


Integrative models for relating gene expression with TF binding and histone modifications.
Both transcription factors (TFs) and histone modifications (HMs) play critical roles in gene transcriptional regulation [7, 8]. Taking advantage of the ENCODE, modENCODE and other data sources, we constructed statistical models to quantify the relationship between TF/HM signals and gene expression level in human and model organisms [9-11]. Our models indicated that over 60% of variation in gene expression can be explained by either TF binding or HM signals in the promoter regions of genes [9, 11]. TF binding and HMs are more predictive of gene expression in the same cell line, indicating that the models are cell line specific.  Moreover, differential gene expression between cell lines is predictable by differential TF binding and HM signals. We also developed models to quantify the relationships between TF-binding signals and other chromatin features such as histone modifications and DNase hypersensitivity for determining expression [9].  Fig. 2: Schematic workflow of FunSeq2. FunSeq2 consists of two components: creation of data context and variant prioritization.  

Integrative models quantifying the impact of genomic variants. 
We have extensive experience with quantifying variant impacts from various aspects. For instance, we developed a variant-prioritization pipeline named FunSeq that included an adjustable data context [6, 12]. This tool has been widely used to identify disease-causing mutations for further in-depth analyses to understand the mechanisms underlying disease pathogenesis. FunSeq links each noncoding mutation to target genes, and prioritizes such variants based on functional annotation, sequence features, conservation, network connectivity, and mutation frequency in diseases (Fig. 2). We also developed a generalized model named GRAM to predict cell-type-specific molecular effects of non-coding variants on their associated genes [13]. This tool has been used to predict the effects of fine-mapping causal variants from genome-wide association studies. Finally, we developed a variant-scoring framework named RADAR to pinpoint variants associated with RNA binding protein function dysregulation [14]. In addition, we developed AlleleSeq, a tool for detecting candidate variants associated with allele-specific binding and allele-specific expression [15-17]. 
DSPN model as a foundation to build interpretable deep-learning models
In order to probe the functional effects of genetic variation and the mechanistic underpinnings of disease, it is necessary to build integrated models that relate molecular- and cellular-level phenotypes to high-level traits. In our previous work, we developed an interpretable integrated modeling framework for this purpose, within the context of psychiatric genomics [5]. Our Deep Structured Phenotype Network (DSPN) framework allowed us to model the joint distribution of all phenotypes of interest conditioned on genetic variation; a joint energy function enabled us to embed prior knowledge in the connectivity of the network and interpret new relationships during and after training. We used a conditional deep Boltzmann machine architecture with multiple layers, including genotype, gene expression, epigenetics, and cell fraction layers, and introduced lateral connectivity at the visible layer to embed the gene regulatory network (GRN) and quantitative trait locus (QTL) linkages. Further, we developed a rank-statistic-based interpretation scheme that allows us to functionally annotate hidden nodes and prioritize them relative to disorders [18]. Our model improved disease prediction by 6-fold compared to additive polygenic risk scores for schizophrenia, highlighted key genes for schizophrenia and other disorders, and allowed imputation of missing transcriptome information from genotype alone [5].
 We have developed further specialized deep-learning and machine-learning approaches for extracting complex higher-order structure from genetics and genomics data. These include extracting latent signatures from gene expression data as biomarkers in asthma [19], learning higher-order features for TF to target gene linkages, and protein-protein interactions [20-22], and predicting splicing patterns from epigenomic signals [23]. Further, we have adapted deep-learning-based methods for natural language processing to learn embeddings of multiple biological networks in a shared latent space for integrated cross-network interpretation [24]Fig. 4: Flowchart of the matched-filter model. Meta-profiles of epigenetic features are produced and integrated by a machine-learning model to predict active promoters and enhancers in a genome-wide fashion.

Identifying enhancers from ChIP-seq, STARR-seq, and single-cell data 
We have developed integrative models to predict human enhancers based on TF binding data from the ENCODE project [36]. We developed a framework named MatchedFilter (Fig. 4) using Drosophila STARR-seq to create shape-matching filters based on meta-profiles of epigenetic features [37]. 
We integrated the resultant features with supervised machine-learning algorithms to predict enhancers in Drosophila. We demonstrated that we could extend our model to predict enhancers in mammals. We have also tried to define enhancers from single-cell multi-omics data. For instance, we have developed an initial single-cell ATAC-seq pipeline and simulator to identify cell-type-specific cis-regulatory elements [38]. 
Reconstructing biological networks by combining high- and low-throughput data 
Network reconstruction requires integrating both large-scale yet noisy data from high-throughput experiments and reliable yet incomplete data from small-scale experiments. Our team has a very strong track record in network reconstruction. In fact, we were among the first to use statistical models to perform systematic network reconstruction of protein-protein interaction networks [39]. Since then, we have developed many computational methods for reconstructing a variety of biological networks. For example, we developed the JEME method for reconstructing the enhancer-target gene interaction network by integrating epigenetic data from hundreds of human samples [35]. We developed the iTAR tool for identifying target genes of TFs for reconstructing TF binding networks [40]. We have used high-order neural networks and kernel methods to reconstruct peptide-major histocompatibility complex interactions [20]. We also developed the ProbRNA method for reconstructing protein-RNA interaction networks using structure-probing sequencing data [41]. These are just some examples of the many methods we have developed.
Using our methods, we have successfully reconstructed different types of networks in humans and model organisms, including large-scale efforts aimed at producing reference networks. As some notable examples, we have reconstructed TF binding and miRNA binding networks in human cell lines and in C. elegans, respectively, based on data from ENCODE and modENCODE [1, 42]. More recently, we reconstructed gene regulatory networks in human neurons for the studying psychiatric conditions [5]. Table 2: STARR-seq data
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Analyzing biological networks to elucidate the effects of genomic variants
Reconstructed networks can help infer the direct and indirect effects of genomic variants. For example, we have made use of network properties such as centrality to evaluate the functional significance of genomic variants [6]. Network hierarchy represents another useful concept for predicting the impacts of genomic variants, where the perturbation of elements at upper layers generally has broader effects. We have developed different methods for determining network hierarchies, such as HirNet [43]. Genomic variants can also lead to disruptions of network connections. We developed DiNeR for identifying disruptions of TF co-regulation by variants and analyzing their consequences [44]. On a larger scale, some network perturbations may propagate to cause major network rewiring. We developed the TopicNet method to measure such rewiring in transcriptional regulatory networks [45]. We have also applied this idea to study network rewiring in cancer cells, as part of our efforts toward producing a general resource for cancer research based on ENCODE data [46]. 
As listed in Table 2, we have collected whole-genome STARR-seq data across seven cell types (37). We carefully investigated the epigenetics signals around the STARR-seq peaks, which are either active enhancers or promoters. In addition to the combinatory existence of epigenetic marks, we found that strong STARR-seq peaks further require an enriched peak-trough-peak (“double peak”) signal shape in several histone modification marks such as H3k27ac and H3k4me3. This confirms the conclusion that enhancer regions tend to be depleted of histone proteins and contain accessible DNA where various TFs and cofactors can bind (37). The troughs in the double-peak ChIP-seq signal represent the accessible chromatin regions, which usually lead to a peak from the ATAC-seq data at the center. 
Experience in consortium research, especially in all 4 phases of ENCODE 
Our team has extensive experience participating in consortium research, collaborating with computational and experimental groups, and leading different working groups. Specifically, we participated in every phase of ENCODE to annotate the noncoding genome. These efforts led to several flagship consortium papers. For instance, we constructed regulatory networks from extensive ChIP-seq profiles, which was important for interpreting personal genome sequences and understanding basic principles of human biology and disease [1]. We played a leading role in the integrative analysis for ENCODE [52-54] and modENCODE [42, 52]. 
In addition to ENCODE, we have played a significant role in a number of consortia. Specifically, we were part of the 1,000 Genomes Project and led the analysis of germline variant patterns within the regulatory regions to quantify variant impacts. Recently, we led analysis projects of PsychENCODE, Brainspan [5], and the Pan-Cancer Analysis of Whole Genomes [55] and also participated in the GENCODE [56, 57], DOE Kbase [58], exRNA [59] and TCGA consortia [60].
Extensive experience in developing computational pipelines and QC metrics for genomics.
We have extensive experience developing data quality standards and data processing strategies for numerous state-of-the-art sequencing technologies, some of which are widely used by the above consortia. As part of the ENCODE project, our group was responsible for developing the irreproducible discovery rate (IDR) [61], a method to determine consistency across biological replicates of ChIP-seq peaks, which is now an essential element of the ENCODE quality control pipeline. We have developed tools to analyze a variety of high-throughput sequencing data in ENCODE, such as RNA-seq, ChIP-seq, and STARR-seq data [61-63].
Experience in prioritizing functional elements for validations in a collaborative group fashion.
We are one of the leading analytical groups that are prioritizing functional elements and variants. Our team has extensive experience prioritizing elements for experimental follow-up [64, 65]. We have coordinated multiple computational groups to participate in the ENCODE3 enhancer challenge. We also co-led the analysis of the ENCODE cancer working group, including prioritizing regions for detailed follow-up with novel functional genomic assays. In addition, we provided the PsychENCODE FCC target region list for validations.
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ARTICLES NATURE METHODS



multiple experimental approaches. In the first stage, we predicted 
enhancers in six embryonic mouse tissues and tested the activity 
of these predictions in vivo with transgenic mouse assays. We then 
proceeded to test the activity of these elements in vitro in human 
cell lines, such as H1 human embryonic stem cells (H1-hESCs), an 
extensively studied and well-characterized cell line. We showed that 
the enhancer predictions from our transferrable model are compa-
rable to the prediction accuracy of species-specific models.



Results
Aggregation of epigenetic signals in Drosophila to create 
metaprofiles. We developed a framework to predict active regula-
tory elements using the epigenetic signal patterns associated with 
experimentally validated promoters and enhancers (Fig. 1). The 
STARR-seq studies on Drosophila cell lines provide the most com-
prehensive datasets as they were performed genome-wide and with 
multiple core promoters17,32. These peaks typically consist of a mix-
ture of enhancers and promoters. At this stage, we did not differ-
entiate between the two sets of regulatory elements. As STARR-seq 
quantifies enhancer activity in an episomal fashion, not all peaks 
would be active in the native chromatin environment. Arnold and 
colleagues17 showed that the STARR-seq peaks that occur with 
enriched DNase hypersensitivity or H3K27ac modifications tend 



to be associated with active genes, whereas other STARR-seq peaks 
tend to be associated with enrichment of repressive marks, such as 
H3 trimethylated at K27 (H3K27me3). Hence, we took the overlap 
of the STARR-seq enhancers with H3K27ac and/or DHS peaks to 
get a high-confidence set of enhancers that are active in vivo, and 
based on these, we created representative metaprofiles for each his-
tone modification and DNase signal, respectively. During aggrega-
tion, we first aligned the two maxima in the H3K27ac signal across 
active STARR-seq peaks, followed by interpolation of the signal 
before calculating the average to generate the metaprofile. Then, we 
calculated the dependent metaprofiles for other histone marks fol-
lowing the same procedure (Fig. 1).



Match of a metaprofile is predictive of regulatory activity. To cal-
culate the matched-filter scores, we first smoothed the input signal 
track for each epigenetic mark. Then, we scanned the H3K27ac sig-
nal track to find each pair of local maximum points between 300 and 
1,100 base pairs (bp). Due to the variability of the distance between 
the double peaks, we interpolated each double-peak region before 
convolving it with the filter to get an initial score (Extended Data 
Fig. 1). If there were multiple overlapping double-peak regions, we 
used the highest score within a 1,500-bp region as the prediction 
for the regulatory potential. We then calculated the matched-filter 
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Fig. 1 | Flowchart of the matched-filter model. a, We identified the double-peak pattern in the H3K27ac signal close to STARR-seq peaks. The red triangles 
denote the position of the two maxima in the double peak. b, We aggregated the H3K27ac signal around these regions after aligning the flanking maxima, 
using interpolation and smoothing on the H3K27ac signal, and averaged the signal across different STARR-seq peaks to create the metaprofile in c. The 
same operations were performed on other histone signals and DHS to create metaprofiles in other dependent epigenetic signals. d, Matched filters were 
used to scan the histone and/or DHS datasets to identify the occurrence of the corresponding pattern in the genome. We use s to denote the metaprofile, 
h for the filter, y for the epigenetic signal and r for the matched-filter score. s*(N – n) is the complex conjugate of the flipped metaprofile s, where N is the 
length of the metaprofile. e, The matched-filter scores are high in regions where the profile occurs (gray region shows an example), but are low when only 
noise is present in the data. f, The individual matched-filter scores from different epigenetic datasets were combined using integrated model to predict 
active promoters and enhancers in a genome-wide fashion.
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track for each epigenetic mark. Then, we scanned the H3K27ac sig-
nal track to find each pair of local maximum points between 300 and 
1,100 base pairs (bp). Due to the variability of the distance between 
the double peaks, we interpolated each double-peak region before 
convolving it with the filter to get an initial score (Extended Data 
Fig. 1). If there were multiple overlapping double-peak regions, we 
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Fig. 1 | Flowchart of the matched-filter model. a, We identified the double-peak pattern in the H3K27ac signal close to STARR-seq peaks. The red triangles 
denote the position of the two maxima in the double peak. b, We aggregated the H3K27ac signal around these regions after aligning the flanking maxima, 
using interpolation and smoothing on the H3K27ac signal, and averaged the signal across different STARR-seq peaks to create the metaprofile in c. The 
same operations were performed on other histone signals and DHS to create metaprofiles in other dependent epigenetic signals. d, Matched filters were 
used to scan the histone and/or DHS datasets to identify the occurrence of the corresponding pattern in the genome. We use s to denote the metaprofile, 
h for the filter, y for the epigenetic signal and r for the matched-filter score. s*(N – n) is the complex conjugate of the flipped metaprofile s, where N is the 
length of the metaprofile. e, The matched-filter scores are high in regions where the profile occurs (gray region shows an example), but are low when only 
noise is present in the data. f, The individual matched-filter scores from different epigenetic datasets were combined using integrated model to predict 
active promoters and enhancers in a genome-wide fashion.
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