
Deep Learning I: Introduction

Dr. Martin Renqiang Min
Department of Machine Learning

NEC Laboratories America

Biomedical Data Science:
Mining and Modeling

1

What is Deep Learning

Deep
Learning

Representation
Learning

Machine
Learning

Artificial
Intelligence

2

Data Science

Google Trends: Deep Learning

3

Google Trends: Deep Learning

4

Google Trends: Deep Learning

5

Google Trends: Deep Learning and AI

6

The AI Revolution is Driven by Deep Learning:
The ImageNet Challenge in Computer Vision

7

The AI Revolution is Driven by Deep Learning:
The ImageNet Challenge in Computer Vision

8

Fei-Fei, Johnson, and Yeung, Stanford cs231n, 2019 9

NEC Labs America Model

The AI Revolution is Driven by Deep Learning:
Speech Recognition

10

11
Sutskever, Vinyals, and Le, NIPS 2014

The AI Revolution is Driven by Deep Learning:
Machine Translation

The AI Revolution is Driven by Deep Learning:
Machine Translation

12

The AI Revolution is Driven by Deep Learning: Video Game

13

The AI Revolution is Driven by Deep Learning: Video Game

14

https://deepmind.com/blog/article/deep-reinforcement-learning

https://deepmind.com/blog/article/deep-reinforcement-learning

The AI Revolution is Driven by Deep Learning: Go Game

theguardian.com
Mar 2016

15

Learn How to Play Chess without Human Knowledge

16

The AI Revolution is Driven by Deep Learning: Molecule (Drug) Synthesis

Nature, Mar 2018 17

The AI Revolution is Driven by Deep Learning: Poker Game

18

The AI Revolution is Driven by Deep Learning: Poker Game

19

The AI Revolution is Driven by Deep Learning: Strategic Game

20

The AI Revolution is Driven by Deep Learning: Strategic Game

21

https://www.nature.com/articles/d41586-019-03343-4

https://www.nature.com/articles/d41586-019-03343-4

The AI Revolution is Driven by Deep Learning: A Powerful Language Model

22

23

24

Deep Learning Methods Can Be Easily Fooled

25

Deep Learning Methods Can Be Easily Fooled

26

Deep Learning Methods Can Be Easily Fooled

27

28

29

● Deep Learning:

○ The driving force of all these technological advancements

○ The root cause of all these controversial debates and potential dangers

Behind the Scene: Deep Learning

30

● What is Machine Learning

○ Machine learning is about teaching computers to perform tasks by only showing them
data/examples without explicitly programming instructions

○ Machine learning, data science, and computer science are more and more related to each
other

○ Machine Learning: Instead of programming computers, let computers learn to program by
themselves by showing them some examples

■ Feature Representation + Objective Function + Optimization (training data)
à Generalization (test data)

Deep Learning is a Subfield of Machine Learning

31

● Supervised Learning:

○ Given training examples of input feature vectors and corresponding target outputs, predict
outputs on future inputs. For e.g., classification, regression, time series prediction.

● Unsupervised Learning:

○ Given only input feature vectors, automatically discover representations, structures, etc. For
e.g., clustering, data compression, outlier detection

● Reinforcement Learning:

○ Given sequences of [inputs from an environment, actions from a fixed set, and occasional
scalar rewards], learn to select action sequences in a way that maximizes the expected sum
of (discounted) future reward

Three Types of Machine Learning Tasks

32

● Supervised Learning:

○ Linear Regression, Logistic Regression, Naïve Bayes, Linear Discriminant Analysis, k Nearest
Neighbor, (kernel) SVM, Decision Tree, Random Forest, Multilayer Perceptron (Neural
Network for classification/regression), Conditional Random Field

● Unsupervised Learning:

○ K-means, Gaussian Mixture Model, Hierarchical Clustering Methods, Principal Component
Analysis, Independent Component analysis, Vector Quantification (Data Compression), Latent
Dirichlet Allocation, (Denoising) Autoencoder, (Restricted) Boltzmann Machines

● Reinforcement Learning:

○ Q Learning, Policy Gradient Methods, REINFORCE

Machine Learning Models

33

● Deep learning

○ One of many research areas in Machine Learning

○ Deep Learning focuses on learning data representations (adaptive features) using deep neural
networks

○ Deep neural networks are standard neural networks with many hidden layers

○ Deep learning can be applied to any type of learning task of machine learning
● Organization of deep learning topics in this course:

○ Deep Supervised Learning: Deep CNN/RNN for image classification/sequence classification

○ Deep Unsupervised Learning: Deep Autoencoder, Deep Generative Models

○ Deep Reinforcement Learning: AlphaGO, AlphaZero

What is Deep Learning

34

Since deep learning is a modern name of deep
neural network invented decades ago, I will review
the history of (deep) neural network and introduce
backpropagation in the remaining part of this lecture.

35

36

Modeling a Biological Neuron

https://towardsdatascience.com/the-differences-between-artificial-
and-biological-neural-networks-a8b46db828b7

A Linear Neuron

37

i
i

iwxby å+=
output

bias

index over
input connections

i inputth

ith
weight on

input

38

Binary Threshold Neuron

● McCulloch-Pitts (1943): influenced Von Neumann.

○ First compute a weighted sum of the
inputs.

○ Then send out a fixed size spike of activity
if the weighted sum exceeds a threshold. ou

tp
ut

weighted input

1

0
threshold

=y

z = b+ xi
i
∑ wi

z≥01 if
0 otherwise

A Sigmoid Neuron

39

● It gives a real-valued
output that is a smooth
and bounded function of
its total input.

○ It has a nice
probabilistic
interpretation ([0, 1]).

○ It has nice derivatives
that make learning
easy (discuss it later).

y = 1

1+ e−z

0.5

0
0

1

z

y

z = b+ xi
i
∑ wi

Rosenblatt’s Perceptron (1958)
● A linear neuron
Learning algorithm for binary classification with a binary output neuron (1 or 0):
1. Initialize the weights and threshold to 0 or small random values
2. For each example i in the training set, perform the following steps:

o Calculate the model output for input i using the current model based on the linear neuron

o If the output is correct, do nothing

o If the model incorrectly outputs 0, add the feature vector of i to the weight vector

o If the model incorrectly outputs 1, minus the feature vector of i to the weight vector

[(ground-truth label – predicted label) * input feature vector x]

3. Repeat step 2 until some convergence criteria is met
40

41

Intuitive explanations why the algorithm convergences
● Each training case can be seen as a

hyperplane. To get all training cases right
we need to find a weight vector on the right
side of all the planes.

○ There may not be any such vector!
● If there are any weight vectors that get the

right answer for all cases, they lie in a
hyper-cone with its apex at the origin.

○ Because the average of two good
weight vectors is a good weight
vector.

right
wrong

wrong

right

an input
vector with
correct
answer=1

bad
weightsgood

weights

o

an input
vector with
correct
answer=0

x’ = [x; 1]

42

Intuitive explanations why the algorithm convergences

● Each time the perceptron makes a mistake, the current weight
vector moves to decrease its squared distance from every weight
vector in the “generously feasible” region.

● The squared distance decreases by at least the squared length of
the input vector.

● So after a finite number of mistakes, the weight vector must lie in
the feasible region if this region exists.

43

Perceptron can’t even solve XOR!

44

Input Output
x1 x2
0 0 0

0 1 1

1 0 1

1 1 0

45

● Imagine “data-space” in which the axes
correspond to components of an input
vector.

○ Each input vector is a point in this
space.

○ A weight vector defines a plane in
data-space.

○ The weight plane is perpendicular to
the weight vector and misses the
origin by a distance equal to the
threshold.

0,1

0,0 1,0

1,1

weight plane output =1output =0

The positive and negative cases
cannot be separated by a plane

A geometric view of what binary threshold neurons cannot do

46

Discriminating simple patterns under translation
with wrap-around

● Suppose we just use binary
pixels as the features.

● Can a binary threshold unit
discriminate between different
patterns that have the same
number of on pixels?

○ The patterns can translate
with wrap-around!

pattern A
pattern A

pattern A

pattern B
pattern B

pattern B

The answer is No.

47

● For pattern A, use training cases in all possible translations.

○ Each pixel will be activated by 4 different translations of pattern A.

○ So the total input received by the decision unit over all these patterns will be four
times the sum of all the weights.

● For pattern B, use training cases in all possible translations.

○ Each pixel will be activated by 4 different translations of pattern B.

○ So the total input received by the decision unit over all these patterns will be four
times the sum of all the weights.

● But to discriminate correctly, every single case of pattern A must provide more input to
the decision unit than every single case of pattern B.

○ This is impossible if the sums over cases are the same.

Why this result is devastating for Perceptron (Hinton)
● The whole point of pattern recognition is to recognize patterns despite

transformations like translation.

● Minsky and Papert’s “Group Invariance Theorem” says that the part of a
Perceptron that learns cannot learn to do this if the transformations form a
group.

○ Translations with wrap-around form a group.

● To deal with such transformations, a Perceptron needs to use multiple
feature units to recognize transformations of informative sub-patterns.

○ So the tricky part of pattern recognition must be solved by the hand-
coded feature detectors, not the learning procedure. 48

What should we do? Handcraft Features (~1960s).

49

non-adaptive
hand-coded
features

output units
e.g. class labels

input units
e.g. pixels

Bomb Toy

Learning with Hidden Units (Hinton)

● Networks without hidden units are very limited in the input-output mappings they can learn
to model.

○ More layers of linear units do not help. Its still linear.

○ Fixed output non-linearities are not enough.
● We need multiple layers of adaptive, non-linear hidden units. But how can we train such

nets?

○ We need an efficient way of adapting all the weights, not just the last layer. This is
hard.

○ Learning the weights going into hidden units is equivalent to learning features.

○ This is difficult because nobody is telling us directly what the hidden units should do. 50

51

Benefits of MLP with Backpropagation
● Backpropagation allows neural networks to design their own features and

multiple layers of features adaptively

● No domain knowledge is needed. You just need to show the computer some
training examples.

● Backpropagation is an efficient algorithm for computing how weight vectors
should be updated to effect the output error

○ Instead of naively updating one weight at a time, BP computes the gradient of the weights in
parallel and updates all weights through an efficient forward pass and backward pass

52

A Linear Neuron in Matrix-Vector Form

53

y = wi
i
∑ xi =w

Tx

neuron’s
estimate of the
desired output

input
vector

weight
vector

The Delta Rule For a Linear Neuron

54

● Define the error as the
squared residuals summed
over all training cases:

● Now differentiate to get error
derivatives for weights

● The batch delta rule changes
the weights in proportion to
their error derivatives
summed over all training
cases

E = 1
2

(tn
n∈training
∑ − yn)2

∂E
∂wi

= 1
2

∂yn

∂wi

dEn

dynn
∑

= − xi
n

n
∑ (tn − yn)

Δwi = −ε
∂E
∂wi

= ε xi
n

n
∑ (tn − yn)

55

The derivatives of a logistic neuron

● The derivatives of the logit, z,
with respect to the inputs and
the weights are very simple:

z = b+ xi
i
∑ wi y = 1

1+ e−z
∂z
∂wi

= xi
∂z
∂xi

= wi dy
dz

= y (1− y)

56

The derivatives of a logistic neuron

y = 1

1+ e−z
= (1+ e−z)−1

dy
dz

=
−1(−e−z)

(1+ e−z)2
=

1

1+ e−z
"

#
$

%

&
'

e−z

1+ e−z

"

#

$
$

%

&

'
' = y(1− y)

e−z

1+ e−z
=
(1+ e−z)−1

1+ e−z
=
(1+ e−z)

1+ e−z
−1

1+ e−z
=1− ybecause

57

Using the chain rule to get the derivatives needed
for learning the weights of a logistic unit

● To learn the weights we need the derivative of the output with
respect to each weight:

∂y
∂wi

=
∂z
∂wi

dy
dz

= xi y (1− y)

∂E
∂wi

=
∂yn

∂wi

∂E
∂ynn

∑ = − xi
n yn (1− yn) (tn − yn)

n
∑

delta-rule

extra term = slope of logistic

The idea behind backpropagation (Hinton)
● We don’t know what the hidden units ought to do, but we can

compute how fast the error changes as we change a hidden activity.

○ Instead of using desired activities to train the hidden units, use
error derivatives w.r.t. hidden activities.

○ Each hidden activity can affect many output units and can
therefore have many separate effects on the error. These
effects must be combined.

● We can compute error derivatives for all the hidden units efficiently
at the same time.

○ Once we have the error derivatives for the hidden activities, its
easy to get the error derivatives for the weights going into a
hidden unit.

58

59

Sketch of the backpropagation algorithm on a single case
(Hinton)

● First convert the discrepancy
between each output and its target
value into an error derivative.

● Then compute error derivatives in
each hidden layer from error
derivatives in the layer above.

● Then use error derivatives w.r.t.
activities to get error derivatives
w.r.t. the incoming weights.

E = 1
2

(t j
j∈output
∑ − yj)

2

∂E
∂yj

= −(t j − yj)

∂E
∂yj

∂E
∂yi

60

Backpropagating dE/dy (Hinton)

∂E
∂z j

=
dyj
dz j

∂E
∂yj

= yj (1− yj)
∂E
∂yj

yj
j

yi
i

z j

∂E
∂yi

=
dzj
dyi

∂E
∂z jj

∑ = wij
∂E
∂z jj

∑

∂E
∂wij

=
∂z j
∂wij

∂E
∂z j

= yi
∂E
∂z j

Output layer

Hidden layer

BP in a Computational Graph

61

http://colah.github.io/posts/2015-08-Backprop/

BP in a Computational Graph

62http://colah.github.io/posts/2015-08-Backprop/

Old Criticisms about Backpropagation

63

● It requires labeled training data.

○ Almost all data is unlabeled.
● The brain needs to fit about 10^14 connection weights in only about 10^9 seconds.

○ Unless the weights are highly redundant, labels cannot possibly provide enough
information.

● The learning time does not scale well ?
○ It is very slow in networks with multiple hidden layers.

● The neurons need to send two different types of signal ?
○ Forward pass: signal = activity = y

○ Backward pass: signal = dE/dy

Regularized Deep Autoencoder in 2005

64

Modern Deep Convolutional Neural Networks (2012-now, big data +
deep CNN + rectified linear + data augmentation +dropout + GPUs)

Deep learning on GPU (Krizhevsky et al. NIPS12)
Revolutionary success on the ImageNet Challenge

60 million parameters and 650,000 neurons 65

What makes deep learning revive?

● Deep learning is a modern name for deep neural networks

● Why deep neural networks revive

○ Good model: has the intrinsic advantage of learning hierarchical distributed feature
representations

○ Powerful computers and big data enable us to build models with huge capacity

○ Data augmentation (using heuristics to create more data to fill the input data distribution space)

○ Parameter learning without vanishing gradient or saturated activation functions (rectified linear
hidden units) and regularizations (dropout and batch normalization)

○ Good open-source tools: cuda-convnet2, Torch, Caffe, TensorFlow, and PyTorch

66

Summary
● The ongoing AI revolution is driven by deep learning. Hidden units and

backpropagation are great inventions in neural networks.

● A deep model + big data + powerful computers -> Success

● A quote about machine learning by Prof. Pedro Domingos from University of
Washington, “Learning is more like farming, which lets nature do most of the
work. Farmers combine seeds with nutrients to grow crops. Learners combine
knowledge with data to grow programs.” This is also true for deep learning.

● Deep learners should combine their knowledge with large-scale data to grow
programs, encode essential knowledge into network structures, and let
backpropagation and stochastic gradient descent do the heavy lifting.

67

The End
Next lecture:

Deep Learning II: Supervised Deep
Learning with Convolutional Neural

Networks

68

