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What is Annotation? (For Written Texts?)

F
NATURE bror. 409 | 15 FEBRUARY 2001 |

wish to suggest a Istructure! for the salt
of deoxyribose nucleic a¢id (ID.N.A.). This Intemational Human Genome Sequencing Consortium*
structure has novel features which are of considerable
biolo;

ical interest.

* A partial list of authors appears on the opposite page. Affiliations are listed at the end of the paper.

The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution.
Here we report the results of an intemational collaboration to produce and make freely available a draft sequence of the human
genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.

coordinate regulation of the genes in the clusters.

©® The set of protei e ‘p e human
genome is more complex than those of invertebrates. This is due in
part to the presence of vertebrate-specific protein domains and
motifs (an estimated 7% of the total), but more to the fact that
vertebrates appear to h ged pre-existing comp intoa
richer collection of domain architectures.

® Although about half of the human genome derives from trans-
posable elements, there has been a marked decline in the overall
activity of such elements in the hominid lineage. DNA transposons
appear to have become completely inactive and long-terminal
repeat (LTR) retroposons may also have done so.
® The pericentromeric and subtelomeric regions of chromosomes
are filled with large recent segmental duplications of sequence from
Isewhere in the g g 1 duplication is much more
frequent in humans than in yeast, fly or worm.
® Analysis of the organization of Alu elements explains the long-
standing mystery of their surprising genomic distribution, and
suggests that there may be strong selection in favour of preferential
retention of Alu elements in GC-rich regions and that these ‘selfish’
elements may benefit their human hosts.
©® The mutation rate is about twice as high in male as in female
meiosis, showing that most mutation occurs in males.
@ Cytogenetic analysis of the sequenced clones confirms sugges-
tions that large GC-poor regions are strongly correlated with ‘dark
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Non-coding Annotations: Overview

Features are often present on multiple "scale” (eg elements and connected networks)

Sequence features, incl. Conservation

Large-scale sequence
similarity comparison

Functional Genomics

Chip-seq (Epigenome & seq. specific TF)
and ncRNA & un-annotated transcription

v

dentify large blocks of
repeated and deleted
sequence:

Signal processing of raw
experimental data:

» Removing artefacts
» Normalization
» Window smoothing

» Within the human
reference genome

{

» Within the human
population

+ Between closely related
mammalian genomes

Segmentation of processed
data into active regions:

* Binding sites

» Transcriptionally active

v

regions
Y

dentify smaller-scale
repeated blocks using
statistical models

Group active regions into
larger annotation blocks
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[Nat. Rev. Genet. (2010) 11: 559]
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Information from
RNA-seq:
Avg. signal at exons &
TARs (RPKMs)

[PNAS 4:107: 5254 ; 1JC 123:569]



Differential expression analysis

log2 fold change
o
]




Differential expression analysis: Count-based

DESeq -- based on
negative binomial
distribution

edgeR -- use an
overdispersed Poisson
model

baySeq -- use an
empirical Bayes
approach

TSPM -- use a two-
stage poisson model

Anders and Huber Genome Biokegy 2010, 118105
tpuigencessbiclogy com/20101 1/10VR105

Genome Biology

METHOD Open Access

Differential expression analysis for sequence
count data

Simon Anders’, Wolfgang Huber

APPLICATIONS NOTE ‘i osumanimeampre

Gene exprassion

edgeR: a Bioconductor package for differential expression
analysis of digital gene expression data

Mark D. Robinson'-2-*-, Davis J. McCarthy>! and Gordon K. Smyth?

! Cancer Program, Garvan Institute of Medical Ressarch, 384 Victoria Strest, Darlinghurst, NSW 2010 and
?Bcinformatics Division, The Walter and Eliza Hall Institute of Medical Ressarch, 1G Royal Parade, Parkdlie,
Victoria 3052, Australia

Hardcastle and Kelly 8MC Slainformatics 2010, 11:422 ~
hitp//wwew blomedcentralcom/1471-2105/11/422 BMC

Bioinformatics
RESEARCH ARTICLE Open Access

baySeq: Empirical Bayesian methods for
identifying differential expression in sequence
count data

Thomas J Hardcastle”, Krystyna A Kelly

Statistical Applications in Genetics
and Molecular Biology

Voliwne 10, Issue 1 2011 Article 26

A Two-Stage Poisson Model for Testing
RNA-Seq Data

Paul L. Auer, Fred Hurchinson Cancer Resecarch Cenrter
Rebecca W. Doerge, Purdue University
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Chip-seq
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Information from Chip-seq

Scale 10 kb I
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Summarizing the Signal:
"Traditional"” ChipSeq Peak Calling

ChiP
* Generate & threshold the signal

profile to identify candidate
target regions

— Simulation (PeakSeq),

— Local window-based Poisson (MACS), Threshold
—  Fold change statistics (SPP) =

PotentiaITargets N I L A [ (R | O el I 1 1
Normalized Control

* Score against the control

Significantly Enriched targets | kgl



Data Flow: Chip-seq expts. to co-associating peaks

119 TFs from 458 ChlIP-Seq experiments (2 Tb tot.)

v

Signal Tracks

L L

* Mostly in Tier 1 cell lines
- K562, GM12878, H1h-ESC...

» Matching RNA-Seq data in all cell-lines

* SPP & PeakSeq
* thresholding w. IDR (replicas)

v

7M Peaks from Uniform Peak Calling
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Data Flow: peaks to proximal & distal networks

Peak Calling

’\1' — O

Assigning TF binding sites to targets

v

Filtering high confidence edges & distal regulation

Based on stat. model combining
signal strength & location relative to typical binding

' ' > ‘|—> ~26K

‘ ¢ ' Edges

Potential Strong S OB T
Distal Proximal , SEERIINL
Edge Edge 2 MBI
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The irreproducible discovery rate (IDR)

Unified approach to measure the reproducibility of findings identified from
replicate high-throughput experiments.

Idea : call peaks with low cutoff and classify peaks as reproducible or not
(bivariate rank distributions) based on overlap of ranked peaks (consistency)

0.
§ o
3 |
- < |
%8 e
&3 5 -
£g =
°3 o
38 =
o
8 IDR<=1%"? ]
g * FALSE o |
o
TRUE 1 T 1 T T 1 T
: 0 20000 50000
10000 20000 30000 40000 50000 60000 num of significant peaks

Peak rank Rep1

13 = Lectures.GersteinLab.org



Multiscale Analysis, Minima/Maxima based
Coarse Segmentation

p36.31 p36.13 p353

~d T O W T WO W W T T BT O
p34.2 p323 p31.3 p3l.1 p223 p21.3 pl133 pl2 ql1 ql2 q21.1 q22 q24.1 q25.2 q31.1 q32.1 q323 q42.11 q42.3 q44

204 kb o

27,140 kb 27,160 kb 27,180 kb 27,200 kb 27,220 kb 27,240 kb 27,260 kb 27,280 kb 27,300 kb 27,320 kb

Harmanci et al, Genome Biology 2014, MUSIC.gersteinlab.org
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Multiscale Decomposition

Increasing Scale
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Multiscale Decomposition
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Simple
Integration
for
Elements




’ Single-cell molecular profiling

Conservation g Microscopy

Biological é

T human Cell-type specificity é
Sequence onh e MPRAs

Biochemical _(-:'_)_i
annotation
Regulatory mechanism - @
@D CRISPR

?nz;;ir:]fgrmation % @ @ screens
Expression Linked target gene

quantitative .

trait locus . Invivo

mapping

Qe omputationa

Orthogonal evidence that the non-coding sequence is an enhancer
(e.g. episome-based reporter demonstration of enhancer activity
or biochemical annotation)

/Deletion of non-coding sequence Evidence for cis-acting mecha
in vivo or in relevant cell line, with (e.g. linear proximity, 3D proxi
change in gene expression or allelic imbalance)

______ —_—
e 1Mb
—= —
%Enhancer@% Target gene P = PR

A
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Background on computational annotation for non-coding regions

* Peak calling: : e ™ e e
,,,,,,,,,,, 5" 1 j | a
v'PeakSeq, SPP, MACS2, Hotspot ...
v'ENCODE Encyclopedia

* Genome segmentation: partition the genome into regions (states) with distinct
epigenomic profiles, then assign each state a functional label.

v'ChromHMM: Multivariate Hidden Markov Model

v'Segway: Dynamic Bayesian Network Model

ChromHMM

*QE880838¢%
graFsg

§°wa_ g ﬁ%
J. Ernst, M. Kellis. Nat. Protoc., 2017

* Supervised regulatory prediction: learn predictive models from labeled dataset of

regulatory elements. ;
Preprocessing Input Data

A
v' CSI-ANN: Time-Delay Neural Network N - q )
- fu=yZ
v RFECS: Random Forest ; — | s | T h
AN o -

v' DEEP: Ensemble SVM + Artificial Neural Network =z Histone Modifications Mathematcal Featires Feature Space
b
v REPTILE: Random Forest <’.: B l
v ~ . ~ %) m
gkm-SVM: Gapped k-mer 3 | ]
K
) ) Fisher Discriminant Analysis
* Target finding Feature Extraction

v Ripple, TargetFinder, JEME, PreSTIGE, IM-PET
H.A. Firpi, D. Ucar, K. Tian. Bioinformatics, 2010
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ENCODE portal

Broad ENCODE Annotation

ENCODE Encyclopedia [\ Available [ ] Future plan
2 (" Chromatin ) ( Varant | ~—————
T = states annotation Allele-specific
> 2 (ChromHMM, (HaploReg, FunSeq events
% £ g}_ \___ Segway) ) |\ RegulomeDB) )
> e > . . .
'@ "é E, Registry of candidate cis-regulatory elements
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S
o3 Uniform processing pipelines
s
> QE’ Reads Mapped reads Signal
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L ]

High DNase rDHSs

1.8M ,  0.7M

Integrate and rank
H3K4me3, H3K27ac
and CTCF

0.9M cCREs | | 0.3M cCREs

F Epigenomic signal

“@%\@z ° TSS Proximal Distal
p SPE = = =
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Matched Filter recognize shape patterns

! 08 Matched Filter 40
v v | = y(n) r(n)

B | () [— 20

El\‘-. 0 =)
i | g Metaprofile sn) T o

- Matched filter h(n)

| -0.6 Epigenetic Signal y(n) 20
0 N Matched filter score r(n) '

[ biorxiv.org/content/early/2018/08/05/385237; Sethi et al. (‘20) Nat. Meth. ]
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ASB/ASE &
eQTL



Allele-specific binding and expression

Paternal | |
DNA Genomic variants
gene . : :
affecting allele-specific behavior

e.g. allele-specific binding

transcription factor (ASB)
N/—‘(DNA-binding protein)
Maternal
DNA .

AA
— /N H \ A e.g. allele-specific expression
Paternal P~/ (ASE)
DNA C gene

Maternal

%,
DNA * gene
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Inferring Allele Specific Binding/Expression
using Sequence Reads

RNA/ChIP-Seq Reads
ACTTTGATAGCGTCAATG
CTTTGATAGCGTCAATGC
CTTTGATAGCGTCAACGC
TTGACAGCGTCAATGCAC TF
TGATAGCGTCAATGCACG )

ATAGCGTCAATGCACGTC
TAGCGTCAATGCACGTCG
CGTCAACGCACGTCGGGA
GTCAATGCACGTCGAGAG ..AATGC...
CAATGCACGTCGGGAGTT
AATGCACGTCGGGAGTTG
TGCACGTTGGGAGTTGGC Haplotypes with a

Heterozygous Polymorphism

10 x T
2 X C

Interplay of the annotation and individual sequence variants



Many Technical Issues in Determining ASE/ASB:
Reference Bias

ASE/ASB Example: . . .
GTCAATGCAC (naive alignment against reference)
..GTCAATGCACG
..GTCAATGCACGTC
..GTCAATGCACGTCG Null Example:
~GTCAACGCACGTCGGGA ACTTTGATAGCGTCAATG
GTCAATGCACGTCGAGAG CTTTGATAGCGTCAACGC
CAATGCACGTCGGGAGTT TTGACAGCGTCAATGCAC
AATGCACGTCGGGAGTTG ] ] o ] ATAGCGTCAATGCACGT...
Allele-S ific SNP Binomial Null Distribution TAGCGTCAACGCACGT...
ele-Specitic S = e : CGTCAACGCACGT...
P (no allele-specific behavior) CAATGCACGT. .
4 AATGCACGT...
O
O o)
O
N
=
(]
= -
@
=
o
3
1 O
=
o
C) —
Lo
C) —
[ [ [ [ A
0.0 0.2 04 06 0.8 1.0
Reference Allele Alternate Allele

Fraction of Reads Mapping to Alternative Allele

[Rozowsky et al., MSB ( “11)]
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Reference “15@

genome

Personal
genome

How to build a personal genome

U\

0 °d
1

SNV Larger SV

TIGIGIAIAIGIAIA

GT

TIGIGIAIAIGIAIA

R D
- | -

AlGIGIAICICIG

\

alleleseq.gersteinlab.org

Rozowsky et al. Mol Syst Biol (2011) .

(fasta; reference)

(vcf, variants
phased or unphased)

!

(fasta; for each
haplotype)

.GersteinLab.org
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Expression quantitative trait
Cis-eQTL

SNP X has an effect on local Gene A

(o

Gene A expression levels

SNP X Gene A
located in transcription factor ' I )
promoter region located on AA  AB BB

SNP X Genotype
chromosome 1 P

Altered Protein A levels,
effect on the binding to
the transcription factor
binding sites of
downstream genes

Trans-eQTL

SNP X has an effect on distant Gene B through an
intermediary factor (such as a transcription factor)

§i % -
o S et 1
e (o o3 )
Fley M
Protein A Gene B @
binding site located on 5 Ly + t
chromosome 2 - A AB BB

SNP X Genotype

Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 2014, 10:1896-1902
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(a) C A
Individual

(ii)

(iii)

[Biometrics 68(1) 1-11]

Frequency

B eXON | SNP
mmm— non-trascriped regions,
e.g., intron etc.

(b)

" eQTL Mapping
. Using RNA-Seq
@ T ¢ Data

15

10

« eQTLs are genomic loci
that contribute to

R variation in mRNA

expression levels

« eQTLs provide insights
on transcription
] regulation, and the
- molecular basis of
phenotypic outcomes

* eQTL mapping can be
done with RNA-Seq data
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