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THE PRECISION MEDICINE INITIATIVE
il - Oncology

» Sub-topic of

precision medicine

* Analysis of the exact
somatic mutations in a
individual, suggesting
individualized treatment

- What if matching
PRECISION MEDICINE INITIATIVE PRINCIPLES STORIES a Cancer Cu re to

“Doctors bave always recognized that every patient is unique, and doctors bave always tried to tailor their treatments as our qenetlc COde
best they can to individuals. You can match a blood transfusion to a blood type — that was an important discovery. What if was iust as easv

matching a cancer cure to our genetic code was just as easy, just as standard? What if figuring out the right dose of medicine
was as simple as taking our temperature?” https://obamawhitehouse.archives.g

ov/blog/2016/02/25/precision-
medicine-health-care-tailored-you

- President Obama, January 30, 2015

2 - Lectures.GersteinLab.org



Extension of the canonical model of drivers and passengers
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» > 580 researchers

» ~30M total somatic SNVs

Now published as Nature 578: 82—93 (2020)

Adapted from Campbell et. al., bioRxiv (17).
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[Zhang et al. (‘20), biorxiv + Nat. Comm. (in press)]
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« Background

- Additive-Effects model to measure the Impact

Drivers v passenger
Coding v noncoding
Pcawg & encode 3

of non-coding v coding mutations

Repurposing a formalism from germline genetics for missing
heritability to cancer

Using it to assess the overall Impact of passengers v drivers,
non-coding vs coding, distal vs proximal non-coding
Notable effect, particularly for non-coding passengers, in
addition to known coding drivers.

Recasting as a predictive model
to est. number of weak drivers
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Relating Germline Missing Heritability to Cancer Studies

Subclonal trait in cancer:
Growth rate

et
=g

Population level definitions:
Parent-offspring heritability;
Twin-based heritability ...

Organismal trait: Height

— —
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Offspring
S

Parent
Time \

SNP-based polygenic & additive model:

XB + 7 u + ¢ Tumor sample taken
h* = %u / / \ \

Trait Covariates & Genetic predictors Environmental noise
fixed effects & random effects




Missing heritability for height & other traits
* Height is a highly polygenic trait:

SNP category # SNPs Heritability estimate (h2) Year
GWAS SNPs! 50 ~0.05 2008
Common SNPs? ~295K 0.54 (SE0.1) 2010
Common-+rare SNPs3 47.1M 0.79 (SE 0.09) 2019
Population estimate (twins)? - 0.8 (2012)

SE = standard error

* Many other traits have substantial missing GWAS-based heritability-:

[1] Weedon, M.N., Lango, H., Lindgren, C.M., Wallace, C., Evans, D.M., Mangino, M., Freathy, R.M., Perry, J.R.,
Stevens, S., Hall, A.S. and Samani, N.J., 2008. Genome-wide association analysis identifies 20 loci that influence
adult height. Nature genetics, 40(5), p.575.

[2] Yang, J., Benyamin, B., McEvoy, B.P., Gordon, S., Henders, A.K., Nyholt, D.R., Madden, P.A., Heath, A.C.,
Martin, N.G., Montgomery, G.W., Goddard, M.E.,..., Visscher, P., 2010. Common SNPs explain a large
proportion of the heritability for human height. Nature genetics, 42(7), p.565.

[3] Wainschtein, P., Jain, D.P., Yengo, L., Zheng, Z., Cupples, L.A., Shadyab, A.H., McKnight, B., Shoemaker,
B.M., Mitchell, B.D., Psaty, B.M., Kooperberg, C., ..., Visscher, P., 2019. Recovery of trait heritability from whole
genome sequence data. bioRxiv, p.588020.

[4] Visscher, P.M., Brown, M.A., McCarthy, M.I. and Yang, J., 2012. Five years of GWAS discovery. The
American Journal of Human Genetics, 90(1), pp.7-24.

[5] Manolio, T.A., Collins, F.S., Cox, N.J., Goldstein, D.B., Hindorff, L.A., Hunter, D.J., McCarthy, M.l., Ramos,
E.M., Cardon, L.R., Chakravarti, A., Cho, J.H., and Visscher, P., 2009. Finding the missing heritability of complex
diseases. Nature, 461(7265), p.747.

Table 1| Estimates of heritability and number of loci for several complex traits

Disease

Number of loci

Proportion of heritability explained

Age-related macular degeneration”
Crohn's disease®*

Systemic lupus erythematosus”
Type 2 diabetes’™

HDL cholesterol”®

Height®

Early onset myocardial infarction”®
Fasting glucose”

5
32
6
18
7
40
9
4

50%
20%
15%
6%

5.2%
5%

2.8%
1.5%

*Residual is after adjustment for age, gender, diabetes.




Additive effects model to quantify cumulative effect of
nominal passengers in PCAWG

¢ Model for the effect of an individual ® @ weakdriver
SNPona phenotype cancer /\ deleterious passenger
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[Kumar, Warrell et al. ('20, in press) Cell + biorxiv]



Using additive effects to compare different

categories of variants

b ’ ‘ weak driver

A deleterious passenger
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[Kumar, Warrell et al. ('20, in press) Cell + biorxiv]



Overall additive variance increase for multiple cancer

cohorts in PCAWG with the inclusion of passengers

additive variance explained

0.81

0.6 1

0.4+

0.2-

drivers

drivers
+
passengers

cancer type

@ Pancreas-AdenoCA
© Skin-Melanoma

@ Ovary-AdenoCA

@ Liver-HCC

@ Breast-AdenoCA

@ Kidney-RCC

© Prostate-AdenoCA
@ CNS-Medullo

® pancancer

Increase in the
variance from ~50%
using drivers alone
to ~59% with
putative passengers
included, averaged
across all cohorts.

[Kumar, Warrell et al. ('20, in press) Cell + biorxiv]



Element level additive variance for multiple cancer
cohorts in PCAWG, comparing coding & non-coding

additive variance explained
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In addition to
coding
mutations,
promoter &
other non-
coding
mutations
contributed
significant
amounts of extra

variance
(~2% & 7%) .

[Kumar, Warrell et al. ('20, in press) Cell + biorxiv]



Recasting the additive effects model in a predictive context:
Best Linear Unbiased Predictor (BLUP) analysis

Cummulative

Additive variance

SNVs, ordered by descending BLUP (u):

SNVs added

l

J

|

BLUP predictor:
i = argmax, (P (uly, 62))

= argmax, (P(y|u)P(u|c?))

Lower bound on # weak drivers (8.4 pan-cancer average; enriched for PCAWG genes w/ FDR<0.25)

[Kumar, Warrell et al. ('20, in press) Cell + biorxiv]
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Simplifying Network Rewiring

From TF — gene (109%50,000)
toTF — pathway (109x50)

109 Transcription Factors (TF)
A
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[Zhang et al. (‘20), biorxiv + Nat. Comm. (in press)]
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TopicNet: Measuring transcriptional regulatory
network change using LDA
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