Topics in Deep Learning:
Methods and Biomedical Applications
Lecture 2
Deep Supervised Learning:

Feed-forward Neural Networks and Convolutional
Neural Networks

Dr. Martin Rengiang Min
Prof. Mark Gerstein

Supervised Deep Learning

P I g ol ol ettt o g P P P P Y Bl el O - S o L e P T e

Convolutions and ReLU
M S s & & 8 & & & & & LW e o o o S e N O s N &

f Max pooling
"”’ﬁ"'"”ﬂ oo '”"””'

yi=f(z) / Convolutions and ReLU
"' Zyj(?H;/uyk - T - ’ * o o o ’ ‘:ﬂ ’ ’ ’ ’
\»

Output units () ()

Hidden units H2

4= 2 Wik ¥j
' jeH1
O

Hidden units H1 () () yi=t@) .

’(ﬁ(gk A 5 -

Input units () (@) O

LeCun, Bengio, and Hinton, Deep Learning. Nature 2015

Supervised Deep Learning

Training

Training

Validation

Validation

Test Data

Test Data

Supervised Machine Learning:

Feature Representation + Classification/
Regression Loss + Optimization (on training
data)

- Prediction (on test data)
(hyper-parameter tuning with n-fold CV, n=5)

Supervised Deep Learning:

Input features and adaptively learned
features by hidden layers + Mean Squared
Error/Hinge Loss/Cross-Entropy Loss + SGD
with Momentum (on large-scale training data)
- Good Prediction Performance (on test
data)

(hyper-parameter tuning on a validation set)

Fully Connected Layer

"o
X

y =W X

Activation Functions

S|gmo|d Leaky RelLU
1 max(0.1x, x)
O-(CB) 14e "

tanh V Maxout

10 f
10

ta,nh(x) e 4 . max(w{x + b1, wgzv + b2)
ReLU ELU
max(0,) {Z(e“’ — 1) i i 8

Good default choice

DNN with sigmoid and tanh activation functions has serious vanishing

gradient and saturation issue
y

Grad = y(1-y)

1 +e2

Grad = 1-y2

e — e~ % -

et + e % / /
2 "’/,,0 2 . Z

RelLU Activation Function

Avoid vanishing gradient and less computationally expensive than sigmoid and
tanh

But it might cause dead neuron and the activity is not bounded above

Softmax Activation Function

e’

The output units in a softmax group V. =
use a non-local non-linearity: !

D <
Vi
softmax jEgroup
group
<

dy;
. . —=y; (1-Y;)
this is called the “logit” 0Z;

Often used on top of a fully connected layer, which transforms an activity vector z
into probabilities of classifying x into K classes

Loss Function: Cross-Entropy Loss

The right cost function is the negative
log probability of the target class. C=- Et]‘ log Y

C has a very big gradient when the

_ _ Target Class
target value is 1 and the output is
almost zero.
A value of 0.001 is much better than 0C o dC dy; 3
0.0000001 = E =Y~
dz; < dy; 0z
The steepness of dC/dy exactly balances J

the flatness of dy/dz

Loss Function: Mean Squared Error

1 < .
MSE = — (Y - Yi)’

MSE is a very bad cost function for softmax output units.
Why?

10

Loss Function: Hinge Loss

D izy max(0,s; — sy, + 1)

The score for the wrong class must be 1 margin smaller
than the score for the ground-truth class;
Otherwise, there is a loss incurred

11

Deep Feedforward Neural Network with Sigmoid Hidden Units

visible units

DNN

y

h3
w3

h2
w2

h1

w1
X

12

Backpropagation with a Computational Graph

< — Loss = Squared Error < %y <€
1.0 2*(y—1t) 2 \
w4 h3
5 vl
=
w3\ 523
vl
B el
—>
w2 - 22
h1=""
B el
w1 z1=7
\ * —7 13

Train a Deep Neural Network with SGD

Split our training dataset into N mini-batches with batch size b
For lteration = 1, ..., Num_Max_Iterations
randomly choose a mini-batch D,
“).
oL

where 7 is the iteration index, v is the momentum variable, € is the learning rate, and <8—w

8_L
ow

Vi1 = O.9-vz-—0.0005—e-w,-—e-<

Wit1 = Wi+ Vit

is
w; > D.
the average over the ith batch D; of the derivative of the objective with respect to w, evaluated at
w;.

(you can also have two loops: outer loop over iterations, inner loop over mini-batches)

14

DNN works much worse than a shallow CNN even
on MNIST!

~1.0% vs. ~0.60%

Why?

15

Hubel and Wiesel Experiment

https://www.youtube.com/watch?v=0GxVIKJgX5E

16

Message from Last Lecture

Deep learners should combine their
knowledge with large-scale data to
grow programs, encode essential
knowledge into network structures,
and let backpropagation and
stochastic gradient descent do the

heavy lifting.

Convolutional Neural Network: LeNet (1998)

C3:f. maps 16@10x10

UT C1: feature maps S4: f. maps 16@5x5
!3%232 oReaes S2: f. maps C5: 1
s : layer :
6@14x1 I 120 y F864' Hayes ?gTPUT

|
Full conAection Gaussian connections

Convolutions Subsampling Convolutions Subsampling Full connection

LeCun et al., 1998 8

1D Convolution with W =5, F = 3, Stride = 1,
Padding = 1

Output Size= (W - F +2P)/S+ 1

http://cs231n.github.io/convolutional-networks/

19

\

wait

for

video —

and |
do _

rent
it

n x k representation of
sentence with static and
non-static channels

Convolutional layer with
multiple filter widths and
feature maps

D Convolution over Sentences

Max-over-time Fully connected layer
pooling with dropout and
softmax output

Yoon Kim, Convolutional Neural Networks for Sentence

Classification. EMNLP 2014

20

2D Convolutions

N.B.: Blue maps are inputs, and cyan maps are outputs.

No padding, no strides Arbitrary padding, no strides Half padding, no strides Full padding, no strides

No padding, strides Padding, strides Padding, strides (odd)
https://github.com/vdumoulin/conv_arithmetic

21

2D Convolution Animations

See the animation at

https://github.com/vdumoulin/conv arithmetic

22

2D 3x3 Convolution Applied to RGB Input of Size 5x5

Input

Kerne|

Outpyt

Picture credit: https://thomelane.github.io/convolutions/2DConvRGB.html

23

2D Convolutions in Numbers

http://cs231n.qgithub.io/convolutional-networks/

24

3D Convolution

Input
Kerne| Output

Picture credit: https://thomelane.github.io/convolutions/3DConv.html

25

Max Pooling

g it Single depth slice
112x112x64 i
pool 1112 4
" max pool with 2x2 filters
SamoN 7/ | 8 and stride 2
| I 3 | 2 NS]
1 | 2 S

= 112
downsampling

112

224

X

Pooling layer downsamples the volume spatially, independently in each depth slice of the input volume. Left: In this example, the
input volume of size [224x224x64] is pooled with filter size 2, stride 2 into output volume of size [112x112x64]. Notice that the
volume depth is preserved. Right: The most common downsampling operation is max, giving rise to max pooling, here shown
with a stride of 2. That is, each max is taken over 4 numbers (little 2x2 square).

http://cs231n.github.io/convolutional-networks/

Average Pooling is also widely used, especially in NLP

Data Augmentation

Random erasing, horizontal flipping, rotation, scaling (with cropping), cropping, contrast, color

Picture credit: https://nanonets.com/blog/data-augmentation-how-to-use-
deep-learning-when-you-have-limited-data-part-2/

27

x0.11

[0,0.89,0.11, 0]

[0,0,1,0]

b

x 0.89

[0,1,0,0]

Mixup

Az + (1= Nz, where z;, z; are raw input vectors
Ay + (1= Ny, where y;, y; are one-hot label encodings

z
Y

Zhang et al., Mixup: beyond empirical risk minimization.
ICLR 2018.

Picture credit: https://www.dlology.com/blog/how-to-do-mixup-
training-from-image-files-in-keras/

28

Case Study: AlexNet

PP ImageNet Classification with Deep Convolutional Neural ...

https://papers.nips.cc » paper » 4824-imagenet-classification-with-deep-co... v

by A Krizhevsky - 2012 - Cited by 54415 - Related articles

We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution
images in the ImageNet LSVRC-2010 contest into the 1000 dif-.

NIPS 2012

29

AlexNet Network Structure

!

-
-
.
.
ot

..........

-
o

Max
pooling

i) & rr
.\._::.. ‘.‘:-:_.-:'
182 192 128 2048
21 128 -'..: ., ‘.::‘...
137, 13 13
e, 12.,
E '?,.' Bl‘ iE CEE ,'-_:_:_.‘
= . g3 1= TU hs dense
192 192 128 Max)
128 Max pooling *
pooling

Pay attention to the output Size and the number of parameters

2048

ense

2048

dense

30

Training AlexNet using SGD with Momentum and Weight
Decay

OL
Vit1 = 0.9'vi—0.0005-6-wi—e-<8—w wi> |

Wiy1 = Wi+ Vg

where ¢ is the iteration index, v is the momentum variable, ¢ is the learning rate, and <g—{; w_> 18
2 Di

the average over the ith batch D; of the derivative of the objective with respect to w, evaluated at
w;.

31

AlexNet with ReLU Converges Much Faster

0.751

Q 0.5
= \
s S -
o ~ -
2 ==
£ - -
© 0.25 =~
}_

0 T T T T T T T

0 5 10 15 20 25 30 35 40

Epochs

Figure 1: A four-layer convolutional neural
network with ReLLUs (solid line) reaches a 25%
training error rate on CIFAR-10 six times faster
than an equivalent network with tanh neurons
(dashed line). The learning rates for each net-
work were chosen independently to make train-
ing as fast as possible. No regularization of
any kind was employed. The magnitude of the
effect demonstrated here varies with network
architecture, but networks with ReLUs consis-
tently learn several times faster than equivalents
with saturating neurons.

32

AlexNet vs. V

G

G

.
Case StUdy VGGNet
. . l Softmax] [__Fca00 |
[Simonyan and Zisserman, 2014] 8 [rcioo 1 [rcaom]
fc7 | FC 4096] | Pool |
fc6
Details: convs-3
’ . . g . . conv5-2
- ILSV.RC-14 2nd in classification, 1stin o
localization
- Similar training procedure as Krizhevsky o
2012 fer conva-1
- No Local Response Normalisation (LRN) e _Fcp‘lm e
- Use VGG16 or VGG19 (VGG19 only convs conv3-1 - |
. conv4 | Pool Pool
slightly better, more memory) o
_ conv3 conv2-1
Use ensembles for bgst results — 1 [==]
- FC7 features generalize well to other conv2 convi-2
convi convi-1
tasks C 1 o
AlexNet VGG16 VGG19

Picture Credit: Fei-Fei, Johnson, and Yeung, Stanford cs231n, 2019

INPUT: [224x224x3] memory: 224*224*3=150K params: 0 (not counting biases)
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864
POOL2: [112x112x64] memory: 112*112*64=800K params: 0

CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memory: 56*56*128=400K params: 0

CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28*28*256=200K params: 0

CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K params: 0

CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512] memory: 7*7*512=25K params: 0

FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448

FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216

FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000

TOTAL memory: 24M * 4 bytes ~= 96MB / image (only forward! ~*2 for bwd)
TOTAL params: 138M parameters

Fei-Fei, Johnson, and Yeung, Stanford cs231n, 2017

Softmax

FC 1000 fc8
FC 4096 fc7
FC 4096 fcé

conv5-3
conv5-2

conv5-1

conv4-3
conv4-2

conv4-1

conv3-2

conv3-1

conv2-2

conv2-1

convi-2

convi-1

1008 1

Input

VGG16 /

Common names

The deeper, the better?

o4
(=3
)

201

% & 56-layer
o) N’

B é ol 20-layer
%0 56-layer 2
R= 5

o] N

& 20-layer

o ,

1 2 5 6 00 1 2

[=]

5 6

iter.3 (1e4)4 iter.3 (le4)4
Figure 1. Training error (left) and test error (right) on CIFAR-10
with 20-layer and 56-layer “plain” networks. The deeper network

has higher training error, and thus test error. Similar phenomena
on ImageNet

He et al., CVPR 2015

35

Learning Residual Feature Maps is Easier

weight layer

F(x) l relu

weight layer

X
identity

Figure 2. Residual learning: a building block.

He et al., Deep Residual Learning for Image Recognition. CVPR 2015

36

Learning Residual is Easier

256-d

64
| relu
| 3x3, 64 |

l relu
| 1x1, 256

He et al., Deep Residual Learning for Image Recognition. CVPR 2015

37

output
size: 224

output
sze: 112

output
sze:56

output
s2e:28

output
sze 14

output
size:7

output
size:1

VGG-19 34-layer plain

34-layer residual

. e
[38emes]
pool, /2
[33cm12s | Ml comv, 64,72 | [(eowen |
v v
pool, /2 pool, /2 pool, /2
[mu:,.E (T
e
) |
[;.m',.,m: [Coeoms)
-
-
pool, /2
Comm] e
]
e]
e] CoeemE]
[3acmwizn |
(38w]
[(cowus]
,,”'.,/; [Sdcow 6,2]
e e
Comm] e
h-!m"w,m !ﬂ;ﬂ.?“
[e R
pool, /2
=
e

—T— wepos
T

Figure 3. E le network

VGG-19 model [41] (19.6 billion FLOPs) as a reference Mid-
dle: a plain network with 34 parameter layers (3.6 billion FLOPs).
Right: a residual network with 34 parameter layers (3.6 billion
FLOPs). The dotted shortcuts increase dimensions. Table 1 shows
more details and other variants.

Net. Left: the

VS.
ResNet

He et al., CVPR 2015

38

ResNet Detalls

layer name | output size 18-layer 34-layer | 50-layer 101-layer 152-1ayer
convl 112x112 Tx7, 64, stride 2
33 max pool, stride 2
1x1, 64 1x1,64 7 1x1,64
2 2’ 2 2
cov2.x | 36x36 [gig gi]xz [gig gj]x3 3x3,64 |x3 3x3,64 |x3 3x3,64 |x3
’ ’ 1x1, 256 1x1,256 | 1x1,256 |
- . - . 1x1, 128 1x1,128 1x1,128
conv3x | 28x28 gzg gg x2 gig gg x4 3x3,128 | x4 3x3,128 | x4 3x3,128 | x8
L ’ J L ’ . 1x1,512 1x1,512 | 1x1,512 |
- . - . 1x1, 256 1x1,256] 1x1,256]
convdx | 14x14 gig §§§ x2 gigigg x6 3x3,256 | x6 3x3,256 | x23 3x3,256 | x36
L ’ . L ’ . 1x1, 1024 1x1,1024 | 1x1,1024 |
- - - . 1x1,512 1x1,512 1x1,512
convs_x %7 giggg x2 gigg}; x3 || 3x3,512 |x3 3x3,512 | x3 3x3,512 | x3
L ’ J L ’ J 1x1,2048 1x1,2048 1x1,2048
1x1 average pool, 1000-d fc, softmax
FLOPs 1.8x10° | 3.6x10° | 3.8x10° | 7.6x10° | 11.3x10°

Architectures for ImageNet. Building blocks are shown in brackets (see also Fig. 5), with the numbers of blocks stacked. Down-
sampling is performed by conv3_1, conv4_1, and conv5_1 with a stride of 2.

39

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

30

25

20

15

10

NEC Model
2&2/

16.4

8 layers

|
l I

2010 2011 2012
Linetal Sanchez & Krizhevsky et al
Perronnin (AlexNet)

ZFNet: Improved
hyperparameters over

AlexNet \

11.7

8 layers

2013

Zeiler &
Fergus

152 layers| |152 layers| |152 layers
Ao Ao A
19 layers| |22 layers
7.3 6.7
3.6
l """" l H m =
2014 2014 2015 2016 2017
Simonyan & Szegedy et al He et al Shao et al Hu et al
Zisserman (VGG) (GooglLeNet) (ResNet) (SENet)

Picture Credit: Fei-Fei, Johnson, and Yeung, Stanford cs231n, 2019

5.1

Human

Russakovsky et al

40

Conv2d in PyTorch
Conv2d

CLASS torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, [SOURCE]
padding=0, dilation=1, groups=1, bias=True, padding_mode="'zeros")

Applies a 2D convolution over an input signal composed of several input planes.

In the simplest case, the output value of the layer with input size (IV, Ci,,, H, W) and output
(N, Cout y Hout Wout) can be precisely described as:

Cip—1
out(N;, Cout;) = bias(Cout;) + Z weight(Cout, , k) * input(N;, k)
k=0
where % is the valid 2D cross-correlation operator, N is a batch size, C' denotes a number of
channels, H is a height of input planes in pixels, and W' is width in pixels.

e stride controls the stride for the cross-correlation, a single number or a tuple.
e padding controls the amount of implicit zero-paddings on both sides for padding number

of points for each dimension.
e dilation controls the spacing between the kernel points; also known as the a trous

algorithm. It is harder to describe, but this link has a nice visualization of what dilation

does.
e groups controls the connections between inputs and outputs. in_channels and

41

out_channels must both be divisible by groups. For example,

Demonstration of training a simple CNN Classifier on
CIFAR10 using PyTorch in Jupyter Notebook

42

Implement Your Own Forward and Backforward in PyTorch

import torch

class MyReLU(torch.autograd.Function):
We can implement our own custom autograd Functions by subclassing
torch.autograd.Function and implementing the forward and backward passes
which operate on Tensors.

@staticmethod

def forward(ctx, input):
In the forward pass we receive a Tensor containing the input and return
a Tensor containing the output. ctx is a context object that can be used
to stash information for backward computation. You can cache arbitrary
objects for use in the backward pass using the ctx.save_for backward method.
ctx.save_for backward(input)
return input.clamp(min=0)

@staticmethod
def backward(ctx, grad_output):
In the backward pass we receive a Tensor containing the gradient of the loss
with respect to the output, and we need to compute the gradient of the loss
with respect to the input.
input, = ctx.saved_tensors
grad_input = grad_output.clone()
grad_input[input < 0] = 0
return grad_input

43

Implement Your Own Forward and Backforward in PyTorch

dtype = torch.float
device = torch.device("cpu")
device = torch.device("cuda:0") # Uncomment this to run on GPU

N is batch size; D in is input dimension;
H i1s hidden dimension; D out is output dimension.
N, D_in, H, D_out = 64, 1000, 100, 10

Create random Tensors to hold input and outputs.
x = torch.randn(N, D _in, device=device, dtype=dtype)
y = torch.randn(N, D out, device=device, dtype=dtype)

Create random Tensors for weights.
wl = torch.randn(D_in, H, device=device, dtype=dtype, requires grad=True)
w2 = torch.randn(H, D out, device=device, dtype=dtype, requires grad=True)

learning _rate = le-6

for t in range(500):
To apply our Function, we use Function.apply method. We alias this as
relu = MyRelLU.apply

'relu’.

14

Implement Your Own Forward and Backforward in PyTorch

learning_rate = le-6

max_iter = 500

for t in range(max_iter):
To apply our Function, we use Function.apply method. We alias this as 'relu’.
relu = MyReLU.apply

Forward pass: compute predicted y using operations; we compute
ReLU using our custom autograd operation.
y_pred = relu(x.mm(wl)).mm(w2)

Compute and print loss
loss = (y_pred - y).pow(2).sum()
if t % 100 == 99:

print(t, loss.item())

Use autograd to compute the backward pass.
loss.backward()

Update weights using gradient descent
with torch.no_grad():

wl -= learning rate * wl.grad

w2 -= learning rate * w2.grad

Manually zero the gradients after updating weights
wl.grad.zero ()
w2.grad.zero_()

The Remaining Slides Are Optional
Materials for Your Interest

Wider ResNet

X X]

X1 X1
| convlxl | \ | conv3x3 |
conv3x3 | conv3x3 | |
| dropout |
conv3x3 | conv3x3 I |

Y
| convlxl | | conv3x3 |

[+] [+1 [+1 1+]
(a) basic (b) bottleneck (c) basic-wide (d) wide-dropout
Various residual blocks used in the paper. Batch normalization and ReLLU precede
each convolution (omitted for clarity)

47

Wider ResNet

group name | output size | block type = B(3,3)
convl 32 %32 - [3x3,16]
3x3, 16 xk
conv2 32x32 | 3x3,16xk | XN
[3x3,32xk |
conv3 16x16 | 3x3,32xk | XN
[3x3, 64xk |
conv4 88 | 3x3,64xk XN
avg-pool 1x1 [8 x 8]

Structure of wide residual networks. Network width is determined by factor k.

48

What can we do with a pre-trained Deep CNN on ImageNet?
e Simple Transfer learning

o We transfer our learned model on the ImageNet to a different domain, for e.g., fine-grained flower

category classification

o It only works when the transferred domain is closely related to the source domain of ImageNet

e Few-shot learning

o In this task, for each class, we only have a few labeled training examples

o We can use the learned feature embeddings or their (weighted) mean as prototype(s)

e Zero-shot learning

In this task, we don’t have any training example for some classes, but we have semantic descriptions

about them

A simple idea: Output a 1000-class probabilities of a test image and use a convex combination of the
semantic descriptions of the top k known classes to construct semantic features of the testimage *°

Zero-shot Learning Example

Softmax Baseline [7]

DeViSE [6]

ConSE (10)

Test Image

wig

fur coat

Saluki, gazelle hound
Afghan hound, Afghan
stole

ostrich, Struthio camelus
black stork, Ciconia nigra
vulture

crane

peacock

sea lion

plane, carpenter’s plane
cowboy boot

loggerhead, loggerhead turtle
goose

hamster

broccoli
Pomeranian
capuchin, ringtail
weasel

water spaniel

tea gown

bridal gown, wedding gown
spaniel

tights, leotards

heron
owl, bird of Minerva, bird of night
hawk
bird of prey, raptor, raptorial bird
finch

elephant

turtle

turtleneck, turtle, polo-neck
flip-flop, thong

handcart, pushcart, cart, go-cart

golden hamster, Syrian hamster
rthesus, rhesus monkey

pipe

shaker

American mink, Mustela vison

https://arxiv.ora/pdf/1312.5650.pdf

business suit

dress, frock

hairpiece, false hair, postiche
swimsuit, swimwear, bathing suit
kit, outfit

ratite, ratite bird, flightless bird
peafowl, bird of Juno

common spoonbill

New World vulture, cathartid
Greek partridge, rock partridge

California sea lion
Steller sea lion
Australian sea lion
South American sea lion
eared seal

golden hamster, Syrian hamster
rodent, gnawer

Eurasian hamster

rhesus, rhesus monkey

rabbit, coney, cony

50

What do CNN (AlexNet-like) filters look like?

Zeiler and Fergus, 2013:
Visualizing and Understanding Convolutional Networks

An important convolutional operation called Transposed Convolution
was invented in this paper, which will be discussed in Lec 5.

51

Figure 2. Visua
of feature ma

ion of features in a fully trained model. For layers 2-5 we show the top 9 activations in a random subset
ss the validation data, projected down to pixel space using our deconvolutional network approach.
Our reconstructions are not samples from the model: they are reconstructed patterns from the validation set that cause
high activations in a given feature map. For each feature map we also show the corresponding image patches. Note:
(i) the the strong grouping within each feature map, (ii) greater invariance at higher layers and (iii) exaggeration of

53

Deep Dream

L

Horizon

Towers & Pagodas Buildings Birds & Iects

Image credit and source:
https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

54

Neural net “dreams”— generated purely from random noise, using a network trained on places by MIT Computer Science

and Al Laboratory. See our Inceptionism gallery for hi-res versions of the images above and more (Images marked
“Places205-GooglLeNet” were made using this network).
Image credit and source:
https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

55

Deep Dream Python Notebook Code

https://github.com/qgoogle/deepdream/blob/master/dream.ipynb

56

Style Transfer

e We can also utilize a pre-trained deep CNN classifier such as VGG to
calculate the feature maps in some specified layers for input images

e By matching the content feature maps of a generated image to an original
input image and matching the Gram matrix of feature maps of the generated
image to that of a style image, we can perform backpropagation to the pixel
space to generate an artistic image similar to the input image

Gatys et al. 2015: A Neural Algorithm of Artistic Style
https://arxiv.org/pdf/1508.06576.pdf

57

Style Transfer

o Style
Representations

1

Input image L>

Content
Representations

Content Reconstructions

58

Style Transfer Method

Ewntent P CL‘, 2 Z . (1)

—

Liotal (P, @, Z) = &L content (0, Z) + BLaty1e(@, T)
The derivative of this loss with respect to the activations in layer [equals o comen e

or { (Fl Pl) HFL >0 where a and (3 are the weighting factors for content and style reconstruction respectively.
content - i ij

- 2
OF}; 0 if F}; <0. @

Al and G! their respective style representations in layer [. The contribution of that layer to the

total loss is then
i l
E = 4N2MZZ (GL; — AL) @)
and the total loss is

Ltyie(@, T) Zlel Q)

where w; are weighting factors of the contribution of each layer to the total loss (see below for
specific values of w; in our results). The derivative of E; with respect to the activations in layer

1 can be computed analytically:

" B {N2M2 () (6" _Al))ji if F; >0 (6)

oF; o if F1, < 0.
59

Style Transfer

i e 17|

60

Style Transfer Examples with a Fast Implementation

https://youtu.be/Khuj4ASIdmU?t=6

61

Summary of Topics Discussed

Activation Functions

Loss Functions

Training deep feedforward neural networks with backpropagation and
mini-batch SGD

Convolution and pooling operations in CNN

Network architectures such as AlexNet, VGG, ResNet, and
WideResNet

Applications of supervised pre-trained CNNs

Visualization of pre-trained CNN filters and receptive fields
Style transfer

Geoff Hinton, “Never stop coding.” Great discoveries are from
practice.

62

The End

Next lecture:

Optimization, Regularization, Understanding
Batch Normalization, and Robustness of
Deep Neural Networks

63

