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Overview 
This document provides a comprehensive and organized reference to all dataset, methods and 
analyses associated with the EN-TEx project. The structure of this document is presented in a 
parallel fashion to the main text. Results and figures in each section in the main text are 
documented in the relevant subsections titled "Supp. content to 'Main-text-section-title'" within 
this supplement. Supplement figures are numbered based on the secondary heading of their 
relevant supplement text section (e.g., Figure S1.1a-f are associated with Section S1.1). Unless 
specified, we refer to the supplement text in a general manner as "see supp." in the main text. 
However, we explicitly refer to the supplementary figures with exact figure numbers. All 
supplementary figures are attached at the end of this document. A list of supplementary figures 
could be found as part of the table of contents. 
 
The large dataset produced under the EN-TEx project includes more than 25 different functional 
genomic assays sampled in more than 30 tissues of 4 individuals. These include genotyping, 
RNA-seq, transcription factor ChIP-seq, histone ChIP-seq, DNAse-seq, ATAC-seq, Hi-C and 
more. The EN-TEx dataset also includes processed data, such as allele specific (AS) 
heterozygous SNPs catalog and candidate cis-regulatory elements(cCRE) annotation. 
Together, this dataset provides a valuable resource for studies of gene regulation and precision 
medicine. However, due to the richness of the data, it is challenging and difficult to include all 
the details within the main text of this paper. 
 
The data resource is organized in a hierarchical pyramid-like structure, where the raw data files 
are located at the base. On top of those are processed data, and finally the high-level 
summaries lie at the top. Specifically, the main text summarizes everything in a broad manner, 
providing a macroscopic view of this study. Raw data, the cornerstone of this study, are hosted 
online in the ENCODE portal. Links to metadata, bam files as well as other raw data could be 
found in the ''Raw Data'' link in the EN-TEx data portal website (ENTEx.encodeproject.org). The 
processed data files, located at the middle of the pyramid, are detailedly described in their 
corresponding sections in this document. When mentioned, these files are referred to as "File: 
file_name". All these files are hosted in the EN-TEx data portal website, with the exact same file 
names as in "File: file_name". Additionally, on the website, each file is followed with the 
supplement text section number that contains the description of that file. 
  



 

 

S1. Supp. content to main text section “Personal genomes & matched data 
matrix” 

S1.1. Personal Genome Construction 

S1.1.1 sequencing of the personal genome 
Figure S1.1 panel a summarizes the technologies used to sequence the whole genomes of the 
four individuals. We followed Zheng et al. (2016) \cite(1) to perform 10X linked-read sequencing. 
Protocols of Pacbio sequencing were from Eid et al. (2009) \cite(2) and Nattestad et al. (2018) 
\cite(3). Using the Illumina genome sequencing each of the 4 genomes were sequenced to a 
minimum of 60x coverage with an average read fragment length m = 350 bp. Assembled 
fragments using 10X Genomics combined with Illumina sequencing resulted in 35x coverage 
with a m = 117k bp. Genome sequencing using long-reads (m = 7.5k bp) resulted in a genome 
coverage of 55x. Hi-C experiments were carried out to complement the 10X experiments to 
verify the phasing of entire chromosomes. 
 

S1.1.2. Personal Genome construction and variants calling 
For individual 2 and 3, personal genomes were constructed from a combination of long-range 
Hi-C reads, 10x linked reads, and PacBio long reads using CrossStitch (Figure S1.1), a 
software pipeline developed by the Schatz lab (https://github.com/schatzlab/crossstitch). A 
previous study has shown that it is possible to phase SVs with variants identified from 10x 
linked reads \cite(4). 
 
First, the following preprocessing steps were done: 

1. Align all reads (HiC, 10X, PacBio) to the human reference (GRCh38). 
2. Call small variants from the linked reads with LongRanger (ver. 2.1.2) 

(https://support.10xgenomics.com/genome-exome/software/pipelines/latest/what-is-long-
ranger). 

3. Phase small variants with HapCUT2 (ver. 1.1) \cite(5) using HiC and 10X data. 
4. Call large structural variants with Sniffles (ver. 1.0.11) \cite(6) and pbsv (ver. 2.2.1) 

(https://github.com/PacificBiosciences/pbsv) and merge the callsets with SURVIVOR 
(ver. 1.0.6) \cite(7), discarding SVs which were only identified by pbsv. 

 
Then, the CrossStitch software (commit 53f64af) performed the following steps to obtain a 
personal genome: 

5. Refine structural variants with Iris (ver. 1.0). 
6. Phase long reads using the phased small variants they overlap. 
7. Phase large structural variants based on the phasing of the reads supporting them 

(Figure S1.1). 
8. Splice the phased variants into two copies of each human chromosome to produce 

personal diploid chromosome sequences using vcf2diploid (ver. 1.0) \cite(8). 



 

 

9. Assign one sequence of each chromosome to pseudo-haplotype 1 and the other to 
pseudo-haplotype 2. 

 
Note that each chromosome was phased independently from other chromosomes, so that 
pseudo-haplotype 1 of one chromosome may correspond to pseudo-haplotype 2 of another 
chromosome. Unfortunately, the data available is insufficient to distinguish such cases and 
assemble full haplotypes. 
 
For individual 1 and 4, due to insufficient long-read coverage, large structural variants were 
omitted, but the process was otherwise the same. 
 
In all four samples, the use of 10x and Hi-C data resulted in chromosome-arm-length phase 
blocks for all autosomes (Fig. 1A and Figure S1.1). In addition, in both samples for which long 
reads were used, more than 90% of large indels were able to be confidently phased with 
CrossStitch. 
 
A detailed overview of this method is illustrated in Figure S1.1. 
 
For all 4 individuals, VCFs containing the SNVs and indels are accessible from the ENCODE 
portal \cite(9) (see Figure S1.1 for accession numbers) 

S1.1.3. Refining Novel Insertion Sequences with Iris 
Iris is a novel method for refining the breakpoints and sequence of insertion variants. Each of 
these calls, when taken directly from the variant caller, consists of an insertion sequence 
obtained from the alignment of a single representative read, and Iris improves upon this 
sequence by integrating all of the reads which support the variant’s presence. It gathers the 
sequences of all of the reads listed in the RNAMES INFO field output by Sniffles, extracts the 
original insertion sequence with surrounding context from the reference genome, and uses the 
gathered reads to polish this sequence with racon (ver. 1.4.0) \cite(10). Then, this polished 
sequence is aligned back to the reference with minimap2 (ver. 2.17) \cite(11), and a refined 
insertion sequence is obtained. If no insertion is found from this alignment which has a length 
similar to that of the original variant call, Iris falls back on the original sequence to ensure it does 
not mask variants in more difficult-to-map regions. 
 
We benchmarked the performance of Iris using data from HG002, a sample sequenced as part 
of the Genome in a Bottle release (ftp://ftp-
trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/). In this individual, 
we called structural variants separately using Oxford Nanopore (ONT) data and Pacbio Circular 
Consensus Sequencing (CCS) data, both sequenced to ~50x coverage using the ngmlr 
aligner\cite(6) and the sniffles variant caller. Because of the high accuracy of CCS reads, we 
used the insertion sequences obtained from these calls as a proxy for the ground truth to 
evaluate the accuracy of the ONT calls. We compared the CCS and ONT call sets before and 
after refining the ONT calls with Iris. In each comparison we evaluated all variant calls in the 
CCS dataset which had an ONT variant call within 10 kbp in both the refined and unrefined 



 

 

callsets. Among these 14,001 variants, we measured the average sequence similarity between 
the CCS call and the ONT call, with the similarity of two strings S and T measured as [1 - 
edit_distance(S, T)] / max[length(S), length(T)]. Using the unrefined calls, the average similarity 
was 0.854, while the refined calls gave an average similarity of 0.94, demonstrating the ability of 
Iris to obtain more accurate insertion breakpoints and sequences. Panel G in Figure S1.1 shows 
the distribution of sequence similarities before and after refinement. 
 
Iris is available as a stand-alone method at the following link: https://github.com/mkirsche/Iris 
 

S1.1.4. Assigning parental origin by imprinted genes 
The list of known human imprinted genes was downloaded from the Imprinted Gene Database 
(geneimprint.com). For known imprinted genes that were detected ASE in tissues of individual 
3, the haplotype-specific read counts were combined from these tissues and the potential 
parental origin of the haplotype blocks was determined based on the direction of the imbalance 
(haplotype 1 or haplotype 2) and the known expressed allele of the imprinted gene (maternal or 
paternal allele). The parental origin results of individual 3 are shown in Fig. 1A and available in 
File: phased_block_ind3.txt, where each line is a phased block. The first three columns are 
genomic coordinates of the phased block. The fourth and fifth columns are the parental origin of 
haplotype 1 and haplotype 2 respectively. ‘NoInfo’ indicates there were no imprinted genes in 
that phased block. ‘Contradict’ indicates there is at least one AS SNP-imprinted gene pair that 
has a different imbalance direction compared to other SNP-gene pairs, and thus reach 
contradictory conclusions of the same phased block. A similar approach can be used for the 
other EN-TEx individuals (See File: xxx) 
 

S1.2. Analysis of Structural Variants 
We focus our analysis on SVs that are larger than or equal to 50 bp, while the VCFs (see 
S1.1.2) also contain 7.6k and 7.3k smaller “SVs” for individual 2 and 3, respectively. 
 
To analyze the sequence composition of the SVs found in individual 2 and individual 3, we used 
RepeatMasker (ver. 4.0.7, slow search mode) (http://www.repeatmasker.org) to classify the 
sequences that are inserted, deleted, or inverted. 
 
We also estimated the allele frequencies of the SVs found in individual 2 and individual 3. For 
this purpose, we checked for overlaps in the location between the EN-TEx SVs and those 
reported by Audano et al. (2019) \cite(12). To increase the chance of finding an overlap 
between these two datasets, we used the confidence intervals of an EN-TEx SV’s coordinates 
as the location of the SV. When an overlap is found, we further checked whether the two SVs 
are of the same type (e.g., both are deletions). If the two SVs are not the same type, we 
consider the two SVs to be different. Through this analysis, we matched SVs in Audano et al. 
(2019) with 65.9% and 63.4% of the SVs in individual 2 and individual 3, respectively, and 
assigned these EN-TEx SVs an allele frequency in European populations that is estimated by 
Audano et al. (2019) \cite(12). We performed a similar analysis by using more recent SVs called 



 

 

from long-read DNA sequencing data \cite(13) and gnomAD SVs \cite(14). 68.9% and 66.5% of 
the SVs in individual 2 and 3, respectively, overlap with the former dataset. Because gnomAD 
annotates SVs differently, we allow EN-TEx “INS” to match “INS”, “DUP”, “BND”, and “MCNV” in 
gnomAD, EN-TEx “DEL” to match gnomAD “DEL”, “BND”, and “MCNV”, and EN-TEx “INV” to 
match gnomAD “INV” and “BND”. In this way, we find a match for 61.4% and 60.3% of the SVs 
in individual 2 and individual 3, respectively. 
 
To understand how SVs distribute in the genome, we generated a null expectation of SVs’ 
distribution by shuffling the locations of SVs, using a method similar to that used in the 1000 
Genome SV study \cite(15). Specifically, we put the SVs in random locations on the same 
chromosome while avoiding gaps in the assembly. A ratio of the number of unshuffled SVs 
intersecting a given genomic region over the number of shuffled SVs is calculated. We repeated 
the shuffling 1,000 times. 
 

S1.3. Functional genomics data stack 
The EN-TEx project includes more than 25 different functional genomic assays sampled in more 
than 30 tissues of 4 individuals (Fig 1C and Figure S1.3a). Additional information on the tissues 
and legends in Fig 1C could be found in Figure S1.3a. Below we describe the data processing 
pipeline for each experiment type. 
 

S1.3.1. RNA sequencing 
To survey transcriptomes across humans for 25 tissues samples sources from GTEx, we 
performed a variety of RNA-seq experiments in ENCODE phase III, which can be divided into 
three classes: (i) bulk RNA-seq surveys RNAs greater than 200 nt and comprises total RNA-
seq, (ii) small RNA-seq surveys RNAs less than 200 nt; and (iii) microRNA-seq surveys 
microRNA levels by selecting for species less than 30 nt. Additional assay details, along with 
detailed experimental protocols, are available at the ENCODE Portal 
(https://www.encodeproject.org/data-standards/rna-seq/long-rnas/, 
https://www.encodeproject.org/data-standards/rna-seq/small-rnas/ and 
https://www.encodeproject.org/microrna/microrna-seq/). For all RNA-seq experiments, data 
quality is evaluated by calculating the number of aligned reads and replicate concordance. 
Details are included in the ENCODE pipelines. 
 

S1.3.2. RAMPAGE 
RAMPAGE captures 5′-complete cDNA to allow the identification and quantification of TSSs and 
transcript characterization. Production documents were generated for each experiment, and a 
representative experimental protocol is available at 
https://www.encodeproject.org/documents/0651efa6-7fd7-4b33-ab11-
b05348c9f1c0/@@download/attachment/295491.pdf. Additional assay details are available at 
https://www.encodeproject.org/data-standards/rampage/!"#$%"&'()*&"+,-.,/&"010%213%"14"



 

 

5006706158%"976"21:6561%4";%3%658%<"=18$"+',4"273;%6"8$53">??"38@"53<"18"A734BC%4"6%5<4"13"

D,E#F"976C58"53<"067<BA%4"521;3C%384"53<"376C521G%<"41;3524"976":78$"8$%"H"53<"I"48653<4!"

FB5218J"A738672"14"0%6976C%<"976"8$%"0%5K4@"53<"8$%"166%067<BA1:2%"<14A7L%6J"658%"MN*+O"14"B4%<"87"

1<%3819J"6%067<BA1:2%"0%5K4":%8=%%3"6%021A58%4!"*585"PB5218J"14"%L52B58%<":J"A52AB25813;"6%5<"

<%08$"53<"6%021A58%"A73A76<53A%! 
 

S1.3.3. eCLIP 
Enhanced crosslinking and immunoprecipitation (eCLIP) identifies transcriptome wide RBP 
occupancy sites. The experimental protocol is available at 
https://www.encodeproject.org/documents/842f7424-5396-424a-a1a3-
3f18707c3222/@@download/attachment/eCLIP_SOP_v1.P_110915.pdf. Additional assay 
details are available at https://www.encodeproject.org/eclip/. We require all eCLIP antibodies to 
undergo primary and secondary characterizations. Detailed RBP antibody standards are 
available at https://www.encodeproject.org/documents/fb70e2e7-8a2d-425b-b2a0-
9c39fa296816/@@download/attachment/ENCODE_Approved_Nov_2016_RBP_Antibody_Char
acterization_Guidelines.pdf. Data quality is evaluated by calculating the number of unique 
fragments, IDR, and the fraction of reads in peaks (FRiP). 
 

S1.3.4. Histone ChIP–seq 
Histone ChIP–seq surveys the interaction between DNA and histone proteins, selecting for a 
specific protein variant or post-translational modification through immunoprecipitation followed 
by sequencing. The experimental protocols are available at 
https://www.encodeproject.org/documents/be2a0f12-af38-430c8f2d-
57953baab5f5/@@download/attachment/Epigenomics_Alternative_Mag_Bead_ChIP_Protocol_
v1.1_exp.pdf. Additional assay details are available at https://www.encodeproject.org/chip-
seq/histone/. We required all commercial histone antibodies to be validated by at least two 
independent methods, and antibodies need to be analysed independently. Histone mark 
antibody standards are available at https://www.encodeproject.org/documents/4bb40778-387a-
47c4-ab24-
cebe64ead5ae/@@download/attachment/ENCODE_Approved_Oct_2016_Histone_and_Chrom
atin_associated_Proteins_Antibody_Characterization_Guidelines.pdf. Data quality is evaluated 
by calculating read depth, non-redundant fraction (NRF) (that is, the number of distinctly 
uniquely mapping reads over the total number of reads), and PCR bottlenecking coefficients 
(PBC1 and PBC2). 
 

S1.3.5. ChIP–seq of chromatin-associated proteins 
ChIP–seq surveys the interaction between DNA and DNA regulatory proteins (CTCF, EP300 
and PolII) through immunoprecipitation followed by sequencing. The protocol is available at 



 

 

https://www.encodeproject.org/documents/20ebf60b-4009-4a57-a540-
8fd93407eccc/@@download/attachment/Epigenomics_CR_ChIP_Protocol_v1.0.pdf, 
https://www.encodeproject.org/documents/6ecd8240-a351-479b-9de6-
f09ca3702ac3/@@download/attachment/ChIP-seq_Protocol_v011014.pdf, 
https://www.encodeproject.org/documents/a59e54bc-ec64-4401-8cf6-
b60161e1eae9/@@download/attachment/EN-TEx%20ChIP-
seq%20Protocol%20-%20Myers%20Lab.pdf, and 
https://www.encodeproject.org/documents/f2aa60f2-90a6-4e4b-863a-
c6831be371a2/@@download/attachment/ChIP-
Seq%20Biorupter%20Pico%20TruSeq%20protocol%20for%20Syapse-
c5bdc444fe0511e69d6a06346f39f379.pdf. Additional assay details are available at 
https://www.encodeproject.org/chip-seq/transcription_factor/. Data quality is evaluated by 
calculating read depth, NRF, PCR bottlenecking coefficients (PBC1 and PBC2), replicate 
concordance using IDR, and FRiP. 
 

S1.3.6. ATAC–seq 
ATAC–seq surveys open chromatin regions through the insertion of primers into the genome via 
transposase followed by sequencing. Experimental protocols are available at 
https://www.encodeproject.org/documents/404ab3a6-4766-45ca-af80-
878a344f07b6/@@download/attachment/ATAC-Seq%20protocol.pdf. Additional details can be 
found at https://www.encodeproject.org/atac-seq/. Data quality is evaluated by calculating the 
number of non-duplicate, non-mitochondrial aligned reads, alignment rate, IDR, NRF, PCR 
bottlenecking coefficients (PBC1 and PBC2), number of resulting peaks, fragment length 
distribution, FRiP, and TSS enrichment. 
 

S1.3.7. DNase-seq 
DNase-seq surveys open chromatin regions through genomic cleavage by endonuclease 
DNase I followed by sequencing. Experimental protocols are available at 
https://www.encodeproject.org/documents/c6ceebb6-9a7a-4277-b7be-
4a3c1ce1cfc6/@@download/attachment/08112010_nuclei_isolation_human__tissue_V6_3.pdf. 
Additional details are available at https://www.encodeproject.org/data-standards/dnase-seq/. 
Data quality is evaluated by calculating the number of uniquely mapping reads, the fraction of 
mitochondrial reads, and the signal portion of tags (SPOT) score. 
 

S1.3.8. WGBS 
To map DNA methylation, WGBS uses bisulfite treatment to convert unmethylated cytosines 
into uracils, leaving methylated cytosines unchanged. Through sequencing and alignment to a 
transformed genome, CpG, CHG, and CHH methylation levels can be extracted. The 
experimental protocol is available at https://www.encodeproject.org/documents/9d9cbba0-5ebe-
482b-9fa3-d93a968a7045/@@download/attachment/WGBS_V4_protocol.pdf. Additional details 
are available at https://www.encodeproject.org/data-standards/wgbs/. Data quality is evaluated 



 

 

by genomic coverage, C-to-T conversion rate, and correlation of CpG methylation levels 
between replicates. 
 

S1.3.9. DNAme array 
DNAme arrays measure methylation at CpGs. Like WGBS, DNA is treated with bisulfite to 
convert unmethylated cytosines to uracils. After amplification, DNA is hybridized to an array 
(Illumina Infinium Methylation EPIC BeadChip) with probes for both methylated and 
unmethylated states. Methylation is then quantified by comparing the signal between the two 
probes. All ENCODE uniform processing pipelines can be found at https://github.com/ENCODE-
DCC. 
 

S1.3.10. Hi-C 
We generated high quality in situ Hi-C data from samples collected from the gastrocnemius 
medialis and transverse colon tissues of four different donors. The in situ Hi-C protocol was 
used to produce Hi-C libraries as described previously \cite(16), A detailed protocol document is 
provided with each dataset in the ENCODE data portal 
(https://www.encodeproject.org/documents/e1ef20c9-7539-40bc-bdbf-a4deab7f72c7/). 
Approximately 20 mg of tissue was used for each experiment, and the MboI restriction enzyme 
was used for restriction digests. All sequencing was performed on an Illumina 4000 platform. 
The data was processed twice, once utilizing a reference genome and once utilizing personal 
genomes that were constructed for each tissue of each individual (see S1.1). 
 
Hi-C Data Processing details 
(a) Creation of interaction matrices: The interaction matrices were generated using the Juicer 
pipeline \cite(17), an open source tool for analyzing large Hi-C libraries. We utilized BWA-MEM 
\cite(18) to align individual reads to the hg38 reference genome, which was obtained from the 
ENCODE data portal. For each paired-end read, the two individual sequences were first 
separately aligned to the reference genome before being paired based on their read names. 
Chimeric reads and PCR duplicates were removed prior to the creation of an interaction matrix 
for each tissue of each individual (Figure S1.3b). Figure S1.3c provides information on the 
number of reads and number of contacts per sample utilized to create the matrices. 
 
(b) A/B compartments: Determination of the A and B compartments were done using the Juicer 
pipeline \cite(17) in 1MB resolution. In detail, the observed/expected interaction matrices were 
normalized using the Knight-Ruiz matrix-balancing (KR). A correlation matrix from these 
interaction matrices was calculated, with the first eigenvector of the matrix corresponding to A/B 
compartments. The negative values of the vector indicate the regions belonging to the A 
compartment, while the positive values of the vector correspond to the regions in the B 
compartment (Figure S1.3d-e). 
 
(c) Significant Hi-C interactions: Significant intrachromosomal Hi-C interactions were identified 
with FitHiC2 (v2.0.7) \cite(19, 20). Preprocessing of EN-TEx Hi-C interaction matrices followed 



 

 

the author’s instructions in the FitHiC2 GitHub repository’s README (https://github.com/ay-
lab/fithic). Matrices were binned at a resolution of 50 kb and bin biases were generated using 
the author’s provided software (HiCKRy.py — with percentOfSparseToRemove set to 0.1). 
FitHiC2 output for each sample can be found in the compressed folder File: fithic2_out.tar.gz on 
the EN-TEx resource website. See Figure S1.3f for the number of all vs. significant interactions 
for each sample. 
 
(d) TAD annotations: Topologically Associating Domains (TAD) were identified using TopDom 
(v0.9.0) \cite(21) with a window_size of 3. Before running TopDom, EN-TEx Hi-C libraries were 
binned at a resolution of 100 kb and normalized using the Knight-Ruiz matrix-balancing 
algorithm \cite(22) implemented by Juicer \cite(17). TopDom’s window_size parameter was 
optimized for the known enrichment of CTCF motif directionality at TAD boundaries \cite(16) 
and visual consistency/fit with Hi-C interaction matrices. CTCF directionality was identified using 
paired EN-TEx ChIP-seq peak (narrowPeak format) files and the ‘CTCF_known1’ motif as 
described in Cameron et al. (2020) \cite(23). TAD calls across EN-TEx individuals for the same 
tissue remain consistent (based on the frequency of TADs for a given size) and show slight 
differences between the two tissues observed by Hi-C (Figure S1.3g), supporting their cell-type 
specific nature. TAD boundary similarity was calculated by overlapping TAD annotations 
between individuals/tissues with a buffer of three bins when considering two boundaries to be 
the same. 
 
TAD annotations were generated by applying TopDom \cite(21) to the Hi-C data from the two 
tissues of all four donors. Annotations are available for download via the 
ENTEx.encodeproject.org portal. These files are found within a compressed folder named File: 
TopDomTADcalls.tar.gz 
 

S1.3.11. Proteomics 
LC-MS/MS Analysis 
For 10 mg tissue, 200 µl lysis buffer (50 mM Tris-HCl pH8.5, 50 mM NaCl, 8 M urea, 4% SDS, 
and Halt protease inhibitor (Thermo)) was added. After the tissue was homogenised by a 
pestle/mortar, a Dounce homogeniser, or similar device, the sample was heated at 95°C for 10 
min, and followed by probe sonication until viscosity was reduced. Sample was then centrifuged 
at 13,000 rpm for 15 min, and supernatant was collected. RNA was first extracted from samples 
(See RNA-seq method). 
 
Protein concentration was measured by Pierce 660nm Protein Assay (Thermo). 100 µg proteins 
were taken for each sample, and volumes were equalised by 100 mM TEAB to 100 µl, reduced 
by 20 mM TCEP (Sigma) then alkylated by 40 mM iodoacetamide (Sigma). Proteins were 
purified by 20% TCA precipitation. 100 mM TEAB was added to the sample, followed by 
digestion with trypsin (MS grade, Thermo) at 37°C for 18 hours. The peptides were labelled by 
TMT10plex as per the manufacturer's instruction, labelled samples were pooled and SpeedVac 
dried. 300 µg peptides were fractionated on a U3000 HPLC system (Thermo Fisher) using an 
XBridge BEH C18 column (2.1 mm id x 15 cm, 130 Å, 3.5 µm, Waters) at pH 10, at 200 µl/min 



 

 

in 30 min linear gradient from 5 - 35% acetonitrile /NH4OH. The fractions were collected every 
30 sec into a 96-well plate, these were concatenated to 35 fractions and dried. 
 
The peptides were resuspended in 0.5% formic acid (FA), 50% was injected for LC-MS/MS 
analysis on an Orbitrap Fusion Tribrid mass spectrometer coupled with U3000 RSLCnano 
UHPLC system (Thermo Fisher). The peptides were loaded onto a PepMap C18 trap (100 µm 
i.d. x 20 mm, 100 Å, 5 µm) for 10 min at 10 µl/min with 0.1% FA/H2O, then separated on a 
PepMap C18 column (75 µm i.d. x 500 mm, 100 Å, 2 µm) at 300 nl/min and a linear gradient of 
4-33.6% ACN/0.1% FA in 90 min /cycle at 120 min, or 4-32% ACN/0.1% FA in 150 min or 180 
min with cycle time at 180 min or 210 min for each fraction. The data acquisition used the 
SPS10-MS3 method with Top Speed at 3s per cycle time. The full MS scans (m/z 380-1500) 
were acquired at 120,000 resolution at m/z 200, and the AGC was set at 400,000 with 50 ms 
maximum injection time. The most abundant multiply-charged ions (z = 2-6, above 5000 counts) 
were subjected to MS/MS fragmentation by CID (35% CE) and detected in ion trap for peptide 
identification. The isolation window by quadrupole was set m/z 1.0, and AGC at 10,000 with 35 
ms maximum injection time. The dynamic exclusion window was set ±7 ppm with a duration at 
60 sec. Following each MS2, the 10-notch MS3 was performed on the top 10 most abundant 
fragments isolated by Synchronous Precursor Selection (SPS). The precursors were 
fragmented by HCD at 60% CE then detected in Orbitrap at m/z 110-400 with 50,000 resolution 
for peptide quantification data. The AGC was set 50,000 with maximum injection time at 86 ms. 
 
Personal Proteome Database 
GENCODE v27 \cite(24) annotation was lifted over from GRCh38 to each EN-TEx donor’s 
personal genomes, to generate 8 sets of GFF annotations. The GFFRead utility \cite(25) was 
used to extract the nucleic acid sequence for all protein coding transcripts. An in-house python 
script was then used to translate each protein coding transcript into its amino acid sequence. All 
protein sequences from the 8 genomes were combined with GENCODE v27 reference, 
redundant sequences were removed and each unique protein sequence was given a unique 
accession id that included the genomes which contain the protein. The final database contained 
128,063 unique protein sequences, 82,136 (64%) from GENCODE reference and 45,927 (36%) 
unique to the EN-TEx donors. 6344 protein sequences from GENCODE (8% of reference 
proteome) did not match to any of the alleles in the 4 individuals. File: 
Supp_data_proteomics.xlsx on the entex resource website provides cross mapping of protein 
accessions to ENSEMBL transcript and gene ids. Decoy protein sequences were generated 
using the DecoyPYrat tool \cite(26). 
 
MS Identification and Quantification 
Spectra were processed using ProteomeDiscoverer v2.4 (Thermo Scientific) and searched 
against the personal proteome database using both Mascot v2.4 (Matrix Science) and 
SequestHT with target-decoy scoring evaluated using Percolator \cite(27). The precursor 
tolerance was set at 30ppm, the fragment tolerance set as 0.5 Da and spectra were matched 
with fully tryptic peptides with a maximum of 2 missed cleavages. Fixed modifications included: 
carbamidomethyl [C] and TMT6plex [N-Term]. Variable modifications included: TMT6plex [K], 
oxidation [M], carbamyl [K], methyl [DE], deamidation [NQ], acetyl [N-term]. The carbamyl and 



 

 

methyl modifications were included due to their high incidence after samples were exposed to 
high concentrations of urea during the RNA extraction process. Peptide results were initially 
filtered to a 1% FDR (0.01 q-value). The reporter ion quantifier node included a TMT-11-plex 
quantification method with an integration window tolerance of 15 ppm and integration method 
based on the most confident centroid peak at MS3 level. Protein quantification was performed 
using unique peptides only, with protein groups considered for peptide uniqueness. Peptides 
were quantified and normalised using the TMT isobaric tags. Peptide results from 
ProteomeDiscoverer were remapped to the protein database and marked as reference, 
genome, or allele specific(see File: Supp_data_proteomics.xlsx). Gene level quantification of 
proteins was conducted by summing normalised unambiguous peptide TMT tag intensities. 
 
Peptide and Gene Identification and Quantification Results 
At a 1% FDR we report 256,512 peptide to spectrum matches (PSMs), and 117,934 distinct 
peptide sequences (0.01 q-value at peptide level) of which 45,276 were quantified using TMT 
isobaric labels. Personal peptides were further filtered to unambiguously match one gene and 
have a Posterior Error Probability below 0. 699 of these peptides did not map to the reference 
genome, only matching personal protein sequences. 4489 peptides identified were not present 
in all 8 genomes across the 4 donors, 830 of these peptides were missing in 1 or more of the 
donors completely and 4334 were only present on a single allele in at least one of the donors. 
This corresponds to 13% coverage of the possible observable personal peptides across all 
protein coding genes in the personal genomes, and a 1% increase in the number of significant 
distinct peptide sequences quantified. (Figure S1.3h) 
 
Gene quantification was conducted using only unambiguous peptides summing the peptide 
isobaric tag intensities. 9242 genes were quantified, 540 genes had non-reference peptides, 
1333 genes had peptides not present in all 8 genomes (personal peptides), 518 genes had 
peptides absent in at least 1 donor and 1260 genes had peptides specific to a single allele in at 
least 1 donor. 
 
RNA-seq comparison 
For comparison between proteomics and RNA-seq abundances, a paired set of samples and 
confidently identified genes matching between the proteomic and RNA-seq datasets were 
extracted. In each dataset the values were normalised and then scaled to the maximum value 
across the samples/tissues. A Pearson correlation was then used to test the similarity between 
the two sets across the samples. 
 
Novel Gene Discovery 
All spectra were also processed via the ICR GENCODE OpenMS novel peptide discovery 
proteomics pipeline \cite(28) against a database containing GENCODE v27 reference proteins 
and a set of potential novel protein coding sequences including many unannotated PhyloCSF 
conserved regions \cite(29). Novel peptide results were filtered according to high stringency 
criteria \cite(30). This resulted in 291 novel peptides, these were further filtered to remove 
peptides that could be explained by semi-tryptic cleavage or single amino acid variants. The 27 



 

 

remaining peptides were assessed validating 8 novel protein models, which have all now been 
annotated in the GENCODE reference set (Figure S1.3i). 
 
All spectra, results and supporting files including the personal proteome database have been 
deposited in the PRIDE \cite(31) proteomic repository (https://www.ebi.ac.uk/pride/) under 
project accession: PXD022787 
 

S1.4. Mapping Functional Genomics Data to the Personal Genomes 
Typically, the analysis of NGS data makes use of a current version of the reference human 
genome; this includes SNV detection, DNA methylation, transcriptional analysis (RNA-seq), 
identification of TF binding sites and histone modifications (ChIP-seq), and analysis of 3D 
chromosomal looping interactions (Hi-C). Depending on the application, this process usually 
includes selection of either more lenient or more stringent mapping criteria, for example allowing 
reads to map to single or multiple genomic regions with varying numbers of permitted 
mismatches \cite(32, 33). Using the personal genome to map functional genomics reads 
becomes particularly important if the mapping requires more stringent criteria, which is 
necessary when the goal is precision and individualization. 
 
We used DNA from transverse colon tissues to construct both haplotype sequences for each 
individual. Mapping sequences to the derived haplotypes, rather than to the reference genome, 
resulted in an overall improvement in mapping accuracy across different assays (RNA-seq, 
DNA-seq, Hi-C, and ChIP-seq). By applying conventional mapping criteria, we observed an 
increase in the number of mapped reads of about 0.5 to 1%. When we applied more stringent 
filtering criteria to select for high-quality, uniquely mapping sequences, we observed a much 
larger improvement, reaching an increase of 2-4% across assays over the four individuals (Fig. 
1B). We also generated a list of genes differentially expressed between mapping to personal 
genome vs reference genome (see File: Supp_DE_genes.tsv). Figure S1.4 summarizes"8$%"
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For all assays, we excluded counting reads that mapped to X, Y and M chromosomes for all 
individuals. In general, to ensure high quality mapping we selected reads with at most 2 
mismatches and unique mapping. We used raw reads from transverse colon, publicly available 
at Encode portal, with the exception of DNA-seq. For DNA-seq mapping, we used reads from 
blood samples that we obtained from GTEX to avoid any bias deriving from the construction of 
haplotypes using DNA sequences. For DNA-seq and RNA-seq mapping we used paired-end 
reads. For RNA-seq, to account for gene splicing, we used *.gtf files with transcript genomic 



 

 

coordinations and STAR Aligner v2.7. For DNA-seq, Hi-C and ChIPseq we used BWA v0.7.17 
and selected reads with at most 2 mismatches and quality Q>30. For RNA-seq we used 
sequences with quality mapping Q=255. 
  



 

 

S2. Supp. content to main text section “Measurement of allele-specific 
activity in diverse assays” 

S2.1. Allele-specific Expression (ASE), Binding (ASB) and Chromatin Accessibility 
(ASCA) 

S2.1.1. Overview 
Allele-specific phenomena arise from differential activity and/or modifications between the two 
haplotypes of the same individual, which can lead to allele-specific RNA and protein expression 
in a specific tissue/cell type. Most frequently, measurements of allele-specific activity are 
performed using RNA-seq, ChIP-seq, ATAC-seq, or DNase-seq data \cite(34-39). The EN-TEx 
project simultaneously and uniformly characterizes almost all the functional genomics activity 
(i.e., expression, binding, methylation, etc) at every heterozygous locus of each individual. 
 
Allele-specific expression and binding were measured with an extended version of the AlleleSeq 
pipeline. AlleleSeq \cite(8) was originally developed for the 2012 ENCODE rollout \cite(8, 40). It 
was subsequently refined for a number of applications, including the 1KGP functional 
interpretation group and for other projects \cite(37, 38, 41). Broadly, the pipeline incorporates 
personal variation, including large structural variants, which allows it to account for reference 
bias \cite(8, 37, 42) in a straightforward way. In addition, we have included additional filters to 
mitigate ambiguous mapping biases \cite(37, 43). In order to account for the overdispersed 
nature of the functional genomic readcount data, the significance of the allelic imbalance is 
assessed with the beta-binomial test \cite(37)(Figure S2.1a). 
 

S2.1.2. Mapping 
For each available replicate of the EN-TEx experiments, functional genomics reads were 
mapped to both personal haplotypes simultaneously using STAR-2.6.0c \cite(44). We required 
stringent mapping criteria, allowing maximum number of mismatches at 3% of the read length. 
For both the ChIP-seq and ATAC-seq datasets, mapping was performed forbidding spliced 
alignments. Adapters were also removed from the ATAC-seq reads with cutadapt \cite(45). For 
RNA-seq data we used Gencode v24 \cite(24) annotation converted to personal coordinates 
and the mapping was performed in the 2-pass mode to identify and incorporate novel junctions. 
Read duplicates were identified and removed from all alignments using picard 
(http://broadinstitute.github.io/picard/) 
 
To visualize functional genomic reads on individual haplotypes (e.g., Fig. 5B), we use samtools 
(1.9) \cite(46) to extract haplotype-specific reads from the bam files generated by STAR from 
the last step. If an assay has multiple replicates, we merged all the bam files. The number of 
reads mapped to a given region in the personal genome was calculated by bedtools (2.29.2) 
\cite(47) and stored in bedgraphs, lifted over to the reference genome with UCSC liftOver 
\cite(48), and converted to bigwigs with bedgraphToBigWig (2.8) \cite(49). Figure S2.1b 
summarizes the pipeline to generate the haplotype-specific bigwigs. The bigwigs are displayed 



 

 

with Integrative Genomics Viewer (igv) \cite(50). See Figure S2.1c for accession numbers of 
data used to generate the signal tracks in Fig. 4-5. 
 
(File: xxx) 
 

S2.1.3. Filtering and assessment of read imbalance at heterozygos SNVs (hetSNVs) 
The number of reads overlapping each hetSNV and carrying the corresponding alleles was 
calculated after filtering. The filtering included: 

- potentially misphased loci 
- reads bearing an incorrect allele 
- hetSNVs located in potential CNV sites through assessment of surrounding read-depth 

(+/- 1kb) 
- Sites with potential ambiguous mapping \cite(37, 43) 
- Non-autosomal chromosomes: we generated separate call-sets that include chr X for the 

female individuals but (unless specified otherwise) all downstream analyses were 
performed on call-sets that only include autosomal loci. 

We aggregated read counts from all replicates available for each experiment (sample). We then 
calculated the significance of the imbalance at each heterozygous loci as described previously 
\cite(37) and called ASE and ASB sites at FDR 10%. (Figure S2.1d-e). 
 
(File: xxx) 
 
We provide the read counts and p-values for all the ASE and ASB that are either significantly 
imbalanced or accessible (SNVs that have at least the minimum number of reads needed to be 
statistically detectable for allelic imbalance). Columns in the hetSNV files: 
1) chr    : chromosome 
2) ref_start   : GRCh38 locus start position (0-based) 
3) ref_end   : GRCh38 locus end position (1-based) 
4) ref_allele   : reference allele 
5-6) hap1_allele/hap2_allele : haplotype 1/2 allele 
7) experiment_accession : ENCODE experiment ID 
8) donor   : ENTEx individual 
9) tissue   : tissue 
10) assay   : assay 
11-14) cA/cC/cG/cT  : number of reads with A/C/G/T 
15) ref_allele_ratio  : number of reads with reference / total number of reads 
16) p_betabinom  : p values calculated from the beta-binomial test 
17) imbalance significance : ‘1’ passes the FDR10% threshold, ‘0’ not a significantly 
imbalanced site. 
 



 

 

S2.2. Allele-specific Methylation (ASM) 
We used WGS variant calls to determine the positions of heterozygous SNVs (hetSNVs) and 
identify all homozygous CpG positions in the genome of each donor. With such information, and 
with the fully processed tissue-specific WGBS aligned reads, an in-house script was then used 
to identify positions exhibiting significant allelic differences in CpG methylation. Our script 
counted the number of times a methylated or unmethylated homozygous CpG occurred in the 
same read as each of the two possible alleles at the hetSNV position for autosomal 
chromosomes. If the same read overlapped multiple CpGs, they were each considered as 
independent observations. Reads with a low-quality score (Phred < 20) on the SNP position, or 
with a base call that did not match either of the two alleles expected in that position based on 
the WGBS calls, were discarded. Due to the nature of bisulfite sequencing data, where 
cytosines may be observed as thymines due to bisulfite conversion, it was not possible to 
determine which allele the read came from in several cases. In such cases, the read was also 
discarded. If a low-quality score, or an unexpected base call, was observed on a CpG position 
for a particular read, that observation did not contribute to the final counts. The significance of 
the association between the allele at the hetSNV position and the methylation state of the CpGs 
in the 300bp surrounding region was assessed using Fisher’s exact test. The 300bp windows 
surrounding the hetSNV position were chosen as the WGBS dataset was composed of paired-
end 150bp reads. The test was only performed for hetSNV positions that showed a minimum of 
6 observations of either a methylated or unmethylated CpG position for both alleles. Once the p-
values were computed for all such hetSNV positions, the Benjamini-Hochberg procedure was 
used to control the false discovery rate for such associations. The difference in the level of 
methylation between alleles was also computed for each hetSNV. Any positions overlapping 
CNVs, or small INDELS, were discarded from further analyses. Finally, ASM calls were made 
by identifying the heterozygous SNP positions with false discovery rate (FDR) below a specified 
threshold (10%), and absolute difference in methylation between alleles above a minimum 
threshold of 10%. 
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S2.3. Hi-C - Allele-specific interactions 

S2.3.1. Creation of haplotype specific interaction matrices 
Each pair of the paired-end reads were aligned separately to both of the parental haplotypes 
using BWA-MEM \cite(18). Sequencing reads are then paired based on their read names. Each 
paired-end read is then assigned to either one or both of the parental haplotypes as follows: for 
each paired-end read, a score is assigned to each parental haplotype based on the number of 
mismatches of the mapping to that haplotype. Paired-end reads are then either assigned to 
haplotype 1 or haplotype 2 based on their corresponding score. In brief, pairs of reads are 
assigned to a haplotype if they map exclusively or with a better score to that haplotype. 
Additionally, pairs of reads that exclusively map to one of the haplotypes are also assigned to 
that haplotype. After every paired-end read is assigned to a parental haplotype, chimeric reads 
and PCR duplicates are removed and we generate an interaction matrix for each haplotype of 



 

 

each tissue of each individual (see Figure S2.3a for the pipeline and Figure S2.3b for the 
matrices). 
 

S2.3.2. Allele-specific interactions 
For each significant interaction captured by Fit-Hi-C, we found the number of reads that map to 
haplotype 1 and haplotype 2 using the haplotype specific interaction matrices. If there is a 
difference in the number of reads that mapped to a haplotype vs. the other one, we then 
calculated the p-value for the significance of the allelic imbalance using a binomial test. File: 
hic_files.tar.gz contains two folders: “ref” and “pgenome”. “ref” folder contains .hic files for each 
individual and tissue (each tissue and individual combination is a separate folder, totaling up to 
8 folders); these files contain information of the genome-wide interaction matrices. The 
information can be extracted using juicer tools and the contact matrices can be visualized using 
juicebox (see Figure S2.3b for an example). “Pgenome” folder contains two sub folders: “hap1” 
and “hap2”. Each of these folders contain two .hic files for each chromosome of each individual 
and tissue. Chr*.hap*.hic files contain the Hi-C data for that chromosome in personal genome 
coordinates and Chr*.hap*2ref.hic files contain the Hi-C data for that chromosome in a 
reference genome coordinate (lifted over using personal genome chain files). Figure S2.3c 
shows the total number of raw allele specific interactions and significant allelic imbalances per 
sample (calculated using the binomial test described above). 
 

S2.4. Proteomics - Allele specific Peptide (ASP) Analysis 
The proteomics data were mapped at the gene level and filtered to a set containing one or more 
allele specific peptides in any donor. These fell into two categories: genes with allelic specific 
peptides for one allele only or those with peptides specific to both alleles. Both groups were 
considered for ASP ratios. The ASP ratios were calculated for each tissue and donor in which 
allelic peptides were quantified, based on the ratio of the summed peptide intensities of peptides 
specific to the two alleles. Individual ASPs were filtered to require a minimum of 3 distinct 
peptides unambiguously identifying a gene, an expression level for the tissue that was not less 
than 5 fold lower than the highest expressed tissue and an ASP ratio that was greater than 0.75. 
Figure S4.3c summarizes key numbers of genes with allelic peptides. See File: 
Supp_data_proteomics.xlsx for a full list of allelic peptides. 
 

S3. Supp. content to main text section “Aggregation of allele-specific 
events, forming a catalog” 

S3.1. Assessment of read imbalance at genomic elements 

S3.1.1. Genes, binding peaks and cCREs 
We extended our pipeline to measure allelic imbalance at genomic regions and elements of 
interest. To do so, we aggregated read counts from all hetSNVs within the relevant region and 



 

 

assessed the significance of imbalances between personal haplotypes for individual hetSNVs 
as described above. We provide a large catalog of genomic elements measured for allelic 
activity (e.g., ASE genes, ASB peaks, cCREs etc) with corresponding haplotype-specific assay 
read counts and significance of the imbalance (Figure S3.1a-b). 
 
(File: xxx) 
 
1) chr    : chromosome 
2) start    : GRCh38 locus start position (0-based) 
3) end    : GRCh38 locus end position (1-based) 
4) region_id   : gene name (gencode v24) or peak/cCRE id 
5-6) hap1_count/hap2_count : number of reads mapped to haplotype 1/2 
7) experiment_accession : ENCODE experiment ID 
8) donor   : ENTEx individual 
9) tissue   : tissue 
10) assay   : assay 
16) p_betabinom  : p values calculated from the beta-binomial test 
17) imbalance significance : ‘1’ passes the FDR10% threshold, ‘0’ not a significantly 
imbalanced site. 
 

S3.1.2. Methylation 
 
(Text) 
 

S3.1.3. Correlation between AS genes and diseases 
We compared the set of allele specific genes to a set of genes associated with certain diseases. 
The list of disease genes are genes known to be affected by disease-associated mutations and 
expressed in disease-related tissues \cite(51). For every tissue and individual, we noted the 
genes that were present in both the set of AS genes and the set of disease genes. The list of 
the overlapping genes and their associated diseases can be found in File: 
Associated_AS_Disease_Genes.xlsx 
 

S3.2. Aggregation across tissues and assays 

S3.2.1. Allele-specific expression and binding 
We observed a large increase in detection power when we pooled reads for each hetSNV 
across all tissues in each individual. For each individual, we pooled reads for each hetSNV 
across all tissues. We calculated the significance of the imbalance at each hetSNV for the 
pooled call-set in the same manner as for individual tissues and called ASE and ASB sites at 
FDR 10%. 
 



 

 

S3.2.2. Methylation 
We aggregated the counts of methylated and unmethylated CpG position surrounding both 
alleles of each heterozygous SNV across tissues for each individual to assess the cross-tissue 
association between the allele at the hetSNV position and the methylation state of the CpGs. 
Significance of association is computed using Fisher’s exact test and Benjamini-Hochberg 
procedure was used to control the false discovery rate. For aggregated observation, the test is 
only performed for hetSNV positions that showed a minimum observation of 12 methylated or 
unmethylated CpG positions for both alleles. ASM were called at FDR 10% and absolute 
methylation difference larger than 10%. 
 
We also generated a combined ASM call set that includes cross-tissue counts of methylated 
and unmethylated CpG observations surrounding “accessible” hetSNVs for all four individuals. 
We defined accessible hetSNVs as those that pass the threshold of at least 12 observations of 
either methylated or unmethylated CpG positions in the surrounding area. We annotated the 
hetSNVs with associated genes, distance to gene, genomic region, and alternative allele 
frequency based on refGene and gnomAD 3.0 databases using ANNOVAR \cite(52). We also 
annotated the hetSNVs with cCREs from the ENCODE encyclopedia. 
 

S3.3. High-confidence and high-power call-sets 
We also developed a "high-confidence" call set requiring that at least one read from both alleles 
is detected in the functional genomics assay, thus accounting for potential false positive 
genotype calls. 
 
In addition, we generated a "high-power" tissue-specific call-set (see File: 
AS_highpower_set.tar.gz) by allowing a more relaxed threshold (FDR 20%) for loci that were 
detected as significantly imbalanced after read pooling-based joint calling across all tissues 
(Figure S3.3). 
 
(File: xxx) 
 

S4. Supp. content to main text section “Mining the catalog” 

S4.1. Integration with the ClinGen Allele Registry 
The variants identified in all four EN-TEx individuals are registered to the ClinGen Allele 
Registry \cite(53) which provides unique variant identifiers for canonical alleles defined at the 
level of nucleic acid sequences or at the protein level. The unique identifier integrates different 
types of labels and definitions of the same allele across multiple databases including dbSNP, 
gnomAD, ClinVar, and ExAC. All variants are bulk registered in vcf format using API specified 
by Allele Registry documentation 
(http://reg.clinicalgenome.org/doc/AlleleRegistry_1.01.xx_api_v1.pdf). Query of variants can be 



 

 

done either programmatically via APIs or via search interface using any type of id associated 
with the variant. Metadata for allele(s) are available in machine readable form (JSON). 
 

S4.2. Effect of Allele Specificity on Purifying Selection 
In order to calculate the purifying selection on allele specific events, population scale variants 
from three cohorts were used. We used two measures of purifying selection and conservation 
for this analysis. The first is rare DAF, which is calculated as #rare/(#rare + #common) variants 
falling in a given allele specific region. In order to categorize variants as rare or common, 
ancestral alleles were used and a MAF of 0.05 was used. This is a commonly used metric for 
calculating selection in populations \cite(37, 38, 41). The second was phastCons, which 
measures the cross-species conservation \cite(54). All purifying selection analyses were 
performed for AS+ cCRE, AS- cCRE, ASB+ H3K27ac, ASB- H3K27ac regions and ASE+ and 
ASE- genes. The results can be seen in Figure S4.2. 
 

S4.3. Allelic effect prediction with the BERT model 
BERT is a natural language model based on Transformer neural network architecture. It has 
been widely applied to natural language processing due to its ability to incorporate long-range 
contextual information \cite(55). Thus, it could also be applied to extracting meaningful 
sequential patterns from genomic sequences, such as prediction of allelic effects of SNPs. 
 
We extract the 128bp sequence upstream and downstream of the SNP in question as the input. 
The sequences are labeled as positive or negative based on their allelic effects. For balancing 
considerations, the negative set is randomly downsampled to the same size as the positive. The 
dataset is then split into training, cross-validation and testing set by 8:1:1. 
 
We initialize the BERT model with the weights of the pre-trained DNABERT model \cite(56). A 
single-layer classifier is added on top of the output of DNABERT and the model is fine-tuned on 
the allelic effect datasets. For fine tuning, we selected from a range of hyperparameters 
(learning rate=1e-5, 5e-5; training epoch = 5, 10, 20). As the pre-trained DNABERT model has 
different versions with k-mer size 3~6, we report the model with the highest performance. 
 
The model is first trained with only SNPs from donor individual 3. For many of the prediction 
tasks, the model achieved performance of f1 score > 0.7 and accuracy > 0.7 on the validation 
set, significantly higher than logistic regression on sequence embeddings (Figure S4.3; see 
below for more details). We then tested the model performance on validation sets composed of 
SNPs exclusive to the other three donors. Specifically, the validation sets for these three 
individuals have been randomly downsampled to the same size as the validation set for 
individual 3. The sampling is repeated 10 times and average results are reported. As expected, 
the performance is lower compared to individual 3. 
 



 

 

For model interpretation, we used the method implemented by \cite(56), where the attention 
scores of the last layer for the first token are averaged over all 12 attention heads, and then 
regularized by k-mer coverage. 
 
As a comparison, we use the dna2vec model released by \cite(57) to transform k-mers to 
continuous-valued vectors, preserving their contextual preference. Using the same training, test 
and validation data as above, we represented each input sequence as an average over the 
embedding of all its k-mers. We then trained a logistic regression classifier based on the 
average embedding vector. We tried embedding with k-mer size 3~8 and reported the one with 
the highest performance. 
 

S4.4. Cross-assay Compatibility 

S4.4.1. Compatible & incompatible: single chromatin mark vs gene expression 
Using the methods described in previous sections, we identified promoters (± 2Kb from TSS) 
with allelic imbalance in the chromatin state measured by H3K27ac, H3K27me3, etc. We 
determined the compatibility between allelic promoter chromatin states and allelic gene 
expression in a straightforward way. The allele with more active promoter chromatin should 
have a higher expression level, otherwise the promoter and the gene are incompatible. 
Similarly, alleles with more repressed promoter chromatin are compatible with lower expression 
levels. We treated histone mark H3K27ac, H3K4me3 and H3K4me1, chromatin openness 
indicated by ATAC-seq or by DNase-seq, and the binding of EP300, POLR2A, POLR2AP, and 
CTCF, as marks of active chromatin. Histone mark H3K27me3 and H3K9me3, and CpG 
methylation were considered marks of repressed chromatin. 
 
Because allelic gene expression and/or allelic chromatin state can be tissue-specific and/or 
individual-specific, we did not merge compatible (or incompatible) promoter-gene pairs that 
appear in multiple samples. Overall, the number of ASE genes compatible with at least one of 
the 13 marks is 35 per tissue per individual, while the number of ASE genes suitable for the 
compatibility analysis (i.e., the promoters of these genes are accessible for measuring the 
potential allelic chromatin state indicated by any of the 13 marks) is 226 per tissue per 
individual. See Figure S4.4a for more compatibility results. 
 
We note that some assays were performed twice for a given tissue of a given individual. For 
example, the RNA-seq of individual 3’s liver includes two experiments (ENCSR226KML and 
ENCSR504QMK), while there is only one H3K27ac ChIP-seq experiment for the same sample. 
In another example, there are two CTCF ChIP-seq experiments for individual 3’s spleen 
(ENCSR756URL and ENCSR773JBP), while there is only one RNA-seq experiment for the 
same sample. In these cases, we combined ASE genes or ASB promoters that were called from 
either of the duplicated experiments, excluding those where the directions of the allelic 
imbalance are the opposite in the two experiments. The combined ASE genes and ASB 
promoters were analyzed for compatibility. File: Supp_data_compatibility.xlsx lists the 
compatibility of genes with AS expression in each tissue and individual. 



 

 

 
To test the numbers of compatible versus incompatible promoter-gene pairs, we identified 
genes that have allele-specific expression in at least one tissue of at least one individual. We 
shuffled the gene-promoter relation for these genes and calculated the ratio of N_compatible 
versus N_incompatible. We repeated this process 1,000 times for each chromatin mark (after 
excluding replicates where N_incompatible is zero) to calculate a Z-score of the ratios shown in 
Fig. 3E. 
 
We also checked the association between AS chromatin state of the regulatory sequences and 
the AS expression of the corresponding genes while ignoring the compatibility between the two. 
Figure S4.4b shows that genes with AS expression are more highly enriched near promoters 
with AS methylation and/or TF binding than near non-regulatory sequences with AS 
methylation. 
 

S4.4.2. Compatibility with AS Proteomics 
Of the high stringency ASP (allele specific peptides) set, 114 overlapped ASE events calculated 
from RNA-seq data, 58 showed compatibility and 56 showed incompatibility (Figure S4.4c). The 
z-score 0.26 of the ratio of the compatible to the incompatible (based on ASP/ASE pairs being 
randomized 1000 times) was not significant indicating the compatibility between the RNA-seq 
and protein level allele expression is near random. Although some of this incompatibility is likely 
down to technical issues, manual examination of the most biased ASPs overlapping ASEs, 
shows that the evidence for allelic specific protein expression is very compelling implicating post 
translational regulation (Figure S4.4d). For some of the incompatible cases there are clear 
biological reasons for the difference between ASP and ASE ratios such as frameshift variants. 
File: Supp_data_compatibility.xlsx shows details of the significant 114 ASPs overlapping ASEs. 
 

S5. Supp. content to main text section “Examples of coordinated AS activity 
across assays” 
We detected the inactive copy of X chromosome in the majority of tissues from female 
individuals. We found that both gene expression and active chromatin signal is significantly 
skewed toward one haplotype, while repressive chromatin signal is significantly skewed toward 
opposite haplotype in many tissues. 
 
We then investigated the specific allelic coordination at the chromosome level using the X 
chromosome. X chromosome inactivation ensures that females have only one functional copy of 
the X chromosome, and occurs by random selection of the inactivated copy early in embryonic 
development. For the two female individuals, the EN-TEx data enabled comprehensive analysis 
of the allele-specific activity in 24 tissues. We identified the active copy of the X chromosome by 
examining the overall gene expression levels in 24 tissues of individual 3. We identified the 
active copy of the X chromosome by examining the overall gene expression levels. The gene 
expression, active histone marks, and repressive histone marks were coordinated in terms of 



 

 

their haplotype-specific activity. As shown in Fig. 4C, the gene expression values of all genes in 
the X chromosome were higher in haplotype 2 than those in haplotype 1 (see Figure S5.1a and 
Figure S5.1b). In accordance with this finding, enrichment of the active histone mark H3K27ac 
was also higher in haplotype 2 than in haplotype 1. Moreover, enrichment of the repressive 
histone mark H3K27me3 was imbalanced in the opposite direction (i.e., higher in haplotype 2). 
A similar coordination was observed using other allele-specific activity such as POL2R and 
CTCF binding (Figure S5.1a). 
 
When focusing on specific genes, we found that the DHRSX gene located on the pseudo-
autosomal region had balanced expression in both haplotypes, whereas the SLC25A5 gene 
located on the inactivated region showed a significant skew in gene expression towards the 
active haplotype in accordance with the chromosomal level imbalance. We also identified a 
known “escaper” gene, KDM6A \cite(58), that demonstrated balanced expression in both 
haplotypes while being located on the inactivated region of ChrX. The expressed haplotype of 
the allele-specific SLC25A5 gene in tibial nerve tissue showed significant allele-specific activity 
for the activating histone mark H3K27ac, while the “inactive” haplotype had significant allele-
specific activity for the repressive histone mark H3K27me3 as well as DNA methylation. In 
addition, our analysis of haplotype-specific Hi-C data revealed an allele-specific skew in Hi-C 
interactions between another gene, XACT, and its potential distal regulatory element on the 
active haplotype of Chr X (see Figure S5.1c). 
 
We found an allele-specific activity example of a less characterized locus. We detected allele-
specific Hi-C interactions in the XACT locus (Figure S5.1c) on the active copy of chromosome 
X. We first determined the active copy of chromosome X by looking at the gene expression 
distribution on both haplotypes and found that haplotype 2 has more gene expression than 
haplotype 1. We then looked at the differential interaction of chromosome X by subtracting the 
Hi-C matrices of the haplotypes. We found that an interaction between the XACT locus and an 
region upstream of it is significantly elevated in the active haplotype. We also found that both 
XACT locus and the upstream region are bound to CTCF, which might be mediating the 
interaction. XACT is a long non-coding RNA found to be active in the active copy of 
chromosome X early in cell development. This CTCF mediated haplotype-specific interaction 
could play a role in activating the XACT locus established at early stages of cell development. 
While such observations are interesting, they are provisional on additional supportive data. 
 

S6. Supp. content to main text section “Relating SVs to chromatin & 
expression” 

S6.1. Associate SVs with eQTLs 
We are interested in heterozygous SVs that potentially cause allelic gene expression and 
underlie the action of known eQTLs. To do this, we first identified eQTLs \cite(59) that are 
compatible with the allelic expression of the associated genes. For each ASE gene, we check if 
the two alleles at each associated eQTL locus have the expected regulatory effect. We used the 



 

 

compatible eQTLs associated with a given ASE gene to define a window, which spans from –10 
kb of the compatible eQTL on the far 5’ end to +10 kb of the compatible eQTL on the far 3’ end. 
For a heterozygous SV that intersects with this window, we determined whether the SV and the 
compatible eQTLs may locate on the same linkage block by comparing their allele frequency 
and haplotype. Specifically, for each SVs identified in the last step, we identified all compatible 
eQTLs (with respect to the given ASE gene) that fall within +/- 10 kb of the SV. Suppose the SV 
is on haplotype 1, then we calculated the allele frequencies of the alleles of the compatible 
eQTLs on haplotype 1. Here, we used the allele frequency reported by the 1000 Genome 
project high-resolution data \cite(60) for the alleles at each compatible eQTL locus. We 
excluded eQTLs for which the derived alleles cannot be found in the 1000 Genome project. If at 
least half of the hap1-alleles of the compatible eQTLs within +/- 10 kb of the SV have similar 
allele frequencies as the SV’s allele frequency (defined between 80% to 120% of the SV’s allele 
frequency), then we consider the SV is potentially linked to the compatible eQTLs and may 
contribute to the allelic expression of the given gene. We listed SVs that meet this criteria, the 
associated ASE gene, and the compatible eQTLs +/- 10 Kb from the SVs in File: 
Supp_Data_SVs_associated_with_eQTL.xlsx. 
 
We identified known eQTL-associated SVs (including SV-eQTLs) \cite(15, 61) in our list of 
potential eQTL-associated SVs. We consider that our SV hits a match if within +/- 100 bp of this 
SV a reported eQTL-associated SV was found and both SVs are associated with the same 
gene. We searched for matches in tissue-specific and non-tissue-specific ways. For individual 2, 
our list includes 193 SVs that are associated with eQTLs in at least one tissue, and 44 of them 
match known eQTL-associated SVs. The numbers are 174 and 33 for individual 3. Details of 
these results are listed in Supp_Data_SVs_associated_with_eQTL.xlsx. For comparison, we 
also calculated the fraction of known eQTL-associated SVs in our SVs that are close to genes 
with AS expression. We pooled genes that have AS expression in at least one tissue. Because 
GTEx eQTLs fall in +/- 1Mb from the TSS of genes \cite(59), we used the same window to look 
for SVs near the genes with AS expression, requiring the SVs to at least partially overlap with 
the windows. We further required SVs to be heterozygous, clearly phased, and relatively 
common (i.e., present in Audano et al. (2019) \cite(12)). We found 4415 SVs in individual 2 that 
meet these criteria, of which 560 match known eQTL-associated SVs. This fraction is 
significantly lower than the observed fraction of 44/193 (p = 4.6e-5, Chi-square test). For 
individual 3, the expected fraction is 594/3909, which is lower than the observed fraction of 
33/174, but not significant (p = 0.18, Chi-square test). 
 

S6.2. Aggregating the Impact of SVs on Neighboring Chromatin 
Our goal is to calculate potential changes in the chromatin state in the neighborhood of SVs. 
Intuitively, this can be done by comparing the chromatin state between individuals with and 
without the given SVs. We excluded SVs that are closer than 5 kb from any other SVs in 
individual 2 or individual 3, and SVs that fall on the sex chromosomes. In the remaining SVs, we 
focused on heterozygous SVs that have relatively precise breakpoints. Specifically, we kept SVs 
where the total length of the start position’s confidence interval and the end position’s 
confidence interval is at most 50 bp. To minimize the influence of SVs on mapping sequence 



 

 

reads, we further excluded SVs for which the average mappability of a window +/- 500 bp of the 
SV is below 0.9. Because EN-TEx requires the length of a ChIP-seq read to be at least 50-bp, 
we used the 50-mer multi-reads Umap mappability \cite(62) when filtering SVs for the purpose 
of calculating potential disruption to chromatin openness (measured by ATAC-seq) and 
H3K27ac. We also excluded SVs that fall in blacklist regions that are known to give problematic 
ChIP-seq reads \cite(63). 1974 SVs in individual 2 and 2154 in individual 3 passed all the filters 
above. 
 
For each SV that passed the above filters, we calculated the average chromatin state in the 
SV’s flanking regions. We define that flanking regions of a SV as the -500 bp ~ -100 bp region 
and the 100 bp ~ 500 bp (Figure S6.2a) – the extra 100 bp upstream and downstream of the SV 
are extra buffer regions which should reduce the influence of SVs on mapping ChIP-seq reads. 
The average chromatin state is the fold-change over control of the number of ChIP-seq reads 
averaged over all base pairs of the flanking regions. Knowing the genomic coordinates of the 
flanking regions, we can calculate the average chromatin state in the corresponding regions in 
the other individual who does not carry the given SV (Figure S6.2a). If the average chromatin 
state in the flanking regions of a SV is lower than 70% of that in the wild type individual, we 
consider the given SV reduces the chromatin state in the neighbourhood. Because the 
chromatin state can be tissue specific, we treated the SV neighbourhoods as tissue-specific ᠆ 
even for the same SV (Figure S6.2a). We pooled the SV neighbourhoods from all tissues, and 
binned neighbourhoods based on their chromatin state in the wild type individual. We reported 
for each bin the fraction of neighbourhoods with reduced chromatin state due to the presence of 
the SVs. 
 
In theory, we could also investigate the impact of SVs by comparing between the two 
haplotypes of the same individual. To do this, there needs to be heterozygous SNPs and/or 
indels present in the neighborhood of SVs in order to determine the chromatin states of each 
haplotype. However, we found many SVs don’t have heterozygous SNPs accessible for 
determining the chromatin states in nearby regions. 
 

S7. Supp. content to main text section “Decorating the ENCODE 
encyclopedia” 

S7.1. Signal normalization method 
In order to overcome batch effects, matrices of gene expression and histone marks’ values were 
quantile-normalized across samples (tissues and donors). The choice of quantile normalization 
method was made after performing a benchmark of a number of normalization methods. The 
methods selected for the benchmarking are among the ones analyzed in a recent publication 
\cite(64): quantile normalization, smooth quantile normalization, upper-quartile normalization, 
variance stabilization normalization (VSN) and local regression normalization (two variants: 
LoessF and LoessCyc). These are normalization techniques widely applied also in other 
bioinformatics fields, such as microarray and proteomics analysis. The pilot analysis was 



 

 

performed independently for two cell lines, K562 and GM12878, for which different polyA+ RNA-
seq evaluation datasets were produced by Wold, Gingeras and Graveley labs during the 
ENCODE phase 2. The benchmark consisted of three steps: i) for each method, we computed 
the distribution of Pearson’s and Spearman’s correlation coefficients across all genes between 
each pair of samples; ii) we then ranked the methods based on the mean of the distribution of 
all genes’ variance across samples \cite(65), and on iii) the Relative Log Expression (RLE) 
distribution (distribution of log2 ratio for a given gene between one particular sample and the 
median across all samples), which should be close to 0 \cite(66). Overall, quantile and smooth 
quantile normalization techniques performed similarly between each other and better than the 
other methods. We thus opted for quantile normalization. In particular, for each of the histone 
modifications used in the decoration procedure below, we provide the quantile normalized fold 
change signals of cCREs across all the available tissues and individuals. The data file for each 
of the histone modifications is a data matrix, in which each row corresponds to a cCRE and 
each column corresponds to a tissue from an individual. As a result, the element in the matrix is 
the quantile normalized signal of the histone modification observed in the cCRE from a tissue. 
These files are available in a tar ball: cCRE_histoneSignals_qnorm.tar.gz. 
 

S7.2. Decoration of Regulatory Annotations 
We used the ChIP-seq datasets of both active and repressed marks to decorate (i.e., re-
annotate) the cCREs from the Encyclopedia, which are based on a set of high-quality DHSs 
\cite(67). The ENCODE encyclopedia regulatory elements consist of 0.9 million cCREs 
averaging ~400bp. For each type of functional genomic data, we normalized the activity signals 
of the cCREs from all tissues and focused on the cCREs with relatively strong signals (Figure 
S7.2a). In the decoration, we considered three active marks (H3K27ac, H3K4me1, and 
H3K4me3) and three repressed marks (H3K27me3, H3K9me3, and DNA methylation). ChIP-
seq datasets were uniformly processed using the ENCODE standard pipeline, including 
alignment, quality control, and peak calling. With the uniformly processed ChIP-seq datasets, 
the average epigenomic signals were calculated and normalized for a registry of cCREs from 
the Encyclopedia (Figure S7.2a). Namely, we first calculated the average fold-change against 
control, typically input DNA, for each cCRE. The average fold-change is quantile normalized 
independently across experiments but jointly between individuals and tissues. Finally, the 
scores for each experiment are scaled from 1 to 10. For a particular tissue type, we defined a 
set of cCREs for each epigenomic mark that are considered as “active” (i.e., thresholding the 
normalized and scaled quantile values of the cCREs). The thresholding value is calculated for 
each assay by maximizing the similarity -- the fraction of shared active cCRE -- between the 
four individuals across tissues. We used the average threshold score across the Transverse 
Colon, Spleen, and Esophagus since those were the most commonly comprehensive assays 
across individuals. 
 
For each tissue, we then defined a set of active, repressed and bivalent cCREs based on their 
active and repressed epigenomic signals, respectively (Figure S7.2b; Figure S7.2c as an 
example from spleen). Briefly, the active cCREs show high activity for only active marks (i.e., 
H3K27ac, H3K4me1, and H3K4me3); the repressed cCREs show high activity for only 



 

 

repressed marks (i.e., H3K27me3, H3K9me3, and DNA methylation); and the bivalent cCREs 
show high activity for both the active as well as the repressed marks. The cCREs were then 
separated into distal and proximal ones according to their distance to TSSs (proximal as those 
within 2kb to annotated TSSs). We also intersect these cCREs with the CTCF binding sites from 
the matched tissue type to define CTCF+ and CTCF- cCREs. Finally, the active and repressed 
cCREs were further annotated using their allelic signature to identify a set of allelic-specific 
(AS+) and non-allelic-specific (AS-) ones, respectively. In the allelic-specific decoration, we 
used the allelic signature from the matched epigenomic marks to define the active/repressed 
AS+ and AS- cCREs. Any active/repressed cCREs intersecting with the AS+ cCREs were 
considered to be active/repressed AS+. The active/repressed AS+ from different individuals 
were pooled together to generate the set of active/repressed AS+ cCREs in the corresponding 
tissue. We found that the numbers of repressed cCREs are comparable to those of active 
cCREs in many tissue types, highlighting the necessity of decoration using the repressed 
markers (Figure S7.2d). Finally, we provided the cCRE decoration results in all the tissue types 
(see File: cCRE_Decoration.matrix or separately File: active.combined_set.txt.zip, File: 
bivalent.combined_set.txt.zip and File: repressed.combined_set.txt.zip) (Figure S7.2e). 
 
In order to further subset cCREs, we created an annotation set that focuses on regions with 
high H3K27ac signals. We call this set the “stringent” annotation set. In order to create this 
stringent annotation, we intersected the cCRE regions with the top 1% of scored regions as 
prioritized by the H3K27ac feature from Matched Filter \cite(68). This stringent annotation was 
further used in other analysis, and labeled as “stringent” in the main manuscript and figures. A 
file containing these stringent regions (bed file) can be found at File: 
stringent.regions.MF.hg38.bed. These bed regions represent the highest scoring Matched Filter 
regions. 
 

S7.3. Repressed regions 
Gene activation and repression can be mediated through the combination of different histone 
marks. Historically, much effort has been devoted to elucidating how genes are activated; 
however, evidence is emerging to demonstrate the requirement of appropriate heterochromatin 
formation for the preservation of genome stability and the cell type-specific silencing of genes 
\cite(69). In mammalian genome, H3K9me3 and H3K27me3 are well-documented histone 
marks enriched for “constitutive” and “facultative” heterochromatin, respectively. For genomic 
regions not containing any active regulatory elements (cCREs), we have identified a set of 
elements that are marked by either H3K9me3 or H3K27me3 and do not have any active marks 
(H3K27ac, H3K36me3, H3K4me1 and H3K4me3) nor transcriptional activities as fully repressed 
in the EN-TEx tissues. Regions within ENCODE4 GRCh38 blacklist (ENCSR636HFF) and 
GENCODE gene list (GRCh38_v24) were removed. In summary, 45,207 non-overlapping 
elements of size no less than 200 bp (roughly approximate nucleosome size) are uniquely 
marked by H3K9me3, spanning 12,655,795 bp (less than 0.4%) of the reference genome, and 
24,006 elements by H3K27me3, spanning 7,474,178 bp (less than 0.3%). Identified elements 
can be found in File: ENTEx_fully_repressed_regions_independent_of_cCREs.bed. As shown 
in the Figure S7.3, nearly 75% of these elements are specifically repressed in a certain tissue, 



 

 

and the rest also show some degree of tissue-specificity. Although it was known that 
H3K27me3-enriched facultative heterochromatin contains repressed genes in a cell type-
specific manner whereas H3K9me3-enriched constitutive heterochromatin mainly occur 
constantly at the same gene-lacking regions in every cell type \cite(70, 71), observations also 
suggest that large domains of H3K9me2/3 form in a cell type-specific manner and can influence 
cell identity by silencing lineage-inappropriate genes and impeding the conversion of terminally 
differentiated cells into a different cell type, highlighting a role for H3K9me3 in cell type-specific 
gene regulation \cite(69, 72-75). 
 
DNA methylation is one major contributor to gene repression, and has been reported to be 
interacting with H3K9me3 in chromatin repressive pathways \cite(76). We further analyzed the 
methylation rate of CpG sites within these repressed elements. Whole-genome shotgun bisulfite 
sequencing (WGBS) of CpG sites were available for 11 EN-TEx tissues that also have 
H3K9me3 and H3K27me3 ChIP-seq data. For the same tissue from different donors, we 
aggregated the CpG reads by taking the sum of reads from all donors, and a CpG site is 
considered to be methylated (meCpG) when the site is covered by at least 5x reads and the 
ratio of meCpG reads is at least 50%. The overall meCpG rate in each tissue was calculated 
and used as control to evaluate the meCpG rate in H3K9me3 and H3K27me3 marked elements. 
As shown in the Figure S7.3, H3K9me3 uniquely marked elements show significantly (t-test, 
pValue < 0.05) higher meCpG rate than elements uniquely marked by H3K27me3. Compared 
with the control, H3K9me3 marked regions seem to be hypermethylated, whereas H3K27me3 
marked regions to be hypomethylated. This is consistent with the current understanding for 
constitutive heterochromatin and facultative heterochromatin, of which the former is defined by 
high levels of DNA methylation and H3K9me3 and the later displays DNA hypomethylation and 
high H3K27me3 \cite(77). 
 

S7.4. Validating Annotations using three-dimensional genome organization 
Chromosome compartments that are observed from PCA analysis on Hi-C correlation matrix 
give insight into activity level of the chromatin. Chromosomes are divided into two distinct 
compartments, A and B at megabase scale \cite(78). A compartment (positive values) 
corresponds to the active regions on the chromosome and B compartment (negative values) 
corresponds to the inactive regions. Chromatin interactions are constrained within the 
compartment types, e.g the loci in A compartment interact with the loci in the same 
compartment. Since A/B compartment assignments are proxies for the activity level of different 
loci, our tissue-specific regulatory element annotations can be validated by looking at their 
corresponding compartment in the tissue level Hi-C data. We showed that our annotated tissue-
specific active regulatory elements are dominantly located in the active compartment of the 
chromosomes of corresponding tissues, with significantly higher number of regulatory elements 
per megabase observed in the positive compartment values when layered on to first-principal 
component of the Hi-C data. 
 
We have assessed where the cCREs are located with respect to the chromatin compartments. 
For that, we first binned the genome into 1 MB consecutive bins. We then counted the total 



 

 

number of cCREs in each bin and divided that number by the total number of cCCREs in the 
genome. This gave us the cCRE density per 1 MB. We then plotted this density against the A/B 
compartment score obtained by the first eigenvector of the correlation matrix calculated from the 
Hi-C contact matrix. We did this analysis for the master cCRE list from ENCODE3, tissue-
specific active cCRE list derived in this study, more restrictive tissue-specific active cCRE list 
derived in this study, and tissue-specific repressed cCRE list derived in this study. Below are the 
scatter plots for two tissues and 4 individuals (Figure S7.4). 
 

S7.5. Variation Analysis of cCRE Activity  

S7.5.1. Visualizing the variation of cCRE Activity with JIVE 
To visualize the relationship among the functional genomic data across the tissues, we used a 
dimension-reduction approach, namely Joint and Individual Variance Explained (JIVE) \cite(79). 
For each functional genomic experiment of histone modifications, we calculated its signals at 
the cCREs using UCSC genome browser bigWig tools \cite(49). For proteomics and RNA-seq 
experiments, we simply used the normalized protein abundance and RNA abundance of each 
gene from the experiments. For each type of assay, we have a data matrix in which the columns 
are the tissues from the four individuals and the rows are cCREs or genes, and each element is 
the signal of the functional genomic activity measured by the assay. For each assay type, we 
quantile-normalized the signals. For the joint analysis of the different experimental assays, we 
combined those matrices by column to form a meta-matrix. In each separate data matrix, some 
columns in each data matrix are not shared by all the assays, and thus these columns are 
excluded from the meta-matrix. 
 
To reduce computation burdens, we removed the rows that have low standard deviation. From 
this informative meta-matrix, we applied the JIVE algorithm to project the columns into a two-
dimensional (2D) space (Fig. 6C). As expected, this projection used all the information of the 
matrix. In addition, from the matrix of each assay, the JIVE algorithm excluded the information 
that can be explained by the other matrices, and then projected the matrix containing the 
information unique to the assay into a 2D space (Fig. 6C). For example, in the 2D space of 
RNA-seq, the same tissues from different individuals are very well clustered together, and the 
different tissues are well separated. This tendency is weaker for other assays. Taken together, 
this observation indicates that RNA-seq likely captures the most unique signatures of different 
tissues. 
 

S7.5.2. Using regression-based approach to quantify activity variation 
With a linear regression approach, we used the explained variation of the regression to measure 
the similarity between two experiments. A larger explained variation of the regression indicated 
a higher similarity between the two experiments. To elaborate on the variation, we here use a 
concrete example: the H3K27ac signals of cCREs from the spleens of two individuals. In this 
example, each of these individuals had two technical replicates of the H3K27ac signals 
measured by ChIP-seq. In each replicate, the signal at a cCRE was the fold change of reads 



 

 

between the IP experiment and the control experiment. For each cCRE, we first calculated the 
percentage difference of the signals between the two replicates. We focused on the cCREs with 
differences smaller than a certain cutoff so that the signals of these selected cCREs in one 
replicate can be largely explained by their counterparts in the other replicate using linear 
regression (i.e., R2 > 0.95). To compare the two individuals, we used the common set of the 
selected cCREs with low technical noise. For each of the two individuals, we averaged the 
signals of the two replicates for the common cCREs. Therefore, we generated two sets of 
cCREs with H3K27ac signals having little noise respectively for the two individuals. Again, using 
a simple linear regression, we calculated the variance in one of the sets explained by the other. 
A high value indicates that the two sets of H3K27ac signals are very similar in terms of a linear 
relationship. As an example, the explained variation between replicates and the explained 
variation between experiments for different types of histone modifications in spleen is 
demonstrated in Figure S7.5a. 
 
The aforementioned calculation was used for all the available histone modifications and 
samples (examples shown in Figure S7.5b) as well as normalized protein and RNA abundances 
(Figure S7.5c). For each modification, we estimated the variance explained between individuals 
(i.e., the same tissues of different individuals) and between tissues (i.e., the different tissues of 
the same individual). In addition, we estimated the variance explained between two different 
histone modifications (i.e., the same tissue of an individual). For mass-spectrometry, to make 
the protein abundances of different genes comparable across different tissues, we normalized 
the protein abundances of each gene across tissues so that the highest and lowest protein 
abundances are one and zero, respectively. The mass-spectrometry we used pooled and 
labeled multiple samples together to determine protein abundances in a batch, resulting in little 
technical noises across the samples. To be comparable, we also normalized the RNA-seq data 
of the samples in the same way. 
 
In general, histone modifications have high similarity between the same tissue of two 
individuals; as expected, this number is smaller when comparing different tissues of the same 
individuals (Figure S7.5b). The similarity between different types of functional genomic activities 
from the same tissue is extremely low (Figure S7.5b). For example, H3K27ac between 
individuals was very similar in spleen and in transverse colon. However, the H2K27ac similarity 
between the two tissues was substantially reduced (Figure S7.5b). In line with this disparity 
across tissues, the similarity between normalized gene expression and protein abundance also 
varied substantially across tissues. The lower similarity in prostate is consistent with previous 
observations \cite(80). The similarities between all the available histone modifications are 
reported in the File: Similarity_of_functional_genomic_activities_of_cCREs.xlsx. The normalized 
proteomics and RNA-seq data of genes are in the File: normalized_proteomics_RNA-seq.dat. 
 

S8. Supp. content to main text section “Measuring tissue specificity” 
In this section, we compared the tissue-specificity of genes, cCREs and epigenomic peaks in a 
systematic manner. We included protein-coding genes, non-coding genes, different catalogs of 
decorated cCREs, and diverse types of epigenetic marks. 



 

 

 

S8.1. Tissue Specific Results 
There are many methods for determining the tissue-specificity, most of which are based on 
continuous positive values \cite(81). Here we chose the simple method of tissue count to 
determine the tissue-specificity of genes/cCREs based on the thresholds \cite(81). We did this 
because we can consistently apply this method across different annotations including cCREs, 
genes and epigenomic peaks. Most of the other methods that are based on continuous positive 
values can be only applied on one annotation category (e.g., genes). Briefly, all the genes and 
cCREs were defined as active and inactive by thresholding their expression/activity level in a 
particular tissue type. The numbers of tissue types that these genes/cCREs active in were then 
summarized. For each gene/cCRE group, we then calculated the tissue-specificity score using 
the number genes/cCREs that are active in only one tissue type divided by the total number of 
genes/cCREs. The tissue-specificity scores range between 0 and 1, with higher scores 
indicating stronger tissue specificity. 
 
For the genes, we included three gene types: protein-coding genes (from mass spectrometry 
and RNA sequencing technology), long noncoding RNAs and pseudogenes. To better estimate 
the expression level of pseudogenes, we applied our previously developed pipeline to quantify 
the expression level of pseudogenes, which can minimize the effects of multiple mapping bias in 
RNA-seq data \cite(82) (Figure S8.1c). We then applied this pipeline to all the three gene types, 
and defined a set of active genes in the tissues by thresholding the FPKM values (FPKM>1 for 
protein-coding genes; FPKM>0.5 for long noncoding RNAs and pseudogene) (Figure S8.1a). 
Over 40% and 35% of the detected pseudogenes and lncRNAs, respectively, were actively 
transcribed in a single tissue, confirming that non-coding RNAs exhibit higher tissue specificity 
than protein-coding genes \cite(83, 84). Of the pseudogenes demonstrating tissue specificity, a 
large fraction showed transcriptional activity only in testis (Figure S8.1b). For the cCREs, we 
used the decorated annotations in the tissues to calculate the tissue-specificity scores as 
described above (Figure S8.1d and Figure S8.1e). We also explored the tissue specificity of 
regulatory elements and epigenomic peaks (Fig. 7A). The epigenetic profiles analyzed, 
including H3K27ac or DNase, demonstrated tissue specificity, with the exception of DNA 
methylation, which exhibited strong ubiquity. An example of tissue-specificity of RAMPAGE data 
are shown in Figure S8.1f. The tissue specificity of the genes, cCREs and epigenomic peaks 
are in the File: Tissue_Specificity.zip. 
 

S8.2. Tissue Specificity of Allele-Specific Binding and Expression 
Similar to H3K27ac-ASB cCREs (Fig. 6), most ASE genes were detected in a single tissue 
(Figure S8.2a). For the ~20 genes that were detected ASE across all tissues, the allelic 
imbalance is in the same direction (Figure S8.2b). We further compare our pan-tissue H3K27ac-
ASB and ASE genes with the housekeeping genes. Annotation results are shown in Figure 
S8.2c-d. 
 



 

 

S8.3. The Effect of Tissue Specificity on Conservation 
Tissue specificity influence on conservation is shown in Figure S8.3a. Candidates are separated 
in categories of active, bivalent, and repressive. Number of candidates, rare DAF, and the 
corresponding total SNP count (from gnomAD) are given as a function of increasing tissue 
specificity (shared tissue count). In order to select rare variants, a MAF of 0.05 was used. 
 
Various decorations further subset categories and affect the conservation level. Specifically 
whether elements are distal or proximal as well as if they are CTCF bound or not. Conservation 
is shown for both phastCons (cross-species) and rare DAF (cross-population) in Figure S8.3b. 
 
We show the conservation across active and repressed cCREs in both ubiquitous and tissue 
specific cases in Figure S8.3c. We include the results across 1KG, PCAWG, and gnomAD. 
Additionally, we also show an increase in conservation when filtering for high H3K27ac signals 
(using stringent definitions for active elements with Matched Filter \cite(68)). See above in the 
supplement text), which is supported by all three data sets. 
 

S9. Supp. content to main text section “Relating encyclopedia decorations 
to QTLs & GWAS loci” 
We utilized various methods to evaluate the regulatory impact of our cCRE decorations. QTL 
and GWAS SNPs are important functional genomic variants and are useful for interpreting the 
function of our decorations. We performed GWAS enrichment analysis using eQTL and GWAS 
SNPs to assess the disease-relevance of our cCRE decorations. 
 

S9.1. QTL Enrichment Analysis 
We estimated the QTL (eQTL and sQTL) enrichment in the cCREs by calculating an odds ratio 
(OR) score using the numbers of real QTL SNPs and the control SNPs located in the cCREs 
comparing to those in the baseline regions (Figure S9.1a). 
 

 
in which a is the number of QTL SNPs in the cCREs; b is the number of control SNPs in the 
cCREs; c is the number of QTL SNPs in the baseline region; d is the number of control SNPs in 
the baseline region. 
 
The eQTL and sQTL SNPs were downloaded from GTEx v8 \cite(85). The baseline regions are 
the union of all the functional and putative functional regions in the human genome, including 
CDS, UTRs, noncoding RNA genes, open chromatin regions, TF binding sites, active and 
repressed histone peaks from multiple tissue and cell types as well as evolutionary conserved 
regions \cite(86). The set of control SNPs were generated with the same number and same 
minor allele frequency distribution as the real QTLs, and this procedure is repeated 30 times to 



 

 

calculate standard deviation for the SNP enrichment. The results of the QTL enrichment are in 
the File: QTL_enrichment.zip. 
 
We also compared the eQTL/sQTL enrichment in the regulatory elements from EN-TEx and 
those from Roadmap (Figure S9.1b and Figure S9.1c). First, we found that the distal regulatory 
elements from EN-TEx show stronger enrichment than the enhancer annotation from Roadmap. 
In addition, the active proximal regulatory elements from EN-TEx show stronger eQTL/sQTL 
enrichment than the TSS-associated annotations from Roadmap. 
 

S9.2. GWAS Enrichment Analysis 
We downloaded the GWAS tag SNPs from the GWAS Catalog \cite(87). We did several steps of 
quality control to generate a set of high-quality GWAS tag SNPs by removing some insignificant 
SNPs (p-values>5*10-8), low-confidence SNPs, and SNPs from non-European studies. We also 
removed all SNPs in the HLA locus (for hg38: chr6:29,723,339-33,087,199). Next, we extended 
the set of tag SNPs by including the SNPs in high linkage disequilibrium (LD scores>0.6) with 
the tag SNPs, which can generate more SNPs to increase the statistical power in the 
enrichment analysis. Some GWAS with very few LD-extend SNPs were removed. Finally, we 
have a clean dataset with ~70K unique tag SNPs from 1140 GWAS covering 717 unique traits. 
 
We then applied the hypergeometric test to estimate the enrichment of the GWAS tag SNPs in 
the cCREs from a particular tissue type (Figure S9.2a). 

 
in which N is the total number of cCREs in the genome; K is the total number of cCREs that 
carry GWAS tag SNPs; n is the number of cCREs in a particular tissue type; and k is the 
number of cCREs in a particular tissue type that also carry GWAS tag SNPs. Notably, we 
extended the cCREs 500bp on both sides in the calculation (Figure S9.2c). The results of the 
GWAS tag SNP enrichment are in the File: GWAS_enrichment.zip. 
 
For the active distal cCREs, we identified 141 GWAS that are enriched in at least one tissue 
type (Figure S9.2d). However, for the active proximal cCREs, we did not find any enriched 
GWAS in any tissue type. These results are consistent with previous studies that the causal 
GWAS SNPs are enriched in the enhancers instead of the near-gene promoters \cite(88, 89); 
and also suggest that the active distal cCREs from our decoration are indeed significantly 
enriched in enhancers as we observed in original Roadmap annotations (Figure S9.2e). 
 
Stratified LDSC were also calculated for each tissue using 1000G LD Scores and GWAS 
summary statistics provided by Bulik-Sullivan, et al. It regresses chi-square statistics from the 
GWAS summary statistics with LD scores to estimate partitioned heritability in a disease-
specific manner. The p-value indicates enrichment for a particular trait within an annotation. 
 



 

 

In section Figure S9.2a, we show the p-value enrichment of each tissue with respect to various 
GWAS traits. Notably, distal active allele-specific regions experienced higher enrichment 
compared to distal active non-allele specific regions (Figure S9.2f), and both of types of regions 
all experienced higher enrichment compared to original Roadmap annotations (Figure S9.2b). 
For LDSC enrichment analysis of distal active elements in Coronary Artery (Figure S9.2b), we 
found stronger associations between allele-specific elements with respect to Celiac’s disease, 
Neuroticism, and Type II Diabetes, which were elucidated in previous clinical studies \cite(90-
92). These results demonstrate that allelic elements can significantly improve GWAS trait 
enrichment compared to the total set of elements across different traits as well as diverse tissue 
types, indicating that allelic elements are valuable for the interpretation of GWAS data and that 
they potentially help pinpoint small subsets of regulatory elements driving the trait in specific 
tissues. 
 

S9.3. Providing evidence for the buffering hypothesis using AS cCREs and 
housekeeping genes 
Genetic variants in cCREs can change functional signal and gene expression. For these 
changes to actually occur, the variants need to escape from buffering effects \cite(38). Such 
effects are strong in important genomic regions.We used AS as a proxy for escaping buffering. 
Based on our allelic decoration, we evaluated the allelic specificity of housekeeping genes 
expressed in EN-TEx tissues, shown in Figure S9.3a. For each tissue, expressed protein-coding 
genes were split into housekeeping genes and non-housekeeping genes according to 
Housekeeping and Reference Transcript Atlas (http://www.housekeeping.unicamp.br) \cite(93). 
Two-sided fisher exact test was performed to measure the enrichment of AS housekeeping 
genes. We found that, compared with non-housekeeping genes, the expression of 
housekeeping genes shows less allelic specificity, supporting the buffering hypothesis. We 
further examined the allelic specificity of proximal active (pAct) cCREs in a ± 10kb window 
centered on the transcription starting site (TSS, defined by gene starting site) of each 
housekeeping and non-housekeeping gene. The cCREs flanking housekeeping genes are 
significantly (Figure S9.3a, paired-tissue two-sided t-test, p-value < 2.2e-16) longer than cCREs 
flanking non-housekeeping genes. To control this factor, we split genes into 20 bins based on 
the total length of flanking cCREs. Within each bin, cCRE length remains similar (paired-tissue 
two-sided t-test, p-value > 0.05) between housekeeping and non-housekeeping genes. The bins 
having less than 30 housekeeping or non-housekeeping genes were removed from further 
analysis. The pAct cCREs flanking housekeeping genes are less likely AS than the ones 
flanking non-housekeeping genes (Two-sided t-test). 
 
The buffering effect is likely due to redundant TFs. To test this, we counted the number of TF 
motifs that intersect with each CTCF+ and CTCF- cCRE in each tissue. For this calculation, we 
used the motifs of 206 TFs (CTCF excluded) from Cis-BP \cite(94). The total count of all TF 
motifs was compared between CTCF+ cCREs and CTCF- cCREs using two-sided t-test. As 
shown in Figure S9.3b, for both distal and proximal cCREs, CTCF+ cCREs have significantly (p-
value < 0.05) more TF motifs than CTCF- cCREs. 
 



 

 

S10. Additional information about the EN-TEx resource 

S10.1. The EN-TEx Supplemental Data Repository 
All processed data files are detailedly described in their corresponding sections in this 
document. When mentioned, these files are referred to as "File: file_name". All these files are 
hosted in the EN-TEx data portal website ENTEx.encodeproject.org, with the exact same file 
names as in "File: file_name". Additionally, on the website, each file is followed with the 
supplement text section number that contains the description of that file. Links to all the raw 
data of this project could be found in the EN-TEx data portal website as well. 
 

S10.2. Open-consented of data 
In concert with the GTEx project an IRB-approved consent for unrestricted access to data 
collected as part of the GTEx and EN-TEx project was written and given to the next-of-kin of 
each of the donors. The consent form allows for unrestricted use of the primary data and 
metadata collected from each donor. It was made clear that no identification of the donor or 
family constituted part of these data, it is within the realm of possibly that individual identification 
could be made. Specific details of the consent document is contained in here 
https://www.genome.gov/Pages/Research/ENCODE/GTEx_Consent_ENCODE_addendum_10-
9-14.pdf 
 

S10.3. The EN-TEx Chromosome-Level Data Visualization Tool 
Because the EN-TEx data spams over a wide range of the human genome, it may be useful to 
visualize their distribution over each chromosome. Accordingly, we here present the EN-TEx 
Chromosome-Level Data Visualization Tool, which generates heat maps for data sets for all 
assays, individuals, and tissues present in the EN-TEx data catalog. The data, which are initially 
in BED format, are preprocessed with in-house Bash and Python scripts and converted to 
GRCh38 coordinates using liftOver \cite(95) prior to the generation of the plots using the R 
package chromoMap \cite(96). The EN-TEx Chromosome-Level Data Visualization Tool was 
also used to generate the plots present in Figure 5A of the main text. 
 
The EN-TEx Chromosome-Level Data Visualization Tool can be accessed at 
ENTEx.gersteinlab.org. For each track, users are able to determine the data displayed by 
changing the individual, assay, ploidy, and color parameters, for up to 4 tracks per plot (Figure 
S10.3a). If no additional settings are selected in the “Advanced” tab, press submit, and the tool 
will generate heat maps for the data of each chromosome, at a fixed resolution of 2.5Mb. The 
plots produced are interactive: by hovering the mouse cursor over each of the bins produced, 
the user is able to get information about the data displayed in that specific bin. In the advanced 
tab, users are able to generate plots with custom chromosome and region selections. To view 
the data in only one chromosome, open the Advanced tab and select the chromosome of 
interest in the first dropdown menu. To visualize only a subset region of the chromosome, in the 
“Region” input text box, input the region in the format initial_position:final_position (e.g., if the 



 

 

user wishes to visualize data in between 1Mb and 2Mb, the user would input 
1000000:2000000). Please note that the resolution of the data for subset regions of the 
chromosome will always be equal to the length of the inputted interval divided by a factor of one 
hundred (e.g. for the 1000000:2000000 interval, the resolution will be equal to 10kb). Moreover, 
users also have the option to visualize the data as heatmaps accompanied by either histograms 
or scatterplots. To do so, select the desired type of additional data representation in the “Plot 
type” dropdown at the end of the advanced section. A series of plots generated with this tool are 
shown in Figure S10.3b. 
 

S10.4. Explorer Tool 
The EN-TEx explorer tool, which can be installed as an offline executable or hosted on a 
website, allows for the interactive exploration of low-dimensional visualizations created by a 
data analysis pipeline (Figure S10.4). This pipeline performs dimensionality reduction on cCRE 
signals, genomic data, and proteomic data. Methods include principal component analysis 
(PCA), variational autoencoders (VAE), uniform manifold approximation and projection (UMAP) 
\cite(97), potential of heat diffusion for affinity-based transition embedding (PHATE)\cite(98), set 
intersection plots generated by user-specified thresholds (Sets), and t-Distributed Stochastic 
Neighbor Embedding (tSNE). The visualizations generally cluster samples from common tissues 
together. Through extensive precomputation, the tool allows users to interactively adjust 
analysis parameters, including scaling, normalization, feature subsetting, method-specific 
hyperparameters, the type of visualization used (ggplot2, plotly 2D, plotly 3D, boxplot, heatmap, 
UpsetR, Venn Diagram), and the appearance of the resulting figures. Users are able to save 
figures as images, download analysis results as excel spreadsheets(Figure S10.4), or bookmark 
their sessions as URLs that can be easily shared. 
 
The results can be visualized as interactive scatter plots / heatmaps / boxplots, which can be 
indexed via session-specific bookmarks, or downloaded for further investigation. Dimensionality 
reduction techniques include principal component analysis (PCA), variational autoencoder 
(VAE), uniform manifold approximation and project (UMAP), t-distributed stochastic neighbor 
embedding (tSNE), and potential of heat-diffusion for affinity-based trajectory embedding 
(PHATE) 
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Supplemental figures 

Figure S1. Supp. figures to main text section “Personal genomes & 
matched data matrix” 
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Figure S1.1. Personal genome construction 
(A) Summary of whole genome sequencing. All four individuals were sequenced with regular 
Illumina short-reads and 10x linked-reads. Individual 2 and 3 were additionally sequenced with 
PacBio long-reads. The figure shows the sequencing depth and the distribution of read length 
under each platform. See Figure S1.1f for accession numbers of the relevant data. (B) An 
overview of the CrossStitch workflow. SNPs and small indels are called and phased, while 
unphased SV calls are obtained independently. Then, the phase blocks from the small variants 
are used to assign haplotypes to heterozygous SVs, and the phased variants are used to 
construct a phased personal genome assembly based on a high quality reference sequence. 
(Note that in this figure "mat" and "pat" are just schematic representations of hap1 and hap2 
and do not reflect actual parent of origin assignments.) (C) SV Phasing with CrossStitch 
Phased small variants are used to assign a haplotype to each long read, and SVs are phased 
by observing the haplotypes of the long reads which indicate the presence of that variant. In this 
example, a deletion is phased by observing that all three of the long reads including that 
deletion have small variants which are unique to the orange haplotype. (D) Phase block length 
This figure shows the size of phase blocks in individual 2 obtained with HapCUT2 when 
performing small variant phasing with 10x reads only, as well as with a combination of 10x and 
Hi-C reads. When both data types are used, the contiguity of the phase blocks obtained is very 
similar to that of GRCh38. (E) Detailed CrossStitch Methods Summar. This diagram shows an 
overview of the CrossStitch methods with the specific software and data types used. (F) 
Accession numbers of whole-genome sequence data. All data could be downloaded from the 
ENCODE portal. (G) Refining Novel Insertion Sequences with Iris. This figure shows sequence 
similarity of ONT calls to CCS calls in the Genome-in-a-Bottle sample HG002, used to 
benchmark the performance of Iris. The sequence similarity between two sequences S and T is 
calculated as edit_distance(S, T) / [max(length(S), length(T))]. 
  



 

 

 

INS 58%

DEL 40%

INV 2%

non-TE
65%

Other TEs
12%

L1 3%
SVA 3%

Alu 17%

0 0.2 0.4 0.6 0.8 1
Alternative allele frequency

0

1k

2k
6k

7k

8k

N
um

be
r o

f S
V

s

INS 60%

DEL 39%

INV 1%

non-TE
66%

Other TEs
12%

L1 3%
SVA 3%

Alu 16%

0 0.2 0.4 0.6 0.8 1
Alternative allele frequency

0

1k

2k
6k

7k

8k
N

um
be

r o
f S

V
s

Individual 2

Individual 3

A

B

C



 

 

 
Figure S1.2. Analysis of SV 
(A) Number of genomic variants in the four individuals. (B) Summary of SVs in individual 2 and 
3. Left panels: the fractions of INS, DEL, and INV. Middle panels: the fractions of SVs involving 
transposable elements. Right panels: Allele frequencies of SVs in European population 
calculated by overlapping with Audano et al. (2019) \cite(12). SVs that have no overlap in 
Audano et al. are placed in the first bin. (C) Overlaps between SVs and functional genomic 
regions. We shuffle the locations of SVs (see Supplementary texts for details) to determine 
whether SVs are enriched or depleted in a given type of genomic regions. For DELs, we 
consider cases where a DEL partially overlaps with a given genomic region (DEL, partial) and 
cases where a DEL is engulfed by a given genomic region (DEL, engulfed). (D) Lengths of 
genomic variants in the four individuals. Each panel corresponds to an individual, showing the 
length distributions of SNVs, indels, and SVs (if available in the given individual). 
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Figure S1.3a. Functional genomics data 
(A) Data matrix of the EN-TEx resource showing tissues vs. assays. Each square is partitioned 
into four, representing the four individuals. (B) Information of EN-TEx tissues 
The table shows the full name, abbreviation and color code of EN-TEx tissues, as well as their 
matching relationship with GTEx tissues. This tissue color scheme is also used in other main 
and supplementary figures. 
  



 

 

 
Figure S1.3b. Example of reference-aligned genome-wide Hi-C maps shown for two 
individuals for their skeletal muscle tissue 
  



 

 

 
Figure S1.3c. Number of paired reads and number of contacts from reference-aligned 
genome-wide Hi-C contact maps 
  



 

 

 
Figure S1.3d. A/B compartment annotation of 4 individuals and 2 tissues for 
Chromosome 1 
Red means the 1 MB region is in A compartment and blue means it is in B compartment. Dark 
blue band corresponds to centromere. 
  



 

 

 

 
Figure S1.3e. A/B compartments cluster based on tissue in autosomes or sex in 
Chromosome X 
  



 

 

 

 CLNTRN GASMED 

Chrom Total Indiv 1 Indiv 2 Indiv 3 Indiv 4 Indiv 1 Indiv 2 Indiv 3 Indiv 4 

chr1 12397710 6788490 6857968 6640741 6263058 6128125 6218242 6188268 6282354 

chr10 3579150 2953439 2990590 2916989 2831756 2915114 2923222 2929788 2996873 

chr11 3649051 2869655 2948299 2816640 2778830 2860206 2887171 2860242 2961438 

chr12 3552445 2969628 3041869 2919601 2856463 2939877 2980095 2940746 3026456 

chr13 2616328 1704423 1724468 1682424 1668618 1628849 1620200 1607366 1674749 

chr14 2290870 1410898 1444375 1384357 1381694 1413111 1418356 1402899 1433712 

chr15 2079780 1119023 1143407 1119432 1094365 1107323 1136572 1128846 1138837 

chr16 1631721 945521 979481 945231 922589 908303 956847 932352 922697 

chr17 1386945 1028955 1055611 1029448 1009073 1014825 1056832 1042864 1050488 

chr18 1292028 1076987 1086267 1064598 1062482 1067970 1061511 1060048 1081935 

chr19 687378 560395 570534 560516 559704 564088 575239 571257 578818 

chr2 11729746 8394990 8525226 8309864 7938906 7840021 7789126 7833348 8259552 

chr20 830116 679685 692916 663099 670959 674590 680375 673769 691748 

chr21 436645 207828 213035 203748 205200 206996 207260 206634 212110 

chr22 516636 217507 220358 218031 217149 216516 220675 219461 220895 

chr3 7862595 6015900 6134904 5902231 5774444 5434165 5464917 5391741 5857473 

chr4 7237110 5562209 5681942 5600166 5271711 5254951 5245142 5313566 5522909 

chr5 6590265 5129851 5233827 5049672 4852197 4903566 4859322 4876589 5108741 

chr6 5836236 4649176 4768735 4545579 4416778 4436206 4469419 4422407 4647679 

chr7 5076891 3880470 3956534 3827833 3644663 3778164 3740318 3791757 3882221 

chr8 4212253 3506901 3567642 3465779 3373636 3384990 3372726 3383295 3507176 

chr9 3829528 1910384 1963561 1897205 1867856 1748547 1802543 1761180 1909601 

chrX 4868760 2923158 4102701 4010558 2739157 2745686 3901268 3961831 2903581 

chrY 654940 44238 224 319 42376 42181 636 338 43792 
Figure S1.3f. Summary of significant interactions determined by FitHiC2 
“Total” is the total number of intrachromosomal interactions for a given chromosome (e.g., chr1, 
chr2, …, chrY). 
  



 

 

 
Figure S1.3g. Comparison of TopDom TAD calls for EN-TEx individuals and available Hi-
C tissues 
(A) TADs were shown to have a similar size distribution and median TAD size across individuals 
and tissues. The TAD-size distribution of individuals 2 (left) and 3 (right) for available Hi-C tissue 
types gastrocnemius medialis (GASMED - top) and transverse colon (CLNTRN - top) are 
shown. (B) Pair-wise comparison of TAD calls across all four individuals and available Hi-C 
tissue types. Within the same tissue, TAD calls were shown to be more similar (i.e., located at 
the same position along a chromosome) within the same tissue than across different tissues. 
  



 

 

 

 
Figure S1.3h. Observed Personal Peptide Summary 
(A) Total number of significantly identified unambiguous personal peptides (Filtered for 0.01 
Posterior Error Probability and Unambiguous Gene Mapping). Personal category includes all 
types of personal peptide, Allelic Peptides are those that are specific to only one allele in at 
least one individual, Donor Specific are peptides that are completely absent in at least one of 
the four donors, and Non-Reference are peptides that do not match the reference genome. Due 
to TMT method there is a bias towards the most common peptide-form between the four donors 
(usually the reference peptide) as TMT boost signal for common peptides. (B) This shows the 
coverage of all potentially observable personal peptides calculated by an in silico tryptic digest. 
Although in silico peptides are filtered for unambiguity and are limited to amino acid length 
between 6 and 60, there will be a vast number of unobservable peptides due to MS 
incompatible charge states and chemical properties. 
  



 

 

 
Figure S1.3i. Novel Peptides 
  



 

 

 



 

 

Figure S1.4 Mapping to personal genomes 
(A) Summary of percentage with precision mapping. (B) Numbers of reads and percentage with 
precision mapping. More details of precision mapping is available in S1.4. (C) - (G) Comparing 
gene expression mapped to personal genome vs reference genome. (C) Scatterplots reporting, 
for each of the four individuals, gene expression quantifications obtained after mapping to the 
reference (x axis) and to the diploid genomes (y axis). Expression values are reported in 
log10(TPM + 0.001). Gene density is color-coded. (D) Differential gene expression analysis 
between quantifications obtained after mapping to the reference and to the diploid genomes. DE 
analysis was performed with DeSEq2 \cite(99), for each donor, on RNA-seq read counts across 
multiple tissues. Genes with adjusted p-value (Benjamini-Hochberg) < 0.1 and |log2 FC| > 1 
were considered differentially expressed. See File: Supp_DE_genes.tsv for a full list of 
differentially expressed genes. The barplot depicts the gene type for genes upregulated when 
mapping to the diploid genome (left bar, n genes = 107), and for genes upregulated when 
mapping to the reference genome (right bar, n genes = 112). (E) - (G) examples of genes 
upregulated when mapping to the diploid genome (ind 3). HLA-DQA1 belongs to the HLA class 
II alpha chain paralogues. SMN2 belongs to the SMN complex and plays a role in pre-mRNA 
splicing. The gene is part of an inverted duplication on chromosome 5q13, a region prone to 
rearrangements and deletions. Mutations in this gene have been associated with spinal 
muscular atrophy \cite(100, 101). SIK1 encodes for a member of the salt-inducible kinase 
family, which has been associated with pigment gene expression \cite(102). Mutations in this 
gene have been associated with neurodevelopmental impairments \cite(103, 104). 
 
  



 

 

Figure S2. Supp. figures to main text section “Measurement of allele-
specific activity in diverse assays” 
  



 

 

 

 

 
Figure S2.1a. Workflow of the AlleleSeq pipeline 
  



 

 

 
Figure S2.1b. Generating haplotype-specific signal tracks 
The starting bam files are generated by step (3) in Figure S2.1a. Each box is a command to 
process files. For assays with replicates (as in this case), we pool all the replicates by merging 
the bam files related to each replicate. If there are no replicates, then “merge replicates” is 
skipped. 
  



 

 

 
Figure S2.1c. Data used to generate signal tracks 
Data in blue are given as the accession numbers in the ENCODE portal. TF binding clusters are 
available at UCSC table browser. 
  



 

 

 
Figure S2.1d. Distribution of the numbers of hetSNVs associated with allele-specific 
behavior across different EN-TEx donors, tissues, and assays 
Tissues are colored as in Figure 1. Call-sets based on pooled reads from all tissues for each 
donor and assay are shown in gray. 
  



 

 

 
Figure S2.1e. Distribution of the fractions of the numbers of hetSNVs associated with 
allele-specific behavior relative to the number of accessible hetSNVs 
Tissues are colored as in Figure 1. Call-sets based on pooled reads from all tissues for each 
donor and assay are shown in gray 
  



 

 

 
Figure S2.3a. The workflow for generation of haplotype-specific Hi-C contact maps 
  



 

 

 
Figure S2.3b. The haplotype-specific contact maps for Chr20 generated using the 
personal genome coordinates 
Third map is the bulk Hi-C contact map of Chr20 generated using the reference genome. 
  



 

 

 

individual/tissue 
intra-chromosomal 
interactions in hap1 in hap2 

hap1 or 
hap2 

significantly 
imbalanced 

ind1 skeletal muscle 39,013,901.00 
4,049,203.0
0 4,034,602.00 7,041,417.00 577,728.00 

ind2 skeletal muscle 4,405,480.00 
1,117,328.0
0 1,146,381.00 2,072,227.00 140,317.00 

ind3 skeletal muscle 40,412,585.00 
4,345,533.0
0 4,359,297.00 7,493,069.00 574,836.00 

ind4 skeletal muscle 41,569,344.00 
4,028,293.0
0 4,021,800.00 6,983,660.00 523,931.00 

ind1 transverse colon 45,534,793.00 
4,942,660.0
0 4,924,000.00 8,574,917.00 702,953.00 

ind2 transverse colon 25,548,308.00 
2,148,267.0
0 2,151,803.00 3,842,621.00 261,752.00 

ind3 transverse colon 43,917,995.00 
4,716,549.0
0 4,722,227.00 8,118,858.00 609,973.00 

ind4 transverse colon 43,406,680.00 
4,343,051.0
0 4,334,617.00 7,506,125.00 583,468.00 

Figure S2.3c. The number of Hi-C contacts obtained from haplotype specific Hi-C contact 
maps 
  



 

 

Figure S3. Supp. figures to main text section “Aggregation of allele-specific 
events, forming a catalog” 
  



 

 

 
Figure S3.1a. Distribution of the numbers of genomic elements associated with allele-
specific behavior across different EN-TEx donors, tissues, and assays 
Tissues are colored as in Figure 1. Call-sets based on pooled reads from all tissues for each 
donor and assay are shown in gray. 
  



 

 

 
Figure S3.1b. Distribution of the fractions of the numbers of genomic elements 
associated with allele-specific behavior relative to the number of accessible hetSNVs 
Tissues are colored as in Figure 1. Call-sets based on pooled reads from all tissues for each 
donor and assay are shown in gray. 
  



 

 

 
Figure S3.3. Numbers of AS+ hetSNVs detected from RNA-seq in different tissues of 
individual 3 
To produce high-power tissue-specific call-sets, for each tissue we called ASE and ASB sites at 
a relaxed FDR threshold if the hetSNV was called AS in the pooled call-set, and at the usual 
10% FDR otherwise. The “relaxed” FDR varied somewhat from tissue to tissue due to 
granularities in calculation but was at most 20%.Typically, the high-power call-sets produce 10-
20% more AS hetSNVs than the original. File: AS_highpower_set.tar.gz 
  



 

 

Figure S4. Supp. figures to main text section “Mining the catalog” 
  



 

 

 
Figure S4.2. Conservation of AS 
(A) shows the conservation of various AS annotations are calculated using phastCons and rare 
DAF (see supplemental text). Specifically we considered AS+/AS- ccREs, AS+/AS- binding 
peaks from H3K27ac, and AS+/AS- genes. An alternate way to see the same phenomena is to 
show the cumulative relative frequency of variants, shown in (B). Here we can see that AS- 
events demonstrate stronger purifying selection as compared to AS+ events. 
  



 

 

 
Figure S4.3. The performance of allelic effect prediction models trained 
“Logistic regression” refers to simple logistic regression on the dna2vec embedding of the input 
sequence; “BERT” refers to the fine-tuned DNABERT model. Both models are trained on SNPs 
of individual 3 and the results on the validation sets from all four individuals are reported. 
  



 

 

 



 

 

 
Figure S4.4a. Compatibility between allelic events. 
(A) Compatibility between AS chromatin state of the promoters (+/- 2kb from the TSS) and the 
AS expression of the corresponding genes. AS chromatin ratio is the fraction of hap1 ChIP-seq 
reads among total reads. AS expression ratio is the fraction of hap1 RNA-seq reads among total 
reads. Each dot is a gene in a given tissue (marked by colors) and individual (marked by 
shape). See Fig. 1 for details of colors and shapes. (B) AS H3K27ac hetSNVs in ENTEx 
individuals and known GTEx eQTLs. 
  



 

 

 
Figure S4.4b. Enrichment of ASE in genes with promoter ASM 
Enrichment of ASE in genes with promoter ASM (allele-specific methylation), with (blue) or 
without (green) ASB of transcription, relative to genes associated with non-regulatory ASM 
variants (red). ** p<0.01, **** p<0.0001, χ2 test. 
  



 

 

 
Figure S4.4c. Flow Chart of Filtering and ASE/ASP Comparison 
Proteomics data was mapped at the gene level and filtered for proteins containing allele specific 
peptides. ASPs were calculated for each tissue in which allelic peptides were quantified. The 
ASP ratio was calculated as the summed peptide intensity of the first allele divided by the total 
specific to either allele. ASPs were filtered by the number of peptides expression level and ASP 
ratio. A p-value was calculated at 0.7 using z-scores. 
  



 

 

 
Figure S4.4d. Compatibility between AS mRNA and AS peptide. 
(A) An example of a compatible ASP and ASE ratio, both the proteomics and transcriptomics 
agree that the second allele is expressed more highly. (B) An example of an incompatible 
ASP/ASE pairing the transcriptomics does not show any bias in the gene expression however, 
at the protein level the second allele is more highly expressed. 
  



 

 

Figure S5. Supp. figures to main text section “Examples of coordinated AS 
activity across assays”  



 

 

 
Figure S5.1a. Heatmap to show haplotype specificity of Chr X for all the assays and 
tissues of individual 3 
Orange color indicates that there are more expression and binding peaks in haplotype 2 and 
blue color indicates that there are more expression and binding peaks in haplotype 1. Green 
means expression and binding are balanced between haplotypes. Light gray means the number 
of data points is small, therefore we cannot conclude which haplotype has more expression and 
binding; while dark gray means we do not have data for that assay and tissue. 
  



 

 

 
Figure S5.1b. Chromosome painting of ChrX using RNA-Seq and ChIP-Seq in both 
haplotypes of individual 3 in two tissues 
This plot also depicts that the active haplotype is haplotype 2 in Chr X of individual 3 as there is 
more activity in haplotype 2. 
  



 

 

 
Figure S5.1c. XACT locus on ChrX is shown to have haplotype specific chromatin 
interactions with an upstream region. 
In the signal tracks, both XACT and upstream locus are shown to have CTCF bound, which is 
also associated with H3K27ac signal. The heatmap shows the differential chromatin interactions 
from haplotype resolved Hi-C. The allele-specific Hi-C interaction with XACT locus and an 
upstream element is located on the active haplotype, which was characterized by the difference 
in the allele-specific gene expression values (histogram). 
  



 

 

Figure S6. Supp. figures to main text section “Relating SVs to chromatin & 
expression” 
  



 

 

 
Figure S6.1a. An indel that potentially changes gene expression. 
(A) In the sigmoid colon of individual 2, the gene ZFP62 has lower expression in haplotype 2. 
The TSS region of ZFP62 in hap2 shows lower chromatin accessibility and changes in the 
positions of H3K27ac and CTCF binding peaks, compared with the same region in hap1. In 
hap2, a 2-bp insertion and a SNV were found in a cCRE near the TSS of the gene (the two 
variants are very close and are shown together by a single grey box). These variants and 
nearby variants that cannot be phased (not shown) might affect the function of the cCRE. (B) 
The gene has lower hap2 expression in multiple tissues, suggesting a universal factor changing 
the expression between haplotypes. 
  



 

 

 
Figure S6.1b. Shadow figure associated with Fig. 5B 
(A) Similar to Fig. 5B, the deletion in hap2 could disrupt cCREs identified in thyroid and the 
binding of several TFs. (B) ZFAND2A has lower hap2 expression among multiple tissues, 
suggesting that the deletion may affect the gene’s expression globally. 
  



 

 

 
Figure S6.1c. SVs potentially linked to eQTLs. 
Panels (A) - (C) are shadow figures of Fig. 5C. (A) The panel is the same as Fig. 5C, but shows 
a panoramic view near the gene PSCA, including additional eQTLs that are compatible with the 
AS expression of PSCA. The allele frequencies of the hap2 alleles at these eQTL sites are 
shown as the heights of the green bars. SVs near PSCA and their allele frequencies are also 
shown. The left four SVs are deletions in hap1, and rightmost SV is the hap2 deletion shown in 
Fig. 5C. cCREs and TF binding sites that could be potentially disrupted by the deletion of 
interest are shown. (B) PSCA also has lower expression from hap2 in the lung and the 
transverse colon of individual 3. In both tissues, the deletion has similar allele frequency with 
some of the tissue-specific eQTLs compatible with the AS expression of PSCA, and appears to 
remove a H3K27ac peak in hap2, potentially causing the reduced expression of PSCA. (C) 
Imbalance in the AS expression of PSCA appears to be restricted to three tissues shown in (A) 
and (B). (D) Another example of a deletion that could be in linkage with compatible eQTLs of 
ASXL3. In the transverse colon of individual 2, ASXL3 has lower expression in hap1. The 
relevant deletion is in hap1 and appears to disrupt H3K27ac and cCREs near the gene. Note 
that the H3K27ac levels at this cCRE and the expression levels of PSCA are both lower in 
thyroid than in transverse colon, suggesting an association between the activity of this cCRE 
with the expression of PSCA. (E) Imbalance in the AS expression of ASXL3 appears tissue-
specific. 
  



 

 

 
Figure S6.1d. Shadow figure associated with Fig. 5D 
(A) Similar to Fig. 5B, the deletion in hap2 could disrupt spleen-specific cCREs and the binding 
of several TFs. (B) In multiple tissues, RP11-362F19.1 has lower expression in individual 3 than 
in individual 2, suggesting that the deletion may affect the gene’s expression globally. 
  



 

 

 
Figure S6.1e. Novel splicing variants of PCCB. 
Shadow figure for Fig. 5E. Sashimi plot and exonic structure representation of the PCCB 
isoforms expressed in individuals 2 (blue) and 3 (red) in adrenal gland and heart left ventricle 
tissues, respectively. The central panel contains the whole gene’s representation. In the sashimi 
plot, exons are represented by vertical lines either in blue (Ind. 2) or red (Ind. 3). Splicing 
connections of annotated isoforms are represented by black arcs, while novel connections 
observed in a specific individual are color-coded (zoom-ins into the specific regions are 



 

 

provided, as well as the number of reads supporting each connection). The exonic structure of 
annotated and novel isoforms is reported at the bottom. The black isoform is expressed in both 
individuals, while those expressed in only one individual are color-coded. Annotated and novel 
isoforms were retrieved, for each individual, using Swan \cite(105). Specifically, a swan gene 
report was generated for each individual by providing as input transcriptome annotation and 
quantification files available, from long-read RNA-seq experiments, on the ENCODE portal 
(https://www.encodeproject.org/). The plots were obtained using ggashimi \cite(106). 
  



 

 

 
Figure S6.1f. Novel splicing variants of TRDN-AS1 
Sashimi plot and exonic structure representation of the lncRNA TRDN-AS1 isoforms in 
individual 3 in the heart left ventricle. The gene carries a heterozygous deletion on haplotype 1 
(highlighted in gray) and shows allelic-specific expression in the right atrium auricular region 
(hap1 being more expressed than hap2). For the sashimi representation, reads available from 
long RNA-seq experiments (see ENCODE portal) were phased to the two haplotypes using 
heterozygous SNVs that overlap the gene’s exons. Reads phasing was performed with 
ASCIIGenome (https://github.com/dariober/ASCIIGenome/) \cite(107). Long-read RNA-seq 
reads show consistently higher expression of hap1 compared to hap2. Moreover, reads 
mapping to hap1 give rise to two novel splicing junctions (represented by red arcs) as well as 
two novel exons (highlighted in red in the exonic structure representation at the bottom). 
Annotated and novel isoforms were retrieved, for each individual, using Swan \cite(105). 
Specifically, a swan gene report was generated for individual 3 by providing as input 
transcriptome annotation and quantification files available, from long-read RNA-seq 
experiments, on the ENCODE portal. Only novel not in catalog (NNC) and genomic isoforms are 
shown. The plots were obtained using ggashimi \cite(106). 
  



 

 

 
Figure S6.2a. Calculate changes in the chromatin state in SV neighbourhood 
We use H3K27ac level as an example. In this example, individual 3 carries a deletion (red bar) 
while individual 2 is wild-type at the same locus, therefore we will compare the chromatin states 
in the two green regions between the two individuals. In tissue 1, the H3K27ac level in the green 
region is lower in individual 3, but in tissue 2, the H3K27ac level is similar in both individuals. 
Therefore, only half of the neighbourhoods of this deletion show reduction in H3K27ac. 
  



 

 

 



 

 

Figure S6.2b. Changes in the chromatin state of SV neighbourhoods 
Similar to Fig. 5D, we investigate whether the presence of an SV may change the chromatin 
state of the nearby regions, and whether the changes are associated with the SV’s length, 
genotype, type (INS or DEL), and/or association with TEs. Panel (A) - (F) correspond to 
H3K27ac, chromatin openness measured by ATAC-seq, H3K4me3, H3K9me3, H3k27me3, and 
CpG methylation, respectively. * p < 0.05, ** p < 0.01, *** p < 0.001, based on Chi-square test. 
  



 

 

Figure S7. Supp. figures to main text section “Decorating the ENCODE 
encyclopedia” 
  



 

 

 
Figure S7.2a. Data Preprocessing 
We compute the average signal for each cCRE region using the datasets from DNase-seq, 
ATAC-seq, and 5 histone modifications (H3K27ac, H3K4me1, H3K4me3, H3K27me3 and 
H3K9me3). For DNase-seq and ATAC-seq, the signals are averaged across the genomic 
positions of the cCRE regions. The signals of histone modifications are averaged across the 
genomic positions of the cCRE regions with a 500-bp extended region on each side. For each 
assay, we perform quantile normalization on the average signal from the cCRE regions jointly 
across all the biosamples. Then we scale the normalized signal from 1 to 10, and define a set of 
“active” cCREs for each assay from each tissue type. 
  



 

 

 
Figure S7.2b. Framework of cCRE decoration 
We decorate the cCREs from encyclopedia using the active and repressed histone modification 
signals and CTCF binding sites from tissues. The decorated the cCREs are then separated into 
proximal and distal ones based on their proximity to the annotated TSSs. At another layer, these 
cCRE subgroups are further annotated as allelic-specific and non-allelic-specific ones based on 
their allelic signature. 
  



 

 

 
Figure S7.2c. Framework of cCRE decoration in spleen 
This figure shows the workflow of cCRE decoration and the numbers of different subgroups of 
cCREs in the spleen. Note that we define a number of abbreviations for the various decorations. 
dACT: distal active; pACT: proximal active; dBiv: distal bivalent; pBiv: proximal bivalent; dRep: 
distal repressed; pRep: proximal repressed; CTCT+ and CTCF- indicates with and without 
CTCF binding respectively; AS+ and AS- indicates with and without allelic signature 
respectively. 
  



 

 

 
Figure S7.2d. Number of cCREs in Various Tissues 
We show the number of different subgroups of decorated cCREs in each tissue type. In each 
panel, the colors indicate their TSS proximity (proximal vs. distal) and CTCF binding states 
(CTCF+ vs. CTCF-). Note that the different decoration terms are defined in Figure S7.2c. 
  



 

 

 
Figure S7.2e. cCRE Decoration Results Matrix 
We generate the annotation matrix for all the decorated cCREs from tissue types. We used 1 
and 0 to indicate that the cCREs are defined as “active” in terms of that cCRE nomenclature as 
shown. This corresponds to File: cCRE_decoration.matrix. 
  



 

 

 
Figure S7.3. Identify fully repressed elements independent of cCREs 
(A) For genomic regions outside cCREs and annotated genes, elements longer than 200bp that 
are uniquely marked by either H3K9me3 or H3K27me3 are defined as fully repressed. 45,207 
(covering 12,655,795 bp) and 24,006 (covering 7,474,178 bp) non-overlapping elements are 
identified based on H3K9me3 and H3K27me3, respectively. Identified elements can be found in 
File: ENTEx_fully_repressed_regions_independent_of_cCREs.bed. (B) The majority of these 
elements are repressed in a tissue-specific manner. (C) For tissues with available datasets, 
DNA methylation within these elements was evaluated, and H3K9me3 marked elements show 
significantly (t-test, pValue<0.05) higher CpG methylation (meCpG) rate than elements marked 
uniquely by H3K27me3. 
  



 

 

 
Figure S7.4. cCRE enrichment with respect to A/B compartments 
These plots show the cCRE enrichment in the A vs. B compartment of two different tissues. We 
show this for the master cCRE list from ENCODE encyclopedia, tissue-specific active and 
repressed cCREs. As the tissue specificity increases, we see more cCRE enrichment in the 
active A compartment compared to the inactive B compartment. 
  



 

 

 
Figure S7.5a. Variation explained between two experiments corrected by replicates 
To calculate the variation explained between experiments (e.g., the two H3K27ac ChIP-seq 
experiments of the spleens from two individuals), for each of the experiment, we identify the 
cCREs that renders the replicates of the experiment having high variation explained (> 95%). 
The intersect set of such consistent cCREs respectively from the two experiments are used to 
calculate the variation explained between the two experiments (black bars; e.g., 87% for the two 
H3K27ac ). The average variation explained between the replicates respectively from the two 
experiments is indicated by the white bars (e.g., 96% for H3K27ac). The results in spleen, 
transverse colon, gastrocnemius medialis, thyroid gland, pancreas, and prostate gland are 
shown in (A) - (F). 
  



 

 

 

 
Figure S7.5b. Similarity between the signals of two functional genomic experiments 
For each of the cCREs, the signal of a functional genomic experiment is measured by the 
average fold change over control across the cCRE region. For two experiments, linear 
regression is used for the cCREs with low technical noise between replicates. The variance of 
one experiment explained by the other is used to indicate the similarity between the 
experiments across the cCREs. The similarity between all possible pairs of experiments is 
reported in the supplementary table, namely Similarity of functional genomic activities of cCREs. 
  



 

 

 
Figure S7.5c. Variation explained between proteomics data and RNA-seq data 
(A) The normalized protein abundances are highly consistent between replicates. (B) This is 
also true for the normalized RNA abundances. (C) The variation explained between the 
normalized protein abundances and the normalized RNA abundances varies across tissues. 
suggesting that for some tissues protein abundances and RNA abundances have low 
consistency. LL indicates the left lobe of the liver, and the RL indicates the right lobe. The 
numbers in the labels indicate the donors. However, respectively for protein abundances and 
RNA abundances, the variation explained between donors is higher (D) than the variation 
explained between the normalized protein abundances and RNA abundances (C). The 
normalized proteomics and RNA-seq data matrix used for panels (C) & (D) are 
normalized_proteomics_RNA-seq.dat. 
  



 

 

Figure S8. Supp. figures to main text section “Measuring tissue specificity” 
  



 

 

 
Figure S8.1a. The number of transcribed genes in tissues 
We show the number of transcribed pseudogenes (left) and protein-coding genes (right) across 
all tissue types. The median of transcribed pseudogenes and protein-coding genes across the 
tissues is 200 and ~11K, respectively. 
  



 

 

 
Figure S8.1b. Tissue-specificity of transcribed genes 
The heatmaps show the activity of pseudogenes (left) and protein-coding genes (right) across 
tissue types. In each tissue, the pseudogenes/protein-coding genes are classified as actively 
transcribed (shown in red) or not based on their expression level. 
  



 

 

 
Figure S8.1c. Gini Index of Gene Expression Level Across Tissues 
We apply the Gini index to quantify the tissue-specificity of protein-coding genes, pseudogenes 
and parent genes based on their expression level. The pseudogenes show higher Gini index 
than protein-coding genes, suggesting stronger tissue-specificity of pseudogenes. The Gini 
index distribution of pseudogenes is quite different from that from parent genes, confirming that 
the multi-mapping bias from quantification of the pseudogene expression level has been 
minimized. 
  



 

 

 
Figure S8.1d. Tissue-specificity of different subgroups of cCREs vs. genes and 
epigenomic peaks 
We compare the tissue-specificity of protein-coding genes, non-coding genes, different 
subgroups of decorated cCREs and various epigenomic peaks. The uniqueness of their activity 
across tissue types are shown in different colors. Note that the different decoration terms are 
defined in Figure S7.2c. 
  



 

 

 
Figure S8.1e. Tissue-specificity of different subgroups of cCREs 
For each cCRE subgroup, we show the proportion of the cCREs that are defined as “active” 
across the different numbers of tissue types ranging from one (i.e., high tissue-specificity) to all 
tissue types (i.e., low tissue-specificity). Note that the different decoration terms are defined in 
Fig. S7.2c. 
  



 

 

 
Figure S8.1f. Tissue-specificity of RAMPAGE Data at TSSs of Protein-Coding Genes 
UpSet plot of counts of GENCODE TSSs of genes (vertical bars), measured using RAMPAGE 
data in combinations of tissues (sets of dots), sorted by the number of TSSs. Bars on the left 
correspond to the number of TSSs in each tissue. Ubiquitously expressed TSSs using 
RAMPAGE are the most abundant. 
  



 

 

 



 

 

Figure S8.2a. ASE genes across different tissues of individual 3. 
Counts of genes (bars) called ASE in the combinations of tissues (sets of dots) with the largest 
number of ASE genes. Bars on the left correspond to the number of ASE genes in each tissue. 
  



 

 

 



 

 

Figure S8.2b. Allelic ratios (haplotype 1 reads over the total number of reads) for gene 
expression of genes that are accessible across all tissues and allele-specific in at least 
one tissue of individual 3 
This parallels the allelic ratios for H3K27ac in Fig. 7c and shows the same trend for expression 
as for histone modification.  
  



 

 

 
Figure S8.2c. Annotation of pan-tissue H3K27ac AS+ cCREs of individual 3. 
Among the 23 H3K27ac AS+ cCREs that were detected across all available tissues of individual 
3, 21 cCREs are within promoter regions of known genes including 6 promoters of 
housekeeping genes. Promoters and associated genes are based on Ensembl, and 
housekeeping genes are based on HRT Atlas \cite(93).  
  



 

 

 
Figure S8.2d. Annotation of pan-tissue ASE genes of individual 3. 
Among the 20 ASE genes that were detected across at least 90% of available tissues of 
individual 3, 8 genes are annotated as housekeeping genes in HRT Atlas \cite(93). 
  



 

 

 
Figure S8.3a. Rare DAF (# rare variants / (# rare variants + # common variants)) for active, 
bivalent, and repressive cCREs in increasing tissue count 
Total cCRE count and SNP count (taking into account all SNPS, common and rare) shown for 
tissue count as well. 
  



 

 

 
Figure S8.3b. Conservation of various cCRE decorations.  
The conservation is calculated in terms of phastCons score and Rare DAF, based on the 
frequencies in the gnomAD database. The annotations are from Figure S7.2c.  
  



 

 

 
Figure S8.3c. Conservation of active and repressed cCREs for tissue specific and 
ubiquitous categories 
Dark red shows an increase in conservation for more stringently defined cCREs (These are 
selected via top 1% of Matched Filter signals. More details in the Supplement text). The 
databases for this calculation are 1KG (1000 Genome, ref XXX), PCAWG (Pan cancer analysis 
working group, ref XXX, gnomaod ref XXX) 
  



 

 

Figure S9. Supp. figures to main text section “Relating encyclopedia 
decorations to QTLs & GWAS loci” 
  



 

 

 

 
Figure S9.1a. eQTL and sQTL Enrichment in cCREs 
We compute the odd ratios (ORs) to estimate the enrichment of the eQTL (upper panel) and 
sQTL (lower panel) SNPs identified from GTEx tissues in the cCREs from EN-TEx tissues. The 
ORs are calculated using the numbers of real QTL SNPs and the control SNPs located in the 
cCREs compared to those in the baseline regions. This procedure is repeated 30 times to 
calculate standard deviation, and the values are indicated by the whiskers. (See supplement 
text for details). In each panel, we show the QTL enrichment in the proximal active (left in each 
panel) and distal active (right in each panel) cCREs from each tissue type. In each figure, the 
cCREs are further separated into subgroups based on their CTCF binding and allelic-specific 
patterns. Note that the different decoration terms are defined in Figure S7.2c. 



 

 

  



 

 

 
Figure S9.1b. Roadmap Annotations 
We select 14 tissue types that are matched across EN-TEx, GTEx and Roadmap projects to 
compare the QTL enrichment in the EN-TEx cCREs and Roadmap regulatory annotations. We 
use the 15-state Roadmap annotations in the analysis. 
  



 

 

 
Figure S9.1c. QTL enrichment in cCREs: EN-TEx vs. Roadmap 
We compare the enrichment of eQTL (left) and sQTL (right) SNPs in the TSS/proximal regions, 
enhancer/distal regions and repressed regions. For this calculation, we matched the annotations 
between ENTex and Roadmap as shown Fig S9.1b above.  
  



 

 

 
Figure S9.1d. H3K27ac marks loci associated with eQTL effect. 
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Figure S9.2a. Framework of GWAS enrichment analysis. 
  



 

 

 
Figure S9.2b. Stratified LDSC enrichment: EN-TEx AS+ vs. AS- sv. Roadmap 
This is a shadow figure for Fig. 8B in the main text. The central heatmap is the stratified LDSC 
enrichment of various GWAS traits over distal active elements of all EN-TEx tissues. In the left 
panel, we compare LDSC enrichment of distal active AS+, AS- over all traits for Coronary 
Artery. In the right panel, we compare LDSC enrichment of distal active AS+, AS-, and roadmap 
annotations in the Right Lobe of Liver. 
  



 

 

 
Figure S9.2c. GWAS enrichment: cCREs vs. cCREs with 500bp extension 
We perform GWAS enrichment analysis on the original cCRE regions and the cCRE regions 
with 500bp extension on both sides. More significantly enriched GWAS traits can be identified 
on the cCRE regions with extension, suggesting the necessity to include the flanking regions in 
the GWAS enrichment analysis. 
  



 

 

 
Figure S9.2d. GWAS enrichment: across tissues 
We select two GWAS traits, atrial fibrillation and total cholesterol levels, to show their 
enrichment scores across all the tissue types. 
  



 

 

 
Figure S9.2e. GWAS enrichment: Roadmap 
We perform GWAS enrichment analysis on the enhancer annotations from the 127 cell and 
tissue types from Roadmap Epigenomics Project. Tissue names are on the horizontal axis and 
traits are on the vertical. As is obvious, simple clustering of this matrix reveals a blocky structure 
with sets of traits associated with groups of tissues. 
  



 

 

 
Figure S9.2f. GWAS enrichment: AS+ vs. AS- cCREs 
We compare the GWAS enrichment scores on the distal active cCREs with (upper) and without 
(low) allelic-specific signature using the GWAS tag SNPs from blood-associated traits. Note that 
the different decoration terms are defined in Figure S7.2c. 
  



 

 

 
Figure S9.3a. Allelic specificity of housekeeping genes 
Left: for each tissue, expressed protein-coding genes were split into housekeeping genes and 
non-housekeeping genes. Based on two-sided fisher exact tests, housekeeping genes are 
generally less allele-specifically expressed than non-housekeeping genes. Right: for each 
tissue, we examined the allelic specificity of pAct cCREs flanking the transcription starting site 
(TSS, defined by gene starting site) of housekeeping genes. To eliminate the bias caused by 
significantly different cCRE length flanking the genes, we split genes into 20 bins based on the 
total length of flanking cCREs. Within each bin, the number of pAct AS+ cCREs was compared 
between housekeeping and non-housekeeping genes, and pAct cCREs flanking housekeeping 
genes display relatively less allele specificity than the ones flanking non-housekeeping genes. 
  



 

 

 
Figure S9.3b. Enrichment of TF motifs in CTCF+ cCREs 
A list of 206 TF motifs (CTCF excluded) was used to count the total number of TF motifs that 
intersect with each CTCF+ and CTCF- cCRE in each tissue. For both distal and proximal 
cCREs, CTCF+ cCREs have significantly (paired-tissue two-sided t-test, p-value < 0.05) more 
TF motifs than CTCF- cCREs. 
  



 

 

Figure S10. Supp. figures to supp. section “Additional information about the 
EN-TEx resource” 
  



 

 

 
Figure S10.3a. Screenshot of EN-TEx Chromosome Painting Tool 
(A) Parameters for data visualization of EN-TEx data. (B) Submit to generate visualization with 
the parameters. (C) Plots generated by Chromosome Painting Tool are interactive. 
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Figure S10.3b. Example of Chromomap 
(A) - (B) RNA-seq (red) vs ChIP-seq (blue) for individual 2 and 3. (C) - (D) RNA-seq and ChIP-
seq for individual 2 (red) and individual 3 (blue). (E) - (F) ChIP-seq (red) vs ATAC-seq (blue) for 
individual 2 and 3. 
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Figure S10.4 Explorer Tool 
(A) Dimensionality Reduction. The EN-TEx Explorer Tool allows for the generation of low-
dimensional plots of several assays comprising cCREs, genomic expression, and proteomic 
expression. Data is primarily reduced to ten dimensions through principal component analysis 
(PCA), a variational autoencoder (VAE), uniform manifold approximation and projection 
(UMAP), or potential of heat-diffusion for affinity-based trajectory embedding (PHATE). 
Components of the result can be plotted against each other (ex: principal component 1 vs 
principal component 2 on a scatter plot), summarized based on the reduction method, or 
reduced further with t-distributed stochastic neighbor embedding (tSNE). It is also possible to 
rapidly view different configurations of preprocessing parameters (scaling, normalization, feature 
variance) or hyperparameters through extensive precomputation. (B) Interactive Reduction 
Interactive 2D and 3D visualizations are also included for intuitively exploring the data. (C) 
UpSetR Plots. UpSetR plots serve the purpose of visualizing the intersection of genes in various 
tissues, taking the place of the traditional Venn Diagram for larger set numbers. In the context of 
EN-TEx, these tools apply user-defined thresholds for each gene, consider the fraction of 
samples for which that gene is present in that tissue, and then calculate the UpSetR plot. (D) 
Heatmaps. Heatmaps, which can also have dendrograms applied, visualize the data that is 
aggregated in the UpSetR plot. (E) Downloading Explorer Tool Data. The numeric data and 
metadata for all results can be bookmarked or downloaded for rapid sharing or analysis. 
  



 

 

 
Figure S10.5. Predicting the ages of tissues from their DNA methylation. 
The statistical model developed by Levine et al is used to predict the ages of the different 
tissues from the four individuals \cite(108). As a result, the different tissues of the same 
individuals have quite different predicted ages (A). However, for each tissue type, the predicted 
ages and the actual ages of the four individuals tend to be highly correlated (B), suggesting that 
the model is accurate for capturing the changes in tissues with the actual aging. The high 
correlation is also observed using other predictive models \cite(109). Taken together, these 
results suggest that the different tissues age with quite different speed. 
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Figure S10.6. Histone ChIP-seq data for COVID19 related genes. 
Chromatin marking of COVID-19 related genes. The heatmap represents presence/absence 
(red/gray) patterns of ChIP-seq peaks for the six histone marks assayed across the EN-TEx 
tissues. The list of 63 genes includes ACE2, CD147, FURIN, GRP78, and their protein 
interactors as retrieved from STRING (https://string-
db.org/cgi/input?sessionId=bDjsdV72Wbsr&input_page_show_search=off)\cite(110). Additional 
COVID-19/SARS-CoV-2 entry-associated genes proposed by the COVID19 Cell Atlas 
(https://www.covid19cellatlas.org/index.healthy.html), such as TMPRSS2, are also included 
\cite(111). 
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