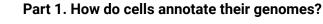
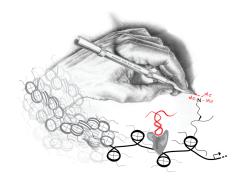
Genomics Part II

Applications of Sequencing Technology

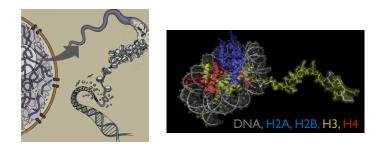
Biomedical Data Science: Mining and Modeling CB&B 752 • MB&B 452 Matt Simon Feb 8, 2021

Overview

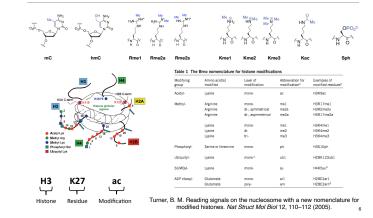

- Genomics I (Wednesday's lecture): Focus on sequencing technology and genomes.
- Genomics II: (Today's lecture): Focus on applications of sequencing technology.
 - 1. Annotation of the genome in chromatin
 - 2. Regulation of gene expression at the level of RNA


Workflow

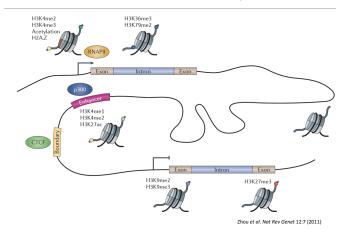
1. Isolation of sample.


e.g., Isolate DNA and shear.

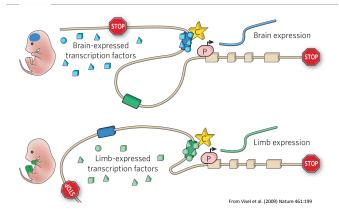
- 2. Library preparation
- e.g., Clean up and ligate Y-adaptors.
- 3. Sequencing
- e.g., Illumina HiSeq
- 4. Analysis
- e.g., Map to genome and interpret.



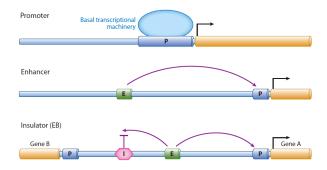
DNA in the cell is packaged into chromatin



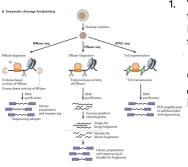
Modeled nucleosome based on Luger et al., Nature 1997 389, 251.


Summary and nomenclature of common covalent modifications.

Chromatin modifications correlate with different genomic functions.


Regulation is temporally and specially controlled

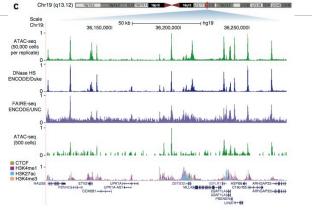
Using sequencing to annotate the genome


How do we identify regulatory elements in the genome?

- 1. Where are the cis-acting regulatory elements in DNA?
 - A. DNase I hyper-sensitivity mapping (DNase-Seq).
 - В. FAIRE to map regulatory elements. C. ATAC-Seq to map regulatory elements.
- 2. How does the chromatin composition vary across the genome? D. ChIP-seq of transcription factors (or in high res, ChIP-exo)
 CUT&RUN and CUT&Tag for small scale/single cell analysis.
- 3. Where is RNA polymerase transcribing?
 - F. ChIP-Seg of polymerase. G. GRO-Seq, PRO-Seq and NET-Seq to measure RNA polymerase activity.

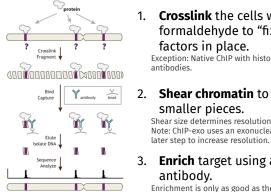
Targeted approaches v Global approaches

Using differences in biochemical properties of regulatory elements to identify them by Seq



1. Transcription factor binding frequently deforms the B-form DNA, making it hypersensitive to DNase I and transposases.

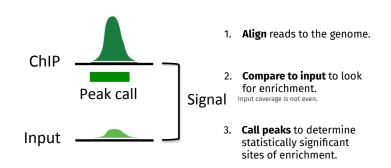
> Changes in **accessibility of** chromatin can provide information about regulation


-ATAC-seq (shown) -MNase-Seg (shown). -DNase-Seq (shown). -FAIRE-Seg (not shown).

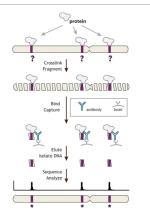
Zentner GE, Henikoff S. High-resolution digital profiling of the epigenome. Nat Rev Genet. 2014;15: 814–827. doi:10.1038/nrg3798

Buenrostro JD, Giresi PG, Zaba LC, Chang HY, and Greenleaf WJ. (2013) "Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position." Nature Methods

Localization of specific proteins in the genome with chromatin immunoprecipitation (ChIP-Seg)



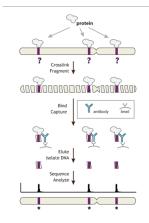
smaller pieces. Shear size determines resolution. Note: ChIP-exo uses an exonuclease at a later step to increase resolution.


3. **Enrich** target using an

Enrichment is only as good as the antibody.

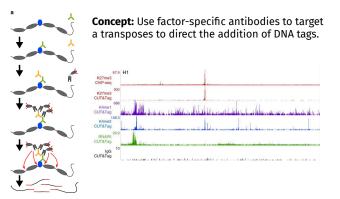
Determining sites of enrichment from ChIP-Seq

Limitations of ChIP-Seq



- 1. **Cross linking** efficiency is not necessarily uniform.
- 2. Enrichment is dependent on the quality of antibody.
 - e.g., Site and degree of histone modifications.
- 3. Enrichment is dependent on the accessibility of the

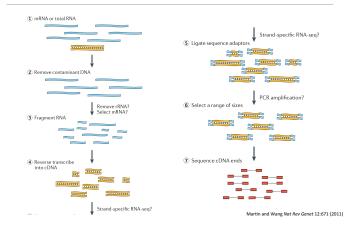
epitope. Comparing different sites to each other in the genome can be problematic.


4. Output is **descriptive**. Hard to infer function without more experimentation.

Extensions of ChIP

- 1. Using a nuclease to achieve higher resolution (ChIP-exo).
- 2. Analysis of small samples or single cells (CUT&RUN or CUT&Tag).
- 3. Extension to RNA factors.

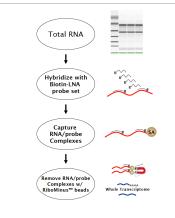
Extensions of ChIP: CUT&Tag

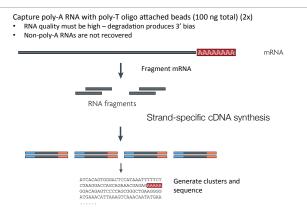

Kaya-Okur...& Henikoff (2019) CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat Commun

Part 2: RNA-Seq and applications of RNA-Seq

Using RNA-Seq to examine RNA

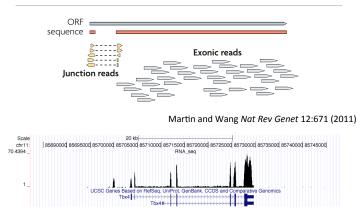
- Technical methodology
- Read mapping and normalization
- Estimating isoform-level gene expression
- De novo transcript reconstruction
- Sensitivity and sequencing depth
- Differential expression analysis


RNA-Seq workflow


Some technical details specific to RNA-Seq

Ribosomal RNA will dominate the sequenced reads unless removed

- Wide dynamic range of RNA concentrations.
- RNA is strand specific (unlike dsDNA)
- RNA degrades easily (RNase and spontaneous)
- RNA is processed (e.g., spliced)
- RNA has secondary structure (possible blocks to reverse transcriptase).



Illumina RNA-seq workflow

RNA-Seq reads map mostly to exons

RiboMinus

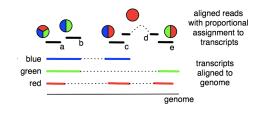
How does one analyze RNA levels from RNA-Seq?

Use existing gene annotation:

Align to genome plus annotated splices Depends on high-quality gene annotation Which annotation to use: RefSeq, GENCODE, UCSC? Isoform quantification? Identifying novel transcripts?

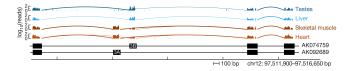
Reference-guided alignments:

Align to genome sequence Infer splice events from reads Allows transcriptome analyses of genomes with poor gene annotation


De novo transcript assembly:

Assemble transcripts directly from reads Allows transcriptome analyses of species without reference genomes

RNA-seq reads contain information about the abundance of different transcript isoforms


Normalization :

Internal: *Reads or Fragments* per kilobase of feature length per million mapped reads (RPKM or FPKM) External: Reads relative to a standard "spike"

http://arxiv.org/pdf/1104.3889v2.pdf

Functional diversity in transcript isoforms

Examples of applications of RNA-seq

Characterizing transcriptome complexity Alternative splicing

Differential expression analysis Gene- and isoform-level expression comparisons

Novel RNA species lncRNAs and eRNAs Pervasive transcription

Translation Ribosome profiling

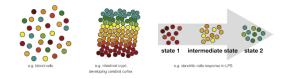
Allele-specific expression

Measuring RNA half-lives and decay

Examining protein-RNA interactions (CLIP, RIP, &c.)

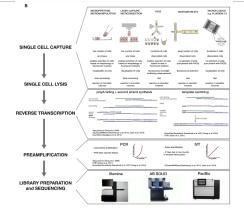
Effect of genetic variation on gene expression

Imprinting RNA editing


Novel events

Examining cell heterogeneity with scRNA-seq

Bulk RNA-seq averages over the RNA content of many cells masking differences.


These differences can be revealed by sequencing the RNA from individual cells using single cell RNA-seq (scRNA-seq)

Analysis of RNA transcripts in individual cells can reveal rare cell populations and lineage trajectories.

Kolodziejczyk ... & Teichmann (2015). The technology and biology of single-cell RNA sequencing. Mol Cell

Examining cell heterogeneity with scRNA-seq

Kolodziejczyk ... & Teichmann (2015). The technology and biology of single-cell RNA sequencing. Mol Cell

Summary

- Genomics I: Deep sequencing gives us access to information on a genomic level.
- Genomics II: These approaches provide a diverse set of tools to study life at a genomic scale.
- * Sophisticated use of data from genomics requires an integrated understanding of the biological experiment, sample preparation and down stream computational analyses of the data.