

> Mark Gerstein Yale

Slides freely downloadable from Lectures.GersteinLab.org & "tweetable" (via @MarkGerstein). No Conflicts for this Talk. See last slide for more info.

earch

THE PRECISION MEDICINE INITIATIVE

"Doctors have always recognized that every patient is unique, and doctors have always tried to tailor their treatments as best they can to individuals. You can match a blood transfusion to a blood type — that was an important discovery. What if matching a cancer cure to our genetic code was just as easy, just as standard? What if figuring out the right dose of medicine was as simple as taking our temperature?"

- President Obama, January 30, 2015

Precision Oncology

- Sub-topic of precision medicine
- Analysis of the exact somatic mutations in a individual, suggesting individualized treatment

What if matching a cancer cure to our genetic code was just as easy

https://obamawhitehouse.archives.g ov/blog/2016/02/25/precisionmedicine-health-care-tailored-you

Extension of the canonical model of drivers and passengers

Coding regions are only ~1-2% of the genome yet contain almost all the drivers.

Open Q: what is the role of the noncoding genome in cancer?

PCAWG : most comprehensive resource for cancer whole genome analysis

Adapted from Campbell et. al., bioRxiv ('17). Now published as Nature 578: 82–93 (2020)

Union of TCGA-ICGC efforts

- Jointly analyzing ~2800 whole genome tumor/normal pairs
 > 580 researchers
 - ➤ ~30M total somatic SNVs

http://encodec.encodeproject.org/

		86 Cancerous (40 Cancer Types) + 143 Composite Normal (inc. Roadmap)																
		458 489 151 483 11 15 0 50° 401 18 80° 1808 20° 20° 20° 10° 1808 50° 1808 10° 50° 110° 50° 110° 50° 10° 50° 10°																
		CML	LIHC	LUAD	BRCA	Cervix	ESC		+READ	PAAD	PR	AD	LUAD	SARC	LAML	NB		
Chromatin DS {	DNase-seq	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠		٠		
Histone HM <	Histone ChIP-seq	19	14	85	16	14	53	3	16	7	1	11	11	8	11	19	528 ENCODE Cell Types	 → Deduplicated & Selected Human Biosamples
Transcription TX	RNA-seq	٠	٠	٠	٠	٠	٠		٠	٠	▼	٠	▼	▼		٠		
	RAMPAGE	+																
RNA-binding Proteins	eCLIP	191	164							1267		an c	100				- 17	
RNAi/CRISPR KD	shRNA/siRNA KD	326	257		2							10000						
	CRISPR KD/KO	108	19								a			e		1		
3D Chromatin	ChIA-PET	9	2		5	1			2		1.			20.	2	1		O a mana la ana si
Structure 3D	Hi-C	•	٠	٠	•	+	•			-	-	, t	N.					Comprehensiv
Enhancers SS	STARR-seq	+	٠		٠								non-coding					
Methylation ME	WGBS	٠	٠	٠	▼	٠	٠			mase thin mcyclope XNA elem				-28				Annotation
	RRBS	+	٠	٠	٠	٠	٠					a.		10				
Replication Timing RT	Repli-chip					٠	٠		Ν,					E.	and the		100	Applicable to
	Repli-seq	٠	٠	٠	٠	٠							24 11		12		14- 14-	cancer genom
Transcription TF	TF ChIP-seq	558	300	240	149	78	89		10		T.		1º					
Cell Line WGS WG	SNV	•		▼	▼	•			6				1000	terial generation	ilain II		-	
	sv				▼				1	-		-						

Background

- Drivers v passenger
- Coding v noncoding
- Pcawg & encode 3

- Repurposing a formalism from germline genetics for missing heritability to cancer
- Using it to assess the overall Impact of passengers v drivers, non-coding vs coding, distal vs proximal non-coding
- Notable effect, particularly for non-coding passengers, in addition to known coding drivers.
- Recasting as a predictive model to est. number of weak drivers

- <u>Network Rewiring</u>
 <u>in Cancer</u>
 - Large-scale ENCODE chip-seq data highlights TFs changing targets greatly in oncogenesis. (Focus on CML)
 - TopicNet LDA approach (from textmining) finds regulators that greatly change their gene communities

Background

- Drivers v passenger
- Coding v noncoding
- Pcawg & encode 3

- Repurposing a formalism from germline genetics for missing heritability to cancer
- Using it to assess the overall Impact of passengers v drivers, non-coding vs coding, distal vs proximal non-coding
- Notable effect, particularly for non-coding passengers, in addition to known coding drivers.
- Recasting as a predictive model to est. number of weak drivers

- <u>Network Rewiring</u>
 <u>in Cancer</u>
 - Large-scale ENCODE chip-seq data highlights TFs changing targets greatly in oncogenesis. (Focus on CML)
 - TopicNet LDA approach (from textmining) finds regulators that greatly change their gene communities

Relating Germline Missing Heritability to Cancer Studies

Missing heritability for height & other traits

• Height is a highly polygenic trait:

SNP category	# SNPs	Heritability estimate (<i>h</i> ²)	Year
GWAS SNPs ¹	50	~0.05	2008
Common SNPs ²	~295К	0.54 (SE 0.1)	2010
Common+rare SNPs ³	47.1M	0.79 (SE 0.09)	2019
Population estimate (twins) ⁴	-	0.8	(2012)

SE = standard error

• Many other traits have substantial missing GWAS-based heritability⁵:

[1] Weedon, M.N., Lango, H., Lindgren, C.M., Wallace, C., Evans, D.M., Mangino, M., Freathy, R.M., Perry, J.R.,	Table 1 Estimates of heritability and number of loci for several complex traits						
Stevens, S., Hall, A.S. and Samani, N.J., 2008. Genome-wide association analysis identifies 20 loci that influence adult height. Nature genetics, 40(5), p.575.	Disease	Number of loci	Proportion of heritability explained				
[2] Yang, J., Benyamin, B., McEvoy, B.P., Gordon, S., Henders, A.K., Nyholt, D.R., Madden, P.A., Heath, A.C.,	Age-related macular degeneration ⁷²	5	50%				
Martin, N.G., Montgomery, G.W., Goddard, M.E.,, Visscher, P., 2010. Common SNPs explain a large	Crohn's disease ²¹	32	20%				
proportion of the heritability for human height. <i>Nature genetics, 42</i> (7), p.565. [3] Wainschtein, P., Jain, D.P., Yengo, L., Zheng, Z., Cupples, L.A., Shadyab, A.H., McKnight, B., Shoemaker,	Systemic lupus erythematosus ⁷³	6	15%				
B.M., Mitchell, B.D., Psaty, B.M., Kooperberg, C.,, Visscher, P., 2019. Recovery of trait heritability from whole	Type 2 diabetes ⁷⁴	18	6%				
genome sequence data. bioRxiv, p.588020.	HDL cholesterol ⁷⁵	7	5.2%				
[4] Visscher, P.M., Brown, M.A., McCarthy, M.I. and Yang, J., 2012. Five years of GWAS discovery. The	Height ¹⁵	40	5%				
American Journal of Human Genetics, 90(1), pp.7-24. [5] Manolio, T.A., Collins, F.S., Cox, N.J., Goldstein, D.B., Hindorff, L.A., Hunter, D.J., McCarthy, M.I., Ramos,	Early onset myocardial infarction ⁷⁶	9	2.8%				
E.M., Cardon, L.R., Chakravarti, A., Cho, J.H., and Visscher, P., 2009. Finding the missing heritability of complex	Fasting glucose ⁷⁷	4	1.5%				
diseases. <i>Nature, 461</i> (7265), p.747.	* Residual is after adjustment for age, gender, diabetes.						

Additive effects model to quantify cumulative effect of nominal passengers in PCAWG

Using additive effects to compare different categories of variants

Model:

Overall additive variance increase for multiple cancer cohorts in PCAWG with the inclusion of passengers

Increase in the variance from ~50% using drivers alone to ~59% with putative passengers included, averaged across all cohorts.

Element level additive variance for multiple cancer cohorts in PCAWG, comparing coding & non-coding

In addition to coding mutations. promoter & other noncoding mutations contributed significant amounts of extra variance (~2% & 7%).

Recasting the additive effects model in a predictive context: Best Linear Unbiased Predictor (BLUP) analysis

Lower bound on # weak drivers (8.4 pan-cancer average; enriched for PCAWG genes w/ FDR<0.25)

Background

- Drivers v passenger
- Coding v noncoding
- Pcawg & encode 3

- Repurposing a formalism from germline genetics for missing heritability to cancer
- Using it to assess the overall Impact of passengers v drivers, non-coding vs coding, distal vs proximal non-coding
- Notable effect, particularly for non-coding passengers, in addition to known coding drivers.
- Recasting as a predictive model to est. number of weak drivers

- <u>Network Rewiring</u>
 <u>in Cancer</u>
 - Large-scale ENCODE chip-seq data highlights TFs changing targets greatly in oncogenesis. (Focus on CML)
 - TopicNet LDA approach (from textmining) finds regulators that greatly change their gene communities

Regulatory Network Construction

Transcription Factor

RNA-binding Protein

[Zhang et al. ('20), Nat. Comm. + biorxiv]

Simplifying Network Rewiring

From $TF \rightarrow gene (109 \times 50,000)$ to $TF \rightarrow pathway (109 \times 50)$

TopicNet: Measuring transcriptional regulatory network change using LDA

[Lou et al. bioxriv + Bioinformatics ('20)]

[Zhang et al. ('20), biorxiv + Nat. Comm. (in press)]

Lectures.gersteinlab.org

Background

- Drivers v passenger
- Coding v noncoding
- Pcawg & encode 3

- Repurposing a formalism from germline genetics for missing heritability to cancer
- Using it to assess the overall Impact of passengers v drivers, non-coding vs coding, distal vs proximal non-coding
- Notable effect, particularly for non-coding passengers, in addition to known coding drivers.
- Recasting as a predictive model to est. number of weak drivers

- <u>Network Rewiring</u>
 <u>in Cancer</u>
 - Large-scale ENCODE chip-seq data highlights TFs changing targets greatly in oncogenesis. (Focus on CML)
 - TopicNet LDA approach (from textmining) finds regulators that greatly change their gene communities

Background

- Drivers v passenger
- Coding v noncoding
- Pcawg & encode 3

- Repurposing a formalism from germline genetics for missing heritability to cancer
- Using it to assess the overall Impact of passengers v drivers, non-coding vs coding, distal vs proximal non-coding
- Notable effect, particularly for non-coding passengers, in addition to known coding drivers.
- Recasting as a predictive model to est. number of weak drivers

- <u>Network Rewiring</u>
 <u>in Cancer</u>
 - Large-scale ENCODE chip-seq data highlights TFs changing targets greatly in oncogenesis. (Focus on CML)
 - TopicNet LDA approach (from textmining) finds regulators that greatly change their gene communities

PCAWG.gersteinlab.org

s Kumar, J Warrell, S Li, P

McGillivray, W Meyerson, L Salichos, A Harmanci, A Martinez-Fundichely, C Chan, M Nielsen, L Lochovsky, Y Zhang, X Li, S Lou, J Skou Pedersen, C H, G Getz, E Khurana

ENCODEC.gersteinlab.org J **Zhang**, D **Lee**, V Dhiman, P Jiang, J Xu, P McGillivray.... S Liu, K White

github.com/gersteinlab/**TopicNet** s **Lou**, T **Li**, X Kong, J Zhang, J Liu, D Li

Info about this talk

No Conflicts

Unless explicitly listed here. There are no conflicts of interest relevant to the material in this talk

General PERMISSIONS

- This Presentation is copyright Mark Gerstein, Yale University, 2019.
- Please read permissions statement at

sites.gersteinlab.org/Permissions

• Basically, feel free to use slides & images in the talk with PROPER acknowledgement (via citation to relevant papers or website link). Paper references in the talk were mostly from Papers.GersteinLab.org.

PHOTOS & IMAGES

For thoughts on the source and permissions of many of the photos and clipped images in this presentation see streams.gerstein.info . In particular, many of the images have particular EXIF tags, such as kwpotppt , that can be easily queried from flickr, viz: flickr.com/photos/mbgmbg/tags/kwpotppt