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(Last edit in spring '22. This year’s pack, 22m7, has additional eQTL slides & Hi-C slides compared to last
year’s M7. The Hi-C slides were mostly transferred from last year’s network pack,
and the eQTL ones, from last year's JG TF lecture.)




What is Annotation? (For Written Texts?)
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Intemational Human Genome Sequencing Consortium*
* A partial list of authors appears on the opposite page. Affiliations are listed at the end of the paper.

structure has novel features which are of considerable
biological interest.

The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution.
Here we report the results of an intemational collaboration to produce and make freely available a draft sequence of the human
genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.

coordinate regulation of the genes in the clusters.

set of proteins
g is more complex than those of invertet . This is due in
part to the presence of vertebrate-specific protein domains and
motifs (an estimated 7% of the total), but more to the fact that
vertebrates appear to have arranged pre-existing components into a
richer collection of domain architectures.

® Although about half of the human genome derives from trans-
posable elements, there has been a marked decline in the overall
activity of such elements in the hominid lineage. DNA transposons
appear to have become completely inactive and long-terminal
repeat (LTR) retroposons may also have done so.
@ The pericentromeric and subtelomeric regions of chromosomes
are filled with large recent seg; 1 duplications of seq from
Isewhere in the g Seg l duplication is much more
frequent in humans than in yeast, fly or worm.
@ Analysis of the organization of Alu elements explains the long-
standing mystery of their surprising genomic distribution, and
suggests that there may be strong selection in favour of preferential
retention of Alu elements in GC-rich regions and that these ‘selfish’
elements may benefit their human hosts.
@ The mutation rate is about twice as high in male as in female
meiosis, showing that most mutation occurs in males.
@ Cytogenetic analysis of the sequenced clones confirms sugges-
tions that large GC-poor regions are strongly correlated with ‘dark
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Non-coding Annotations: Overview

Features are often present on multiple "scale” (eg elements and connected networks)

Sequence features, incl. Conservation Functional Genomics 3
Chip-seq (Epigenome & seq. specific TF)

and ncRNA & un-annotated transcription

Lajge scale sequence Signal processing of raw
similarity comparison experimental data I ‘
Ay } : ' il .
; » Removing artefacts
Identify large blocks of » Normalization
repeated and deleted » Window smoothin /V\_
o f | e ;i = N OFAYA
- |+ Within the human _
I =~ - ‘ | reference genome Segmentation of processed -
| i~ ull{ R in the human data into active regions: @E ] ] 0
-l population » Binding sites )
l L ﬁ [+ Between closely related ] Transcrlptlonally actilS y
[ : : regions /

- - f ®E ﬁ

Identify smaller-scale Group active regions into
PARY repeated blocks using larger annotation blocks
=t — o — el statistical models

[Nat. Rev. Genet. (2010) 11: 559]
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RNA-seq

B0 geuI91SIa9 SaIN109 ] - ir



N2-A t SRR % Y R

s e s sk amsibo - T

N3-A | VY [ P ML e e v & - A, L ‘ B

=

e S e i SE AR | | S B LA S DN bt S SOOI BT . - 11, S W U Yo

U201 11T TN, ORI | 1 T | _._-ALlL.hL

CAM1 .-/ A '2\

Information from
RNA-seq:
Avg. signal at exons &
TARs (RPKMs)

[PNAS 4:107: 5254 ; 13C 123:569]



Differential expression analysis

log2 fold change
o




Differential expression analysis: Count-based

DESeq -- based on
negative binomial
distribution

edgeR -- use an
overdispersed Poisson
model

baySeq -- use an
empirical Bayes
approach

TSPM -- use a two-
stage poisson model

Andoes and Hubis Gemme Balsgy 2000, 118106
IIpligencetilogy Com/20100 1 FIVR106

Genome Biology

METHOD Open Access

Differential expression analysis for sequence
count data

Simon Andears’, Wolfgang Huber

APPLICATIONS NOTE ‘aiiosmommcnpers

Gene exprassion

edgeR: a Bioconductor package for differential expression

analysis of digital gene expression data

Mark D. Robinson-2-+T, Davis J. McCarthy® T and Gordon K. Srmiyth?

! Cancer Program, Garven Inatitute of Medical Research, 384 Victoria Streat, Deslinghurst, MSW 2010 and
?Bioirformatics Division, The Walter and Eliza Hall Institute of Medical Research, 16 Royal Parads, Paradlle,
Victoria 3052, Australia

I‘hld:aiﬂ!“ﬁ!"ymmmﬂ 2000, 11:422 -
hittpuifwww biomedeentraloomy 1471-21051 1/422
BMC
Bioinformatics
RESEARCH ARTICLE Open Access

baySeq: Empirical Bayesian methods for
identifying differential expression in sequence
count data

Thamas | Hardcasle”, Krystyra A Kelly

Sraristical Applications in Genetics
and Molecular Biology

Faliwne 10, frswe 1 2011 Article 26

A Two-Stage Poisson Model for Testing
RNA-Seq Data

Paul L. Auwer, Fred Hurchinson Cancer Research Center
Rebecca W. Doerge. Purdue Universioe



Chip-seq
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Information from Chip-seq
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Summarizing the Signal:
"Traditional" ChipSeq Peak Calling

ChiP
* Generate & threshold the signal

profile to identify candidate
target regions
—  Simulation (PeakSeq),

—  Local window-based Poisson (MACS),
—  Fold change statistics (SPP)

Threshold

Potential Targets NI RIED (i il R | THH 11

Normalized Control

* Score against the control

Significantly Enriched targets | 1 Iy



Data Flow: Chip-seq expts. to co-associating peaks

119 TFS from 458 ChlIP-Seq experiments (2 Tb tot.)

v

Signal Tracks

L AN\

* Mostly in Tier 1 cell lines
K562, GM12878, H1h-ESC...
» Matching RNA-Seq data in all cell-lines

* SPP & PeakSeq

v

7M Peaks from Uniform Peak Calling

* thresholding w. IDR (replicas)

TF1
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o/

M ~\ M\
o/ N\ o/
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TF119
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94 partner-factors
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2785 GATA1 (focus-factor) peak locations



Data Flow: peaks to proximal & distal networks

Peak Calling

‘J, C— -

Assigning TF binding sites to targets

> ' > ~500K
‘ \l, ® ‘ —0 Edges
Filtering high confidence edges & distal regulation
Based on stat. model combining
signal strength & location relative to typical binding
| | — —> 26K -
i
—@ = Edges -

Distal Proximal
Edge

!

Potential l Strong

l—)
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The irreproducible discovery rate (IDR)

 Unified approach to measure the reproducibility of findings identified from
replicate high-throughput experiments.

« Idea : call peaks with low cutoff and classify peaks as reproducible or not
(bivariate rank distributions) based on overlap of ranked peaks (consistency)

© |
o o
S
3 A
o
g < |
48 @
g3 c
Zsg Q
s o
S8 =
a =
; IDR<=1%"? i
8 * FALSE o |
o
e TRUE T T T T T T
0 20000 50000

0000 20000 30000 40000 50000 60000 H H 4]
10000 2082aK rank Rep] num of significant peaks
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Multiscale Analysis, Minima/Maxima based
Coarse Segmentation

I Igl I 7 N B N N e T T WM OO TN W W T T BT
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-

204 kb L
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Harmanci et al, Genome Biology 2014, MUSIC.gersteinlab.org
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Multiscale Decomposition

Increasing Scale
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Multiscale Decomposition
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Conservation

Biological
human
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annotation
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quantnanve

trait locus In vivo
mapping
g% Computationa

/Deletion of non-coding sequence Evidence for cis-acting mecha Orthogonal evidence that the non-coding sequence is an enhancer
in vivo or in relevant cell line, with (e.g. linear proximity, 3D proxi (e.g. episome-based reporter demonstration of enhancer activity
change in gene expression or allelic imbalance) or biochemical annotation)
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Background on computational annotation for non-coding regions

* Peak calling: T
oo s 1 Ly (1
v'PeakSeq, SPP, MACS2, Hotspot ...
. 90 MRS ) o T T N ) T
v'ENCODE Encyclopedia s S O
E = L] LU L ' "
= ° ,
. " . . . - I :
*» Genome segmentation: partition the genome into regions (states) with distinct c :
epigenomic profiles, then assign each state a functional label. g }
v'ChromHMM: Multivariate Hidden Markov Model o =
v'Segway: Dynamic Bayesian Network Model § 5
e
§3§§§g e
o J. Ernst, M. Kellis. Nat. Protoc., 2017
* Supervised regulatory prediction: learn predictive models from labeled dataset of
regulatory elements. -
A Preprocessing Input Data
v/ CSI-ANN: Time-Delay Neural Network - ——
o f¥-=wZ
v RFECS: Random Forest f - [ e J — ﬁ
A T -
v/ DEEP: Ensemble SVM + Artificial Neural Network 2 Histone Modifcations Mathematical Features =i
zZ
v REPTILE: Random Forest < B l
L S
v’ gkm-SVM: Gapped k-mer & ®p
— N

|
Fisher Discriminant Analysis.
Feature Extraction

e Target finding
v Ripple, TargetFinder, JEME, PreSTIGE, IM-PET

H.A. Firpi, D. Ucar, K. Tian. Bioinformatics, 2010
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ENCODE portal

Broad ENCODE Annotation

ENCODE Encyclopedia

'\\ Available [ Future plan
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Matched Filter recognize shape patterns

! 08 Matched Filter 40
v hd | < y(n) r(n)

A/\ B ——p (1) |— 20

L | ~ 0 . =
@ < Metaprofile sn) T o

T Matched filter h(n)

| -06 Epigenetic Signal y(n) 20
0 N Matched filter score r(n) '

[ biorxiv.org/content/early/2018/08/05/385237; Sethi et al. (‘20) Nat. Meth. ]
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ASB/ASE
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Allele-specific binding and expression

Paternal
DNA B+ oo
t iption fact
N/“ (ONAbinding proten)

Maternal

DNA B Ammm o
— ML
— N MAA

Paternal M4

DNA

Maternal

Genomic variants
affecting allele-specific behavior
e.g. allele-specific binding

(ASB)

e.q. allele-specific expression
(ASE)

23 - Lectures.GersteinLab.org



Inferring Allele Specific Binding/Expression
using Sequence Reads

RNA/ChIP-Seq Reads

ACTTTGATAGCGTCAATG x
CTTTGATAGCGTCAATGC
CTTTGATAGCGTCAACGC ~AACGC...
TTGACAGCGTCAATGCAC TF
TGATAGCGTCAATGCACG
ATAGCGTCAATGCACGTC
TAGCGTCAATGCACGTCG | ‘U//
CGTCAACGCACGTCGGGA
GTCAATGCACGTCGAGAG LAATGC..
CAATGCACGTCGGGAGTT
AATGCACGTCGGGAGTTG
TGCACGTTGGGAGTTGGC Haplotypes with a
Heterozygous Polymorphism
10 x T
2 x C

Interplay of the annotation and individual sequence variants



Many Technical Issues in Determining ASE/ASB:

Reference Bias
ASE/ASB Example:

GTCAATGCAC (naive alignment against reference)
..GTCAATGCACG
..GTCAATGCACGTC
...GTCAACGCACGTCGGGA ACTTTGATAGCGTCAATG
GTgizgggigggggggigTT CTTTGATAGCGTCAACGC
AATGCACGTCGGGAGTTG  ATAGCGTCARTGCACGT..
Allele-S ific SNP Binomial Null Distribution TAGCGTCAACGCACGT...
ele-Specific s i s - CGTCAACGCACGT..
P (no allele-specific behavior) CARTGOAGOT.
— AATGCACGT..
=
=
=
I
=
L]
[ ]
O
0
o
g
LL '
o
-
|::’:| p—
L
|::’:| p—
[ I [ [ M
Reference Allele Alternate Allele

Fraction of Reads Mapping to Alternative Allele

[Rozowsky et al., MSB (‘11)]
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How to build a personal genome

SNV Larger SV
Reference (fasta; reference)
genome | TIGIGAAIGAAAICCGTITIT.. +

| | | (vcf, variants
| | | phased or unphased)

@ PJ [[CGARGAARCCIGACTT.. §
Personal M : : : e (fasta; for each
genome 9 AGIGIAICICIG AIGTITIT].. haplotype)
alleleseqg.gersteinlab.org Rozowsky et al. Mol Syst Biol (2011) i

N



eQTL/GWAS



Gersteln Lab
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Gersteln Lab

GWAS

(\

Variants

e

Mendelian Randomization

.gersteinlab.org]
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Gerstein Lab

Mendelian traits

Quantitative traits

3/1/2022

AA Aa

Aa aa

16 28 40 52 64 76 88
Height

30
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Gerstein Lab

16 28 40 52 64 76 88 » 05 1.0 15 20 25 3.0 35
Height Gene expression

.gersteinlab.org]
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Expression quantitative trait locus (eQTL)

Cis-eQTL

SNP X has an effect on local Gene A

(-

Gone A axpression levels

SNP X Gene A
located in transcription factor ' !
promoter region located on AA AB BB

SNP X Ge:
chromosome 1 it

Altered Protein A levels,
effect on the binding to
the transcription factor
binding sites of
downstream genes
Trans-eQTL
SNP X has an effect on distant Gene B through an
intermediary factor (such as a transcription factor)

i 5 -
o T pe—g )

Bl X

5 e
Protein A Gene B
binding site located on : L ' 1

chromosome 2 " AA  AB BB
SNP X Genotype

Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 2014, 10:1896-1902
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Gerstein Lab

GG GA AA
l . X: Number of alternative (alt) allele
2 . T .
<l Y: Expression level of the gene
1 .t
§ 0 *.'."
s ‘ Y=F+«X+¢
= . ...
= T-test for null hypothesis g = 0
0 1 2

rs1867277

GTEXx Consortium, 2017, Nature
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Gerstein Lab

&= GTEXPortal

“The Genotype-Tissue Expression (GTEX) project is an ongoing effort to build a comprehensive
public resource to study tissue-specific gene expression and regulation. Samples were collected
from 54 non-diseased tissue sites across nearly 1000 individuals, primarily for molecular
assays including WGS, WES, and RNA-Seq. The GTEx Portal provides open access to data
including gene expression, QTLs, and histology images.”

https://www.gtexportal.org/home/

34
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https://www.gtexportal.org/home/

Gerstein Lab

A ,——— © Cortex (205) / Frontal cortex (BAY) (175) B
/ © Anterior cingulate cortex (BA24) (147)
© Caudate (basal ganglia) (194) Cell type composition Gene expression
© Nucleus accumbens (basal ganglia) (202) in tissues and splicing
© Putamen (basal ganglia) (170)
© Hypothalamus (170)
© Amygdala (129) W“W
Sy © Hippocampus (165) W
% © Substantia nigra (114) 20.0 @" i, o S,
N © Cerebellum (209) / Cerebellar hemisphere (175) »j ® 'B/ & g A~ =
¢ © Spinal cord (cervical ¢-1) (126) \: U‘C“*é'f‘y E -

© Pituitary (237)

Expression quantitative Splicing quantitative

trait loci (eQTLs) trait loci (sQTLs)
Lung (515)@ @ Minor salivary gland (144) cis-eQTLs cis-sQTLs
Breast mammary tissue (396)@ @ Thyroid (574) TR
s N Rl
Pancreas (305) @ - @ Aorta (387) % e
Liver (208)@ @ Atrial appendage (372) e ey T ™y
Adrenal gland (233)@ © Coronary artery (213) ® W\E‘,A S —
Kidi tex (73)@ @ Left ventricle (386) - =
idney cortex eft ventricle
o i .
Kidney medulla (4) ® @ Esophagus mucosa (497) o s Treerrr T T
T T
Visceral omentum (469)@ @ Esophagus muscularis (465) B
Smallintestine terminal ileum (174) @ @ Gastroesophageal junction (330) trans-eQTLs trans-sQTLs
Fallopian tube (8)© — @ Spleen (227)
syl Bl
Ovary (167)© © Stomach (324) e T ey o
sl st 5
Uterus (129)@ @ Transverse colon (368) i R Thvyprr Ty
Not sun-exposed skin (suprapubic) (517) @ © Sigmoid colon (318) (v A C -
Endocervix (10)@ @ Bladder (21 o o
Ectocervix (9) © © Prostate (221) Ty
Vagina (14)@ o Testis (322) T e

Sun-exposed skin (lower leg) (605)®
Cultured fibroblasts (483)©
Subcutaneous adipose (581) @
Skeletal muscle (706)@

@ Whole blood (670) [ — b\‘_}

@ EBV-transformed lymphocytes (147) C
o

@ Tibial artery (584)

© Tibial nerve (532)

GTEx Consortium, 2020, Science
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Gerstein Lab

GTEXx dataset:

Phenotypes: N samples x M genes
Genotypes: N samples x L loci
Covariates: N samples x C covariates (PEER factors)

Expression
measures

Co- —
variates

Expression Geno- AA
measures | ~ type +
Co-
variates

Standard eQTL mapping with
PEER factors

3/1/2022 36
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Aspects of Scaling eQTL calculation to Many SNPs & Many Samples

Taking into account covariates
General additive model for sources of gene expression variability.

Standard eQTL mapping with covariates and hidden factors
Standard eQTL mapping with covariates b

(

-

;'gtandard eQTL

map;ﬁng .
{ -
SNP Age Environment lnlter.atct:.ons
(Disease state Gender Temperature ,gm rgn%enl
Tissue) Environment Concentration Non-inear effects
— | Geno- Known Hidden
= Etype T factors factors + othersill T
(1) (2) (3)
Y YO(S)  YOF) YOX))

Also, important to take into account multiple testing correction
when performing this with many SNPs

Stegle O, Parts L, Durbin R, Winn J (2010) A Bayesian Framework to Account for Complex Non-Genetic Factors in Gene

Expression Levels Greatly Increases Power in eQTL Studies. PLOS Computational Biology 6(5): e1000770.

https://doi.org/10.1371/journal.pcbi.1000770
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https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000770

Gerstein Lab

3/1/2022

Calling cis-eQTLs with FastQTL (now TensorQTL)

Fast and efficient QTL mapper for thousands of
molecular phenotypes

Halit Ongen'%>", Alfonso Buil**', Andrew Anand Brown'234,
Emmanouil T. Dermitzakis'2>* and Olivier Delaneau’?3*

1Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland,
?Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, 1211, Switzerland, 3Swiss

Institute of Bioinformatics, Geneva, 1211, Switzerland and “NORMENT, KG Jebsen Centre for Psychosis Research,
Institute of Clinical Medicine, University of Oslo, Norway

github.com/francois-a/fastqtl
github.com/broadinstitute/tensoratl
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https://github.com/francois-a/fastqtl
https://github.com/broadinstitute/tensorqtl

Gerstein Lab

GWAS

Associating One SNP with Disease
What is an “Odds Ratio”?

?

:_ Odds Ratio a vs A:

cases| deee=d | © ¢ | [d/d+y)VIy/(d+Y)] Odds with allele a
controls| = | x Y [c/(x+y))/[x/(c+x)] Odds with allele A
Chi-squared test

1: equal odds (no difference)
>1: increased odds (increased risk)
<1: decreased odds (decreased risk)

39
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Gerstein Lab

Manhattan plot
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chromosome

(Ikram et al, 2010 PLoS Genet.)
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3D organization of genome

Tertiary

30nm chromatin
s, Secondary structure

Nucleus with

"We finished the genome map, now distinct territories

we can't figure out how to fold it."

image credit: lyer et al. BMC Biophysics 2011,

cartoonist John Chase 10nm chromatin

Primary Structure

image credit: lyer et al. BMC Biophysics 2011
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Hi-C contact map

Crosslink DNA Cut with Fill ends Ligate Purify and shear DNA;  Sequence using
restriction and mark pull down biotin paired-ends
enzyme with biotin

AAGCTT
TTCGAA

43
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Topologically associating domains (TADSs)

TADs have apparent
hierarchical organization

44 - Lectures.GersteinLab.org



Identifying TADs in multiple resolutions

network contact map

chromosome
node .
bin
edge Hi-C contact
#of coverage
connections g
Modularity maximization _
module domain

1 kik;
Q=5 3 (W= 5, ) o,

2,7

schematic adapted from ref. [2]

To be continued in network section.....
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[Yan et al., PLOS Comp. Bio. (in revision, ‘17); bioRxiv 097345]



