
Deep Learning II:
Deep Supervised Learning,

Feed-forward Neural Networks, Convolutional Neural
Networks, and Recurrent Neural Networks

Dr. Martin Renqiang Min
NEC Laboratories America

Biomedical Data Science:
Mining and Modeling

1

Supervised Deep Learning

2

LeCun, Bengio, and Hinton, Deep Learning. Nature 2015

Supervised Deep Learning
Supervised Machine Learning:
Feature Representation +
Classification/Regression Loss +
Optimization (on training data)
� Prediction (on test data)
(hyper-parameter tuning with n-fold CV, n=5)

Supervised Deep Learning:
Input features and adaptively learned
features by hidden layers + Mean Squared
Error/Hinge Loss/Cross-Entropy Loss + SGD
with Momentum (on large-scale training data)
� Good Prediction Performance (on test
data)
(hyper-parameter tuning on a validation set)

3

Test Data

Training Validation

Test Data

Training Validation

Training Data

Fully Connected Layer

4

y

x

y = W x

W

Activation Functions

5

DNN with sigmoid and tanh activation functions has serious vanishing
gradient and saturation issue

6

Grad = y(1-y)

Grad = 1-y2

y

y

z

z

y =

y =

ReLU Activation Function

Avoid vanishing gradient and less computationally expensive than sigmoid and
tanh

But it might cause dead neuron and the activity is not bounded above
7

Softmax Activation Function

8

Often used on top of a fully connected layer, which transforms an activity vector z
into probabilities of classifying x into K classes

The output units in a softmax group
use a non-local non-linearity:

softmax
group

this is called the “logit”

Loss Function: Cross-Entropy Loss

9

The right cost function is the negative
log probability of the target class.
C has a very big gradient when the
target value is 1 and the output is
almost zero.
A value of 0.001 is much better than
0.0000001

The steepness of dC/dy exactly balances
the flatness of dy/dz

Target Class

Loss Function: Mean Squared Error

10

MSE is a very bad cost function for softmax output units.
Why?

Loss Function: Hinge Loss

11

The score for the wrong class must be at least 1 margin
smaller than the score for the ground-truth class;

Otherwise, there is a loss incurred

Deep Feedforward Neural Network with Sigmoid Hidden Units

12

x
w1

h1

w2
h2

w3
h3

y

Backpropagation with a Computational Graph

13

x

w1

y

z1

h1

w2 z2

h2

w3 z3

h3w4

Loss = Squared Error

2 * (y – t)

σ

*

*

*

*

σ

σ

1.0

Train a Deep Neural Network with SGD
Split our training dataset into N mini-batches with batch size b
For Iteration = 1, …, Num_Max_Iterations

randomly choose a mini-batch Di

(you can also have two loops: outer loop over epochs, inner loop over mini-batches)

14

DNN works much worse than a shallow CNN even
on MNIST!

~1.0% vs. ~0.60%

Why?

15

Hubel and Wiesel Experiment

16

https://www.youtube.com/watch?v=OGxVfKJqX5E

https://www.youtube.com/watch?v=OGxVfKJqX5E

17

Deep learners should combine their
knowledge with large-scale data to
grow programs, encode essential
knowledge into network structures,
and let backpropagation and
stochastic gradient descent do the
heavy lifting.

Message from Last Lecture

Convolutional Neural Network: LeNet (1998)

18
LeCun et al., 1998

1D Convolution with W =5, F = 3, Stride = 2,
Padding = 1

19
http://cs231n.github.io/convolutional-networks/

Output Size =

1D Convolution over Sentences

20
Yoon Kim, Convolutional Neural Networks for Sentence

Classification. EMNLP 2014

2D Convolutions

21https://github.com/vdumoulin/conv_arithmetic

2D Convolution Animations

22

https://github.com/vdumoulin/conv_arithmetic

See the animation at

https://github.com/vdumoulin/conv_arithmetic

2D 3x3 Convolution Applied to RGB Input of Size 5x5

23Picture credit: https://thomelane.github.io/convolutions/2DConvRGB.html

2D Convolutions in Numbers

24

http://cs231n.github.io/convolutional-networks/

http://cs231n.github.io/convolutional-networks/

3D Convolution

25Picture credit: https://thomelane.github.io/convolutions/3DConv.html

Max Pooling

Average Pooling is also widely used, especially in NLP
26

http://cs231n.github.io/convolutional-networks/

Data Augmentation

27Picture credit: https://nanonets.com/blog/data-augmentation-how-to-use-
deep-learning-when-you-have-limited-data-part-2/

Random erasing, horizontal flipping, rotation, scaling (with cropping), cropping, contrast, color

Mixup

28

Picture credit: https://www.dlology.com/blog/how-to-do-mixup-
training-from-image-files-in-keras/

Zhang et al., Mixup: beyond empirical risk minimization.
ICLR 2018.

Case Study: AlexNet

29

NIPS 2012

AlexNet Network Structure

30

Pay attention to the output Size and the number of parameters

Training AlexNet using SGD with Momentum and Weight
Decay

31

AlexNet with ReLU Converges Much Faster

32

AlexNet vs. VGG

33
Picture Credit: Fei-Fei, Johnson, and Yeung, Stanford cs231n, 2019

VGG

34
Fei-Fei, Johnson, and Yeung, Stanford cs231n, 2017

The deeper, the better?

35
He et al., CVPR 2015

Learning Residual Feature Maps is Easier

36

He et al., Deep Residual Learning for Image Recognition. CVPR 2015

Learning Residual is Easier

37

He et al., Deep Residual Learning for Image Recognition. CVPR 2015

VGG
vs.

ResNet

38

He et al., CVPR 2015

Picture Credit: Fei-Fei, Johnson, and Yeung, Stanford cs231n, 2019 39

NEC Labs America Model

Conv2d in PyTorch

40

Demonstration of training a simple CNN Classifier on
CIFAR10 using PyTorch in Jupyter Notebook

41

Implement Your Own Forward and Backforward in PyTorch

42

Implement Your Own Forward and Backforward in PyTorch

43

Implement Your Own Forward and Backforward in PyTorch

44

What can we do with a pre-trained Deep CNN on ImageNet?
● Simple Transfer learning

○ We transfer our learned model on the ImageNet to a different domain, for e.g., fine-grained flower
category classification

○ It only works when the transferred domain is closely related to the source domain of ImageNet
● Few-shot learning

○ In this task, for each class, we only have a few labeled training examples

○ We can use the learned feature embeddings or their (weighted) mean as prototype(s)

● Zero-shot learning

○ In this task, we don’t have any training example for some classes, but we have semantic descriptions
about them

○ A simple idea: Output a 1000-class probabilities of a test image and use a convex combination of the
semantic descriptions of the top k known classes to construct semantic features of the test image 45

Zero-shot Learning Example

46
https://arxiv.org/pdf/1312.5650.pdf

https://arxiv.org/pdf/1312.5650.pdf

What do CNN (AlexNet-like) filters look like?

47

Zeiler and Fergus, 2013:
Visualizing and Understanding Convolutional Networks

An important convolutional operation called Transposed Convolution
was invented in this paper, which will be discussed in Lec 5.

48

Layer 4 Layer 5

Layer 2 Layer 3

49

Memoryless models for sequences (Hinton’s Slide)

• Autoregressive models
Predict the next term in a
sequence from a fixed
number of previous terms
using “delay taps”.

• Feed-forward neural nets
These generalize
autoregressive models by
using one or more layers of
non-linear hidden units. e.g.
Bengio’s first language
model.

input(t-2) input(t-1) input(t)

hidden

input(t-2) input(t-1) input(t)

Beyond memoryless models (Hinton)
• If we give our generative model some hidden state, and if

we give this hidden state its own internal dynamics, we get
a much more interesting kind of model.
– It can store information in its hidden state for a long time.
– If the dynamics is noisy and the way it generates outputs from its

hidden state is noisy, we can never know its exact hidden state.
– The best we can do is to infer a probability distribution over the

space of hidden state vectors.
• This inference is only tractable for two types of hidden state

model.
– The next three slides are mainly intended for people who already

know about these two types of hidden state model. They show
how RNNs differ.

– Do not worry if you cannot follow the details.

Linear Dynamical Systems (engineers love them!) (Hinton)
• These are generative models. They have a real-valued

hidden state that cannot be observed directly.
– The hidden state has linear dynamics with

Gaussian noise and produces the observations
using a linear model with Gaussian noise.

– There may also be driving inputs.
• To predict the next output (so that we can shoot

down the missile) we need to infer the hidden state.
– A linearly transformed Gaussian is a Gaussian. So

the distribution over the hidden state given the
data so far is Gaussian. It can be computed using
“Kalman filtering”.

driving
input

hidden

hidden

hidden

output

output

output
time →

driving
input

driving
input

Hidden Markov Models (computer scientists love them!) (Hinton)

• Hidden Markov Models have a discrete one-of-N
hidden state. Transitions between states are
stochastic and controlled by a transition matrix.
The outputs produced by a state are stochastic.
– We cannot be sure which state produced a

given output. So the state is “hidden”.
– It is easy to represent a probability

distribution across N states with N numbers.
• To predict the next output we need to infer the

probability distribution over hidden states.
– HMMs have efficient algorithms for inference

and learning.

output

output

output

time →

A fundamental limitation of HMMs (Hinton)
• Consider what happens when a hidden Markov model generates data.

– At each time step it must select one of its hidden states. So with N
hidden states it can only remember log(N) bits about what it
generated so far.

• Consider the information that the first half of an utterance contains about
the second half:
– The syntax needs to fit (e.g. number and tense agreement).
– The semantics needs to fit. The intonation needs to fit.
– The accent, rate, volume, and vocal tract characteristics must all fit.

• All these aspects combined could be 100 bits of information that the first
half of an utterance needs to convey to the second half. 2^100 is big!

Recurrent neural networks (Hinton)
• RNNs are very powerful, because they

combine two properties:
– Distributed hidden state that allows

them to store a lot of information
about the past efficiently.

– Non-linear dynamics that allows
them to update their hidden state
in complicated ways.

• With enough neurons and time, RNNs
can compute anything that can be
computed by your computer.

input

input

input

hidden

hidden

hidden

output

output

output
time →

Do generative models need to be
stochastic? (Hinton)

• Linear dynamical systems
and hidden Markov models
are stochastic models.
– But the posterior

probability distribution
over their hidden states
given the observed data
so far is a deterministic
function of the data.

• Recurrent neural networks
are deterministic.
– So think of the hidden

state of an RNN as the
equivalent of the
deterministic probability
distribution over hidden
states in a linear
dynamical system or
hidden Markov model.

From Standard Neural Networks to Recurrent Neural Networks

57

x

h

y

h

h

h yhh

x x x

Let’s make the model easily extendable to model sequences with arbitrary
lengths by weight sharing

h
1 yh
3

h
2

x
1

x
2

x
3

...

xT...

h0

W W W W

Recurrent Neural Networks (RNN)

58

h
1 yh
3

h
2

x
1

x
2

x
3

...

xT...

At time step t, the hidden units accumulate past information about the
input sequence. Hidden activity vector ht only depend on current
input xt and previous hidden activity vector ht-1

RNN

xt

h0
h0

W

W W W W

y

Vanilla Recurrent Neural Networks

59

RN

N

xt

h0 W

y

Different Architectures of RNN

60Picture Credit: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Many-to-Many Vanilla RNN

61

h
1

h
3

h
2

x
1

x
2

x
3

...

xT...

h0

W W W W
h
T

y
1

y
2

y
3

yT...

Training of Char-RNN

62
Picture Credit: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

63

64

65

66

Inference of Char-RNN
At test time, sample a character from the current model at each step, feed the
current sampled character as input to the next time step

67

Karpathy’s Char-RNN on Shakespeare Articles

68Source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

69
Source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

70
Source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

https://gist.github.com/karpathy/d4dee566867f8291f086

71

https://gist.github.com/karpathy/d4dee566867f8291f086

Why Vanishing and Exploding Gradient of Vanilla RNN Happens

72Pascanu et al., On the difficulty of training recurrent neural networks. ICML 2013

Suppose we are using a many-to-many RNN for sequence labeling

is the immediate partial derivative of hidden activity vector with respect to
network weights

73

Gradient norm Clipping

Design a better architecture

Long Short-Term Memory

74

Picture Credit: https://www.cs.toronto.edu/~graves/asru_2013.pdf

https://www.cs.toronto.edu/~graves/asru_2013.pdf

Long Short-Term Memory

75Picture Credit: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

ct-1

ht-1

ct

ht

H

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

76

Bidirectional LSTM

77

Picture Credit: https://www.cs.toronto.edu/~graves/asru_2013.pdf

https://www.cs.toronto.edu/~graves/asru_2013.pdf

Bidirectional LSTM

78

LSTM LSTM LSTM

Peptide
Pos. 1:

Amino
Acid

Embedding

Peptide
Pos. 2:

Amino
Acid

Embedding

Peptide
Pos. 9:

Amino
Acid

Embedding

LSTM LSTM LSTM
…

…

Deep LSTM

79
Picture Credit: https://www.cs.toronto.edu/~graves/asru_2013.pdf

https://www.cs.toronto.edu/~graves/asru_2013.pdf

Deep LSTM for Generating Complex Sequences
Generating text with characters or words as symbols
Generating handwriting with sequences of pen coordinates (x, y) and pen on/off
whiteboard as input

80Alex Graves, Generating Sequences With Recurrent Neural Networks. 2015
https://arxiv.org/pdf/1308.0850.pdf

https://arxiv.org/pdf/1308.0850.pdf

Deep Encoder-Decoder Networks:
Sequence-to-Sequence (Seq2Seq) Models

81

Data Augmentation in Sequence-to-Sequence (Seq2Seq)
Models for Machine Translation

82

`

Summary of Topics Discussed
● Activation Functions
● Loss Functions
● Training deep feedforward neural networks with backpropagation and

mini-batch SGD
● Convolution and pooling operations in CNN
● Network architectures such as AlexNet, VGG, ResNet
● Applications of supervised pre-trained CNNs
● Visualization of pre-trained CNN filters and receptive fields
● Recurrent Neural Networks, Sequence-to-Sequence Models
● Geoff Hinton, “Never stop coding.” Great discoveries are from

practice.

83

The End
Next lecture:

Deep Learning III:
Deep Generative Models, VAE, and GAN

84

