

Slides freely downloadable from Lectures.GersteinLab.org & "tweetable" (via @MarkGerstein). No Conflicts for this Talk. See last slide for more info. http://encodec.encodeproject.org/

BIOSAMPLE		86 Cancerous (40 Cancer Types) + 143 Composite Normal (inc. Roadmap)																			
ENCODEC		4 Sta	02 He	pG2 AS	A9 MC	FILHE	Lars's	THESC C?	scort HC	TITOPar	ic' in	CaP PC	53 pc	03 54	N-MC DN	D'A1 SY	NSH	/			
		CML	ML LIHC LUAD BRCA Cervix E		ESC	SC COAD+READ		PAAD PRAD		AD	LUAD SAF		LAML	NB					_		
Chromatin Accessibility DS	DNase-seq	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠		٠					
Histone HM	Histone ChIP-seq	19	14	85	16	14	53	3	16	7	1	11	11	8	11	19	528 ENCOL Cell Typ	DE 🏓 🛛	Deduplica Humar	229 ated & Selecter Biosamples	d
Transcription TX	RNA-seq	•	٠	٠	٠	•	٠		+	٠	▼	•		•		+					
	RAMPAGE	+																			
RNA-binding Proteins RP	eCLIP	191	164																		
RNAi/CRISPR Knockdown	shRNA/siRNA KD	326	257		2																
	CRISPR KD/KO	108	19																		
3D Chromatin Structure 3D	ChIA-PET	9	2		5	1															
	Hi-C	▼	٠	٠	•	٠	▼														
Enhancers SS	STARR-seq	٠	٠		٠																
Methylation ME	WGBS	•	٠	٠	▼	٠	٠														
	RRBS	+	٠	٠	٠	٠	٠														
Replication Timing RT	Repli-chip					٠	٠														
	Repli-seq	٠	٠	٠	٠	٠															
Transcription Factors TF	TF ChIP-seq	558	300	240	149	78	89														
Cell Line WGS WG	SNV	•		▼	•	•															
	SV			▼	•	•															

BMR Correction: LARVA/MOAT/NIMBUS

- Parametric models explicitly modeling genomic covariates
- Many ENCODE covariates useful in accurately estimating background mutation rate

Network Rewiring in Cancer

- Large-scale ENCODE chip-seq data in certain cell lines highlights TFs changing targets greatly in oncogenesis. (Focus on CML)
- TopicNet LDA approach (from text-mining) finds regulators that greatly change their gene communities

RADAR Variant Prioritization

- Prioritizes germline & somatic variants based on post-transcriptional regulome using ENCODE eCLIP
- Incorporates new features related to RNA sec. struc & tissue specific effects

<u>Regulatory</u> Drivers of Differential Expression

- Highlighting regulators in terms of their power to drive differential expression.
- Relationship of this to network hierarchy & RBP-TF cross talk
- Example of MYC & SUB1

BMR Correction: LARVA/MOAT/NIMBUS

- Parametric models explicitly modeling genomic covariates
- Many ENCODE covariates useful in accurately estimating background mutation rate

Network Rewiring in Cancer

- Large-scale ENCODE chip-seq data in certain cell lines highlights TFs changing targets greatly in oncogenesis. (Focus on CML)
- TopicNet LDA approach (from text-mining) finds regulators that greatly change their gene communities

<u>RADAR Variant Prioritization</u>

- Prioritizes germline & somatic variants based on post-transcriptional regulome using ENCODE eCLIP
- Incorporates new features related to RNA sec. struc & tissue specific effects
- <u>Regulatory</u>
 <u>Drivers of Differential Expression</u>
 - Highlighting regulators in terms of their power to drive differential expression.
 - Relationship of this to network hierarchy & RBP-TF cross talk
 - Example of MYC & SUB1

Mutation recurrence

violation of the constant mutation rate assumption

Accurately modeling background mutation rate with full spectrum of ENCODE data

[Zhang et al. *Nat. Comm.* ('20); Zhang et al. biorxiv + BMC Bioinfo ('20), in press]

Cancer Somatic Mutation Modeling

PARAMETRIC MODELS (LARVA/NIMBUS)

Model 1: Constant Background Mutation Rate (Model from Previous Work)

 x_i : Binomial (n_i, p)

Model 2: Varying Mutation Rate with Covariate Correction (Beta Binom.)

 x_i : Binomial (n_i, p_i)

 p_i : Beta $(\mu | R_i, \sigma | R_i)$

 $\mu | R_i, \sigma | R_i$: constant within the same covariate rank

Model 3: Varying Mutation Rate with Covariate Correction (Neg. Binom.)

 $x_i | p_i \sim Pois(p_i)$ $p_i \sim gamma(\mu_i, \theta_i)$ $\log(\mu_i) \sim \beta_0 + \beta_1 v_1 + \dots + \beta_k v_k$ • Suppose there are *L* genome elements. For element *i*, define:

- n;: total number of nucleotides
- *x_i*: the number of mutations within the element
- -p: the mutation rate
- $-R_i \& v_k$: covariates
- Non-parametric model is useful when covariate data is missing for the studied annotations
 - Also sidesteps issue of properly identifying and modeling every relevant covariate (possibly hundreds)

NON-PARAMETRIC MODELS (MOAT)

Assume constant background mutation rate in local regions.

Model 3a: Random Permutation of Input

Annotations

Shuffle annotations within local region to assess background mutation rate.

Model 3b: Random Permutation of Input Variants

Shuffle variants within local region to assess background mutation rate.

[Lochovsky et al. Bioinformatics ('17)]

LARVA/NIMBUS Model Comparison

- Comparison of mutation count frequency implied by the binomial model (model 1) and the beta-binomial model (model 2) relative to the empirical distribution
- The beta-binomial/negative binomial distribution is significantly better, especially for accurately modeling the over-dispersion of the empirical distribution

LARVA/NIMBUS Results: Reducing P-value inflation

BMR Correction: LARVA/MOAT/NIMBUS

- Parametric models explicitly modeling genomic covariates
- Many ENCODE covariates useful in accurately estimating background mutation rate

Network Rewiring in Cancer

- Large-scale ENCODE chip-seq data in certain cell lines highlights TFs changing targets greatly in oncogenesis. (Focus on CML)
- TopicNet LDA approach (from text-mining) finds regulators that greatly change their gene communities

<u>RADAR Variant Prioritization</u>

- Prioritizes germline & somatic variants based on post-transcriptional regulome using ENCODE eCLIP
- Incorporates new features related to RNA sec. struc & tissue specific effects
- <u>Regulatory</u>
 Drivers of Differential Expression
 - Highlighting regulators in terms of their power to drive differential expression.
 - Relationship of this to network hierarchy & RBP-TF cross talk
 - Example of MYC & SUB1

Simplifying Network Rewiring

From $TF \rightarrow gene (109 \times 50,000)$ to $TF \rightarrow pathway (109 \times 50)$

TopicNet: Measuring transcriptional regulatory network change using LDA

[Lou et al. bioxriv + Bioinformatics ('20)]

[Zhang et al. ('20), biorxiv + Nat. Comm. (in press)]

Lectures.gersteinlab.org

BMR Correction: LARVA/MOAT/NIMBUS

- Parametric models explicitly modeling genomic covariates
- Many ENCODE covariates useful in accurately estimating background mutation rate

Network Rewiring in Cancer

- Large-scale ENCODE chip-seq data in certain cell lines highlights TFs changing targets greatly in oncogenesis. (Focus on CML)
- TopicNet LDA approach (from text-mining) finds regulators that greatly change their gene communities

<u>RADAR Variant Prioritization</u>

- Prioritizes germline & somatic variants based on post-transcriptional regulome using ENCODE eCLIP
- Incorporates new features related to RNA sec. struc & tissue specific effects
- <u>Regulatory</u>
 Drivers of Differential Expression
 - Highlighting regulators in terms of their power to drive differential expression.
 - Relationship of this to network hierarchy & RBP-TF cross talk
 - Example of MYC & SUB1

RNA Binding Proteins (RBPs)

Nature Reviews | Molecular Cell Biology

Nat Rev Mol Cell Biol. 2018 May;19(5):327-341. doi: 10.1038/nrm.2017.130. Epub 2018 Jan 17.

 ENCODE3 did ~350 focused eCLIP expt. for >110 RBPs on HepG2 & K562 (Van Nostrand...Yeo. Nat. Meth. '16; Van Nostrand...Graveley, Yeo (submitted in relation to ENCODE3))

[Zhang*, Liu* et al., Genome Biology '20]

Schematic of RADAR Scoring

[Zhang*, Liu* et al., Genome Biology '20]

High Phastcon in RBP-overlapped annotations

Rare DAF

RNA Structure Cons. from Evofold

Co-binding of RBPs form biologically relevant complexes

[Zhang*, Liu* et al., Genome Biology '20]

Hub Number (Hotness)

RADAR Scores enriched in COSMIC genes and recurrently mutated regions

[Zhang*, Liu* et al., Genome Biology '20]

BMR Correction: LARVA/MOAT/NIMBUS

- Parametric models explicitly modeling genomic covariates
- Many ENCODE covariates useful in accurately estimating background mutation rate

Network Rewiring in Cancer

- Large-scale ENCODE chip-seq data in certain cell lines highlights TFs changing targets greatly in oncogenesis. (Focus on CML)
- TopicNet LDA approach (from text-mining) finds regulators that greatly change their gene communities

<u>RADAR Variant Prioritization</u>

- Prioritizes germline & somatic variants based on post-transcriptional regulome using ENCODE eCLIP
- Incorporates new features related to RNA sec. struc & tissue specific effects
- <u>Regulatory</u>
 Drivers of Differential Expression
 - Highlighting regulators in terms of their power to drive differential expression.
 - Relationship of this to network hierarchy & RBP-TF cross talk
 - Example of MYC & SUB1

[Zhang et al. ('19), biorxiv.org]

Disease Network : Principles dotted line = lost edge

Direct target gain/loss

Lectures.gersteinlab.org

[Zhang et al. ('19), biorxiv.org]

Lectures.gersteinlab.org

[Zhang et al. ('19), biorxiv.org]

BMR Correction: LARVA/MOAT/NIMBUS

- Parametric models explicitly modeling genomic covariates
- Many ENCODE covariates useful in accurately estimating background mutation rate

Network Rewiring in Cancer

- Large-scale ENCODE chip-seq data in certain cell lines highlights TFs changing targets greatly in oncogenesis. (Focus on CML)
- TopicNet LDA approach (from text-mining) finds regulators that greatly change their gene communities

<u>RADAR Variant Prioritization</u>

- Prioritizes germline & somatic variants based on post-transcriptional regulome using ENCODE eCLIP
- Incorporates new features related to RNA sec. struc & tissue specific effects
- <u>Regulatory</u>
 Drivers of Differential Expression
 - Highlighting regulators in terms of their power to drive differential expression.
 - Relationship of this to network hierarchy & RBP-TF cross talk
 - Example of MYC & SUB1

BMR Correction: LARVA/MOAT/NIMBUS

- Parametric models explicitly modeling genomic covariates
- Many ENCODE covariates useful in accurately estimating background mutation rate

Network Rewiring in Cancer

- Large-scale ENCODE chip-seq data in certain cell lines highlights TFs changing targets greatly in oncogenesis. (Focus on CML)
- TopicNet LDA approach (from text-mining) finds regulators that greatly change their gene communities

RADAR Variant Prioritization

- Prioritizes germline & somatic variants based on post-transcriptional regulome using ENCODE eCLIP
- Incorporates new features related to RNA sec. struc & tissue specific effects

<u>Regulatory</u> Drivers of Differential Expression

- Highlighting regulators in terms of their power to drive differential expression.
- Relationship of this to network hierarchy & RBP-TF cross talk
- Example of MYC & SUB1

ENCODEC.gersteinlab.org J Zhang, D Lee, V Dhiman, P Jiang, J Xu, P McGillivray, H Yang.... S Liu, K White

NIMBUS.gersteinlab.org J Zhang, J Liu, P McGillivray, C Yi, L Lochovsky, D Lee

RADAR.gersteinlab.org J Zhang, J Liu, D Lee, J-J Feng, L Lochovsky, S Lou, M Rutenberg-Schoenberg

{LARVA, MOAT}. gersteinlab.org **Lochovsky**, J **Zhang**, Y Fu, E Khurana

github.com/gersteinlab/**TopicNet** S **Lou**, T **Li**, X **Kong**, J Zhang, J Liu, D Lee

Info about this talk

No Conflicts

Unless explicitly listed here. There are no conflicts of interest relevant to the material in this talk

General PERMISSIONS

- This Presentation is copyright Mark Gerstein, Yale University, 2017.
- Please read permissions statement at

sites.gersteinlab.org/Permissions

• Basically, feel free to use slides & images in the talk with PROPER acknowledgement (via citation to relevant papers or website link). Paper references in the talk were mostly from Papers.GersteinLab.org.

PHOTOS & IMAGES

For thoughts on the source and permissions of many of the photos and clipped images in this presentation see streams.gerstein.info . In particular, many of the images have particular EXIF tags, such as kwpotppt , that can be easily queried from flickr, viz: flickr.com/photos/mbgmbg/tags/kwpotppt