Biomedical Data Science: Introduction

Mark Gerstein, Yale University
GersteinLab.org/courses/452
(last edit in spring ’22)
Overview: what is Biomed. Data science?

(Placing it into the context of Data Science, in general)
Jim Gray’s 4th Paradigm

Science Paradigms

- Thousand years ago: science was \textit{empirical} describing natural phenomena
- Last few hundred years: \textit{theoretical} branch using models, generalizations
- Last few decades: a \textit{computational} branch simulating complex phenomena
- Today: \textit{data exploration} (eScience) unify theory, experiment, and simulation
 - Data captured by instruments or generated by simulator
 - Processed by software
 - Information/knowledge stored in computer
 - Scientist analyzes database/files using data management and statistics

\[
\left(\frac{a}{d} \right)^2 = \frac{4\pi G p}{3} - K \frac{c^2}{a^2}
\]
Jim Gray’s 4th Paradigm

#3 - Simulation
Prediction based on physical principles (e.g., Exact Determination of Rocket Trajectory)
Emphasis on: Supercomputers

#4 - Data Mining
Classifying information & discovering unexpected relationships
Emphasis: networks, “federated” DBs

Science Paradigms
- Thousand years ago: science was **empirical** describing natural phenomena
- Last few hundred years: **theoretical** branch using models, generalizations
- Last few decades: a **computational** branch simulating complex phenomena

Today: **data exploration** (eScience)
- Unify theory, experiment, and simulation
 - Data captured by instruments
 - Or generated by simulator
 - Processed by software
 - Information/Knowledge stored in computer
 - Scientist analyzes database / files using data management and statistics

Gray died in ’07.
Book about his ideas came out in ‘09…..
What is Data Science? An overall, bland definition...

• Data Science encompasses the study of the entire lifecycle of data
 - Understanding of how data are gathered & the issues that arise in its collection
 - Knowledge of what data sources are available & how they may be synthesized to solve problems
 - The storage, access, annotation, management, & transformation of data

• Data Science encompasses many aspects of data analysis
 - Statistical inference, machine learning, & the design of algorithms and computing systems that enable data mining
 - Connecting this mining where possible with physical modeling
 - The presentation and visualization of data analysis
 - The use of data analysis to make practical decisions & policy

• Secondary aspects of data, not its intended use – eg the data exhaust
 - The appropriate protection of privacy
 - Creative secondary uses of data – eg for Science of science
 - The elimination of inappropriate bias in the entire process
Data Science in the wider world: a buzz-word for successful Ads

- Ads, media, product placement, supply optimization,
- Integral to success of GOOG, FB, AMZN, WMT...
Data Science in Traditional Science

- Pre-dated commercial mining
- Instrument generated
- Large data sets often created by large teams not to answer one Q but to be mined broadly
- Often coupled to a physical/biological model
- Interplay w/ experiments

High energy physics - Large Hadron Collider
Neuroscience - The Human Connectome Project
Ecology & Earth Sci. - Fluxnet
Astronomy - Sloan Digital Sky survey
Genomics DNA sequencer

5Vs

[Navarro et al. GenomeBiol. (19, in press)]
• Scientific data often coupled to a physical/biological model
• Lauffenburger’s Sys. Biol. 4**Ms**: Measurement, Mining, Modeling & Manipulation (Ideker et al.’06. Annals of Biomed. Eng.)
• Weather forecasting as an exemplar
 - Physical models & simulation useful but not sufficient (“butterfly” effect)
 - Success via coupling to large-scale sensor data collection

[Navarro et al. GenomeBiol. ('19, in press)]

NOAA
Biomed. Data science: Scaling & Integration
Drivers of Biomedical Data Science

- **Integration** across data types
- **Scaling** of individual data types

[Navarro et al. GenomeBiol. ('19, in press)]
Case Study: Amazing Progress in Scaling & Integration with Genotype-Phenotype Relationships

1953
Double Helix
Watson & Crick

1995
Sequenced Genome
H. influenzae

2008
1000 Genomes
Catalogue of human variation

2015
Integrated health data
UKBB study with over 500K participants, genotypes to phenotypic details & clinical information
The Scaling of Genomic Data Science:

Powered by exponential increases in data & computing

(Moore’s Law)

[NHGRI website + Waldrop (‘15) Nature]
Kryder’s Law and S-curves underlying exponential growth

- Moore’s & Kryder’s Laws
 - As important as the increase in computer speed has been, the ability to store large amounts of information on computers is even more crucial

- Exponential increase seen in Kryder’s law is a superposition of S-curves for different technologies

[Muir et al. (‘15) GenomeBiol.]
Sequencing cost reductions have resulted in an explosion of data.

- The type of sequence data deposited has changed as well.

[Muir et al. (‘15) GenomeBiol.]
The changing costs of a sequencing pipeline

From ‘00 to ~’20, cost of DNA sequencing expt. shifts from the actual seq. to sample collection & analysis

[Sboner et al. (‘11), Muir et al. (‘15) Genome Biology]
The changing costs of a sequencing pipeline

From ‘00 to ~’ 20, cost of DNA sequencing expt. shifts from the actual seq. to sample collection & analysis

[Sboner et al. ('11), Muir et al. ('15) Genome Biology]
The changing costs of a sequencing pipeline

From ‘00 to ~’ 20, cost of DNA sequencing expt. shifts from the actual seq. to sample collection & analysis.

Alignment algorithms scaling to keep pace with data generation.

[Sboner et al. ('11), Muir et al. ('15) Genome Biology]
The changing costs of a sequencing pipeline

From ‘00 to ~’20, cost of DNA sequencing expt. shifts from the actual seq. to sample collection & analysis

[Sboner et al. (‘11), Muir et al. (‘15) Genome Biology]
A Success of Scale & Integration: Many GWAS variants found, most not in genes, but affecting regulatory network

- A 1st GWAS done at Yale, for AMD: (Klein et al. 05, Science)
- Many since then
- Most SNVs fall into non-coding regulatory regions (major contributions by Yale groups to this ENCODE annotation effort)

THE GENOME-WIDE TIDE
Large genome-wide association studies that involve more than 10,000 people are growing in number every year — and their sample sizes are increasing.

Sample sizes:
- More than 200,000
- 100,000–199,999
- 50,000–99,999
- 10,000–49,999

Cumulative study number

[Nature 489: 91]
Basic Science to Medicine

- Large-scale ‘omics data as an anchor to organize phenotypic data – EMRs, wearables...
- 1st ['05-]: Exomes & chips of disease-focused cohorts – init. GWAS, TCGA, PGC
- 2nd ['15-]: Integration of full WGS with rich & diverse phenotypes - UKBiobank, TopMed, Genomics England, PCAWG, All of Us

Biomed. Data science:
The Future
Personal genomes soon will become a commonplace part of medical research & eventually treatment (esp. for cancer). They will provide a primary connection for biological science to the general public.
Placing the individual into the context of the population & using the population to build a interpretative model
How will the Data **Scaling** Continue? The Past, Present & Future Ecosystem of Large-scale Biomolecular Data

- Molecular Structures
- Sequences (Human WGS & WES)
- Images (Cryo-EM)
Trends in data generation point to growing opportunities for leveraging sequence variants to study structure (and vice versa)

The volume of sequenced exomes is outpacing that of structures, while solved structures have become more complex in nature.

Exome data hosted on NCBI Sequence Read Archive (SRA) [Sethi et al. COSB ('15)]
Growing sequence redundancy in the PDB (as evidenced by a reduced pace of novel fold discovery) offers a more comprehensive view of how such sequences occupy conformational landscapes – Gene & Struc. Families as main organizing principle.

SCOP: Fox NK et al. NAR. (2014)

[Sethi et al. COSB ('15)]
Examples of Imports & Exports to/from Genomics & Other Data Science Application Areas

Technical Imports
Networks and graphs

Technical Exports
Circos plot

Cultural Imports
CASP

Cultural Exports
Open Science

[Navarro et al. GenomeBiol. ('19, in press)]
Biomed. Data science:
The Course
Defining Bioinformatics – by crowd-sourced judgement

- **Bioinformatics**
 - Related terms
 - Biological Data Science
 - Bioinformatics & / or / vs Computational Biology
 - Biocomputing
 - Systems Biology
 - Qbio

- **What are its boundaries**
 - Determining the "Support Vectors"
Biomedical Data Science

(Molecular) BIOINFORMATICS

BIOLOGY

INFORMATICS

Data Mining

Sequence & Genome Analysis

Other 'omic & Network Analyses

Medical & Translational Informatics

3D Structure Analysis

Systems Analysis

Modeling & Simulation

What is Bioinformatics?

• (Molecular) **Bio-informatics**

• One idea for a definition? Bioinformatics is conceptualizing **biology in terms of molecules** (in the sense of physical-chemistry) and then applying **“informatics” techniques** (derived from disciplines such as applied math, CS, and statistics) to **organize, mine, model & understand the information associated** with these molecules, **on a large-scale.**

• Bioinformatics is a practical discipline with many **applications.**

Short Office Hours
Today right after class.
After that email me!

(in Bass 432, contact.gerstein.info)