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Supervised Mining:

Overview



The World of Machine Learning
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http://scikit-learn.org/stable/tutorial/machine_learning_map/

Structure of Genomic Features Matrix
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Arrange data in a tabulated form, each row
representing an example and each column

representing a feature, including the dependent
experimental quantity to be predicted.

predictor1 | Predictor2 | predictor3 | predictor4 |response
G1 [A(1,1) A(1,2) A(1,3) A(1,4) Class A
G2 [A(2,1) A(2,2) A(2,3) A(2,4) Class A
G3 |A(3,1) A(3,2) A(3,3) A(3,4) Class B
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Represent predictors in abstract
high dimensional space



“Label” Certain Points
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“Cluster” predictors
(Unsupervised)




Use Clusters to predict Response
(Unsupervised, guilt-by-association)
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Find a Division to Separate Tagged Points
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Extrapolate to Untagged Points

CIPE b @
° .
L@ ® @@@é

11 GersteinLab.org ‘14




Probabilistic Predictions of Class
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Find a Division to Separate Tagged Points
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Distinctions In
Supervised Learning

Regression vs Classification
— Regression: labels are quantitative
— Classification: labels are categorical

Regularized vs Un-regularized
— Regularized: penalize model complexity to avoid over-fitting
— Un-regularized: no penalty on model complexity

Parametric vs Non-parametric

— Parametric: an explicit parametric model is assumed
— Non-parametric: otherwise

Ensemble vs Non-ensemble

— Ensemble: combines multiple models

— Non-ensemble: a single model



Supervised Mining:

Decision Trees



Decision Trees

e Classify data by asking A decisiontree
questions that divide
data in subgroups

* Keep asking questions s bottom
until subgroups e
become homogenous

e Use tree of questions
to make predictions

Is top
part blue?

Is bottom
part blue?

b o %

 Example: Is a picture taken inside or outside?

Criminisi, Shotton, and Konukoglu Microsoft Technical Report 2011



What makes a good rule?

 Want resulting groups to be as homogenous
as possible

o0 0000 . .0
All groups still 50/50
> Unhelpful rule

2/3 Groups homogenous
—>Good rule

Nando de Freitas 2012 University of British Columbia CPSC 340



Quantifying the value of rules

* Decrease in inhomogeneity

— Most popular metric: Information theoretic
entropy -

S=—) . pilogp;
— Use frequency of classifier characteristic within
group as probability
— Minimize entropy to achieve homogenous group



Algorithm

e For each characteristic:

— Split into subgroups based on each possible value of
characteristic

e Choose rule from characteristic that maximizes
decrease in inhomogeneity

* For each subgroup:
— if (inhomogeneity < threshold):
* Stop

— else:
* Restart rule search (recursion)



Retrospective
Decision
Trees

[Bertone et al. NAR (‘01)]
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Retrospective
Decision Trees

356
Nomenclature
total
Not Express
Expressible ......... > 1430 ....... Lible
hydro
obe
53

‘A? 900185

Has a hydrophob'ic stretch? (Y/N)
[Bertone et al. NAR (‘01)]



Overfitting, Cross Validation, | —
and Pruning xSk G
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Extensions of Decision Trees

* Decision Trees method is very sensitive to
noise in data

e Random forests is an ensemble of decision
trees and is much more effective.



