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Using ENCODE Data for Cancer Genomics

Slides freely downloadable from Lectures.GersteinLab.org & “tweetable” (via @MarkGerstein). 
No Conflicts for this Talk. See last slide for more info.



http://encodec.encodeproject.org/
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Using ENCODE Data for Cancer Genomics

• BMR Correction: 
LARVA/MOAT/NIMBUS 
• Parametric models explicitly modeling 

genomic covariates
• Many ENCODE covariates useful in accurately 

estimating background mutation rate

• Network Rewiring in Cancer
• Large-scale ENCODE chip-seq data in certain 

cell lines highlights TFs changing  targets 
greatly in oncogenesis. (Focus on CML)

• TopicNet LDA approach (from text-mining) 
finds regulators that greatly change their gene 
communities

• RADAR Variant Prioritization
• Prioritizes germline & somatic variants based 

on post-transcriptional regulome using 
ENCODE eCLIP

• Incorporates new features related to RNA sec. 
struc & tissue specific effects

• Regulatory 
Drivers of Differential Expression
• Highlighting regulators in terms of their power 

to drive differential expression. 
• Relationship of this to network hierarchy & 

RBP-TF cross talk
• Example of MYC & SUB1
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violation of the constant mutation rate assumption
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muta;on rate changes across tumor

mutation rate changes across patients

within one tumor type

mutation rate changes across regions

within one tumor type
within one pa/ent

mutation rate changes with many covariates

within one tumor type
within one patient

Inaccurate burden test results

Bad data fiDng

inappropriate models

[Lochovsky et al. NAR (’15); Zhang et al. biorxiv + BMC Bioinfo (’20), in press]
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Accurately 
modeling 

background 
mutation rate with 
full spectrum of 
ENCODE data

[Zhang et al. Nat. Comm. (’20); 
Zhang et al. biorxiv + BMC Bioinfo (’20), in press]
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Cancer Somatic Mutation Modeling
• Suppose there are L genome 

elements. For element i, define:
– ni: total number of nucleotides
– xi: the number of mutations within the 

element
– p: the mutation rate
– Ri & 𝑣! : covariates

• Non-parametric model is useful 
when covariate data is missing for 
the studied annotations

• Also sidesteps issue of properly 
identifying and modeling every 
relevant covariate 
(possibly hundreds)

Model 1: Constant Background 
Mutation Rate (Model from 
Previous Work)

PARAMETRIC MODELS 
(LARVA/NIMBUS)

Model 3a: Random 
Permutation of Input 
Annotations
Shuf%le	annotations	within	local	
region	to	assess	background	
mutation	rate.

Model 2: Varying Mutation Rate
with Covariate Correction (Beta Binom.)

Model 3: Varying Mutation Rate
with Covariate Correction (Neg. Binom.)

NON-PARAMETRIC MODELS (MOAT)

Model 3b: Random 
Permutation of Input Variants
Shuffle	variants	within	local	
region	to	assess	background	
mutation	rate.

Assume constant background 
mutation rate in local regions.

[Lochovsky et al. Bioinformatics (‘17)]

[Zhang et al. biorxiv + BMC Bioinfo. (‘20);  Lochovsky et al. NAR (’15)]

𝑥!|𝑝!~𝑃𝑜𝑖𝑠(𝑝!)
𝑝!~𝑔𝑎𝑚𝑚𝑎(𝜇! , 𝜃!)
log 𝜇! ~𝛽" + 𝛽#𝑣# +⋯+ 𝛽$𝑣$
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LARVA/NIMBUS Model Comparison
• Comparison of mutation count frequency implied by the binomial model (model 1) and the 

beta-binomial model (model 2) relative to the empirical distribution
• The beta-binomial/negative binomial distribution is significantly better, especially for 

accurately modeling the over-dispersion of the empirical distribution

[Zhang et al. biorxiv + BMC Bioinfo. (‘20);  Lochovsky et al. NAR (’15)]
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LARVA/NIMBUS Results: Reducing P-value inflation

[Zhang et al. biorxiv + BMC Bioinfo. (‘20);  Lochovsky et al. NAR (’15)]
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Rewired 
edges in 
comparison 
of GM12878 
to K562 
109 node 
TF-TF 
network 
(approx. 
CML)



From 𝑇𝐹 → 𝑔𝑒𝑛𝑒 (109×50,000)
to 𝑇𝐹 → 𝑝𝑎𝑡ℎ𝑤𝑎𝑦 (109×50)

Simplifying Network Rewiring
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TopicNet: Measuring transcriptional regulatory 
network change using LDA 

Documents

Topics

Words

[Lou et al. bioxriv + Bioinformatics (’20)]



1
7

-L
ec
tu
re
s.
G
er
st
ei
nL
ab
.o
rg

[Zhang et al. ('19), biorxiv.org]  Lectures.gersteinlab.org[Zhang et al. (‘20), biorxiv + Nat. Comm. (in press)]



Using ENCODE Data for Cancer Genomics

• BMR Correction: 
LARVA/MOAT/NIMBUS 
• Parametric models explicitly modeling 

genomic covariates
• Many ENCODE covariates useful in accurately 

estimating background mutation rate

• Network Rewiring in Cancer
• Large-scale ENCODE chip-seq data in certain 

cell lines highlights TFs changing  targets 
greatly in oncogenesis. (Focus on CML)

• TopicNet LDA approach (from text-mining) 
finds regulators that greatly change their gene 
communities

• RADAR Variant Prioritization
• Prioritizes germline & somatic variants based 

on post-transcriptional regulome using 
ENCODE eCLIP

• Incorporates new features related to RNA sec. 
struc & tissue specific effects

• Regulatory 
Drivers of Differential Expression
• Highlighting regulators in terms of their power 

to drive differential expression. 
• Relationship of this to network hierarchy & 

RBP-TF cross talk
• Example of MYC & SUB1



1
9

-L
ec
tu
re
s.
G
er
st
ei
nL
ab
.o
rg

RNA Binding Proteins (RBPs)

[Zhang*, Liu* et al., Genome Biology ‘20]

Nat Rev Mol Cell Biol. 2018 May;19(5):327-341. doi: 10.1038/nrm.2017.130. Epub 2018 Jan 17.

• Before ENCODE3: >150 expt. 
in many different cell types 

• ENCODE3 did ~350 focused eCLIP expt. 
for >110 RBPs on HepG2 & K562
(Van Nostrand...Yeo. Nat. Meth. '16; 
Van Nostrand...Graveley, Yeo 
(submitted in relation to ENCODE3))

https://www.ncbi.nlm.nih.gov/pubmed/29339797
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Schematic of RADAR Scoring

[Zhang*, Liu* et al., Genome Biology ‘20]
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High Phastcon in RBP-overlapped annotations RNA Structure Cons. from Evofold

Enriched rare DAF in eCLIP peaks

R
ar

e 
D

AF

RBP

Phastcon

[Zhang*, Liu* et al., Genome Biology ‘20]
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Co-binding of RBPs form biologically relevant complexes

Binding hubs are enriched for rare variants
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RADAR Scores enriched in COSMIC genes and recurrently mutated regions

[Zhang*, Liu* et al., Genome Biology ‘20]
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Aggregated t-statistic in 
regression over TCGA samples

[Zhang et al. ('19), biorxiv.org]
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ENCODEC.gersteinlab.org

J Zhang, D Lee, V Dhiman, P Jiang, J Xu, 
P McGillivray, H Yang…. S Liu, K White

NIMBus.gersteinlab.org

J Zhang, J Liu, P McGillivray, C Yi, L Lochovsky, D Lee

RADAR.gersteinlab.org

J Zhang, J Liu, D Lee, J-J Feng, L Lochovsky, S Lou, 
M Rutenberg-Schoenberg

{LARVA,MOAT}.gersteinlab.org

Lochovsky, J Zhang, Y Fu, E Khurana

github.com/gersteinlab/TopicNet
S Lou, T Li, X Kong, J Zhang, J Liu, D Lee
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Info about this talk
No Conflicts

Unless explicitly listed here. There are no conflicts of interest relevant to the material in this talk 

General PERMISSIONS
• This Presentation is copyright Mark Gerstein, Yale University, 2017. 
• Please read permissions statement at 

sites.gersteinlab.org/Permissions
• Basically, feel free to use slides & images in the talk with PROPER acknowledgement (via 

citation to relevant papers or website link). Paper references in the talk were mostly from 
Papers.GersteinLab.org. 

PHOTOS & IMAGES 
For thoughts on the source and permissions of many of the photos and clipped images in this 
presentation see streams.gerstein.info . In particular, many of the images have particular EXIF 
tags, such as  kwpotppt , that can be easily queried from flickr, viz: 
flickr.com/photos/mbgmbg/tags/kwpotppt


