  go+ —Vom Diny fu(ge(z?))
11: 0 < 6 — a - RMSProp(0, gg)
12: end while 82




The Latest GAN Architectures - StyleGAN2 & StyleGAN-XL

Shesie AR -— ‘
= AR W

Jacamar Golden Retriever

Photocopier

Figure 11. Four hand-picked examples illustrating the image quality and diversity achievable using StylegGAN2 (config F).

https://arxiv.org/abs/1912.04958 https://arxiv.org/pdf/2202.00273.pdf
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Summary of Topics Discussed

Attention: Transformer

VAE

GAN

Adversarial Domain Adaptation, CycleGAN
Text2Video Synthesis

Wasserstein Distance
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The End

Thank Youl!



