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Supervised Mining:

Overview



The World of Machine Learning
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http://scikit-learn.org/stable/tutorial/machine_learning_map/

Structure of Genomic Features Matrix
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Arrange data in a tabulated form, each row
representing an example and each column

representing a feature, including the dependent
experimental quantity to be predicted.

predictor1 | Predictor2 | predictor3 | predictor4 |response
G1 [A(1,1) A(1,2) A(1,3) A(1,4) Class A
G2 [A(2,1) A(2,2) A(2,3) A(2,4) Class A
G3 |A(3,1) A(3,2) A(3,3) A(3,4) Class B
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Represent predictors in abstract
high dimensional space



“Label” Certain Points

(4
famd
OO-
[y
g o o
“a
o Qo
< L
<o @O
(@) o) c
<
(= .O
o - o



“Cluster” predictors
(Unsupervised)




Use Clusters to predict Response
(Unsupervised, guilt-by-association)
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Find a Division to Separate Tagged Points
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Extrapolate to Untagged Points
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Probabilistic Predictions of Class

- @
S
0 “®
O = .
® 6 5 = oy
@ ® OF°

12 GersteinLab.org ‘14




Find a Division to Separate Tagged Points
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Distinctions In
Supervised Learning

Regression vs Classification
— Regression: labels are quantitative
— Classification: labels are categorical

Regularized vs Un-regularized
— Regularized: penalize model complexity to avoid over-fitting
— Un-regularized: no penalty on model complexity

Parametric vs Non-parametric

— Parametric: an explicit parametric model is assumed
— Non-parametric: otherwise

Ensemble vs Non-ensemble

— Ensemble: combines multiple models

— Non-ensemble: a single model



Supervised Mining:

Decision Trees



Decision Trees

e Classify data by asking A decisiontree
questions that divide
data in subgroups

* Keep asking questions s bottom
until subgroups e
become homogenous

e Use tree of questions
to make predictions

Is top
part blue?

Is bottom
part blue?

b o %

 Example: Is a picture taken inside or outside?

Criminisi, Shotton, and Konukoglu Microsoft Technical Report 2011



What makes a good rule?

 Want resulting groups to be as homogenous
as possible

o0 0000 . .0
All groups still 50/50
> Unhelpful rule

2/3 Groups homogenous
—>Good rule

Nando de Freitas 2012 University of British Columbia CPSC 340



Quantifying the value of rules

* Decrease in inhomogeneity

— Most popular metric: Information theoretic
entropy -

S=—) . pilogp;
— Use frequency of classifier characteristic within
group as probability
— Minimize entropy to achieve homogenous group



Algorithm

e For each characteristic:

— Split into subgroups based on each possible value of
characteristic

e Choose rule from characteristic that maximizes
decrease in inhomogeneity

* For each subgroup:
— if (inhomogeneity < threshold):
* Stop

— else:
* Restart rule search (recursion)



Retrospective
Decision
Trees

[Bertone et al. NAR (‘01)]

Analysis of the

“40"  suitability of 500
g gg; M. thermo.
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Retrospective
Decision Trees

356
Nomenclature
total
Not Express
Expressible ......... > 1436 ....... Lible
hydro
obe
53

‘A> 9b85

Has a hydrophob'ic stretch? (Y/N)
[Bertone et al. NAR (‘01)]



Overfitting, Cross Validation,
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Extensions of Decision Trees

* Decision Trees method is very sensitive to
noise in data

e Random forests is an ensemble of decision
trees, and is much more effective.



Supervised Mining:

Assessment, Cross-
Validation & ROC Curves



Evaluating performance: What? How?
A. What do we want to evaluate?

GENERALIZATION

Therefore it is mandatory to divide your dataset:

Alternatively, use Cross Validation:

Slide from Alberto Paccanaro



B. How do we evaluate performance?

1. Classification problems

PREDICTED OBJECT

—
U
T1
Z

REAL OBJECT

2. Regression problems Sum
of squares error

Root Mean Square error

Accuracy
TP+TN/(TP+FP+FP+TN)

Sensitivity (or TPR)
TP/P=TP/(TP+FN)

Specificity
TN/N=TN/(TN+FP)

True positive rate
TP/ (TP+FP)

False positive rate
FP/N=FP/(FP+TN)

ROC analysis is good for

comparing binary classifiers

Slide from Alberto Paccanaro



True Positive Rate (TPR)

Intuition :

ROC Curve
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False Positive Rate (FPR)

[From Biometrical Fusion - input statistical distribution ]

TPR=TP /P =TP /(TP + FN)
FPR=FP/N =FP/(FP+TN)



Model dimensionality and overfitting

We are given the red dots.

We assume that they are noisy samples from a
. signal/(function) — the blue curve — which we do not
TN have (we only have the red dots).

We want to predict new points, i.e. the y coordinates
for other values of x (e.g. x > 1)

Our model needs to approximate the blue function.
We decide to do it with polynomials.

Degree 1 polynomial Degree 2 polynomial Degree 3 polynomial Degree 10 polynomial

Which one is best? And why?

Slide from Alberto Paccanaro



How does the GENERALIZATION performance vary, as we
increase the complexity of the polynomial?

RMS error
o

4 5 6 7
order of polynomial

e Occam's razor (William of Occam, ~1300): Accept the
simplest explanation that fits the data.

We should prefer simpler models to more complex models, and
this preference should be traded off against the extent to
which the model fits the data.

Slide from Alberto Paccanaro



e IMPORTANT: increasing the number of features
may lead to a reduction in performance if the
number of datapoints is not increased. Why?

o o 5

& & & Y

Point 1 0.7]0.4 0.103.7
Point 2 0.6(0.3 0.2/4.2
Point n 0.4(0.3 0.6 2.8

This is related to the “Curse of Dimensionality” Bellman, 1961.

Slide from Alberto Paccanaro



Comparison of Predictions against a
Positive and Negative Gold Standard
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Threshold "predictions" at different "Error Rate"
levels and compare to + and - gold
standards

ROC plot

(cross validated)

"Coverage"
R Jansen, M Gerstein (2004). Curr Opin Microbiol 7: 535
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Importance of Balanced
Positive and Negative Examples
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Supervised Mining:

SVMs



Find a Division to Separate Tagged Points
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Discriminant to Position Plane

1, Biorgeuisisian 9¢




Fisher discriminant analysis

« Use the training set to reveal the structure of class distribution
by seeking a linear combination

* Y= WX+ WoX, + ...+ W X, Which maximizes the ratio of the
separation of the class means to the sum of each class
variance (within class variance). This linear combination is
called the first linear discriminant or first canonical variate.
Classification of a future case is then determined by choosing
the nearest class in the space of the first linear discriminant and
significant subsequent discriminants, which maximally separate
the class means and are constrained to be uncorrelated with

previous ones.
2 2
S = Z(y B mi)

yel;

37 GersteinLab.org ‘14
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Support Vector Machines

* A very powerful tool for classifications

 Example Applications:
— Text categorization
— Image classification
— Spam email recognition, etc

* It has also been successfully applied in many
biological problems:

— Disease diagnosis

— Automatic genome functional annotation
— Prediction of protein-protein interactions
— and more...



Example: Leukemia patient classification

d
12
10
8
X 6
N
4
2 . ® d
0 ‘{ﬁﬂ.. ... <
0 2 4 6 8 10 12
MARCKSL1
® ALL AML ® Unknown

ALL: acute lymphoblastic leukemia
AML: acute myeloid leukemia

William S Nobel. What is a support vector machine? Nature Biotechnology. 2006
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 Asimple line suffices to separate the expression profiles of
ALL and AML

William S Nobel. What is a support vector machine? Nature Biotechnology. 2006



MARCKSL1

In the case of more than two genes, a line generalizes to a plane or
“hyperplane”.

For generality, we refer to them all as “hyperplane”

William S Nobel. What is a support vector machine? Nature Biotechnology. 2006
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MARCKSL1

 |sthere a “best” line?

William S Nobel. What is a support vector machine? Nature Biotechnology. 2006



12

10

0 2 = 6 8 10

MARCKSL1

* The maximum margin hyperplane

William S Nobel. What is a support vector machine? Nature Biotechnology. 2006

12



* Denote each data point as (x;, y;)

* X is a vector of the expression profiles

* y;=-1or 1, which labels the class

* A hyperplane can be represented as: w*x+b =0

* The margin-width equalsto: 2/llw il llw ll=~wew

http://en.wikipedia.org/wiki/Support_vector _machine



Find a hyperplane such that:

— No data points fall between the lines wex+b=—-landwex+b=+1
— The margin 2/| |w] | is maximized

Mathematically,

— Minimize,,, 1/2 | |w] |?, subject to:

— fory,=1, wex,+b=1

— fory,=-1, wex, +b=<-1

— Combining them, for any i, yl.(w *X + b) > 1

The solution expresses w as a linear combination of the x;

So far, we have been assuming that the data points from two
classes are always easily linearly separable. But that’s not
always the case

http://en.wikipedia.org/wiki/Support_vector _machine



 What if...
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William S Nobel. What is a support vector machine? Nature Biotechnology. 2006
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* Allow a few anomalous data points

h
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William S Nobel. What is a support vector machine? Nature Biotechnology. 2006



* The soft-margin SVM

2
— mlmmlze— Il w +CE

w,b,s

— subject to, for any i, y,(wex,+b)=1-s,,5,=0

— S, are the slack variables

— C controls the number of tolerated misclassifications
(It's effectively a regularization parameter on model complexity)

— A small C would allow more misclassifications
— A large C would discourage misclassifications

— Note that even when the data points are linearly
separable, one can still introduce the slack variables to
pursue a larger separation margin

http://en.wikipedia.org/wiki/Support_vector _machine



Are linear separating
hyperplanes
enough?

Yes

(by a 1D-
hyperplane
= dot)

12

1 -5

Expression

William S Nobel. What is a support vector machine? Nature Biotechnology. 2006

NO




* Transform (x.) into (x;, x.)

X 1e6

1.0

Expression * expression
o
S

L—’

3

Expression

William S Nobel. What is a support vector machine? Nature Biotechnology. 2006



e Non-linear SVM

— In some cases (e.g. the above example), even soft-margin
cannot solve the non-separable problem

— Generally speaking, we can apply some function to the
original data points so that different classes become
linearly separable (maybe with the help of soft-margin)

— In the above example, the function is f(x) = (x, x2)

— The most import trick in SVM: to allow for the
transformation, we only need to define the “kernel

function”, k(xiaxj)=f(xi).f(xj)

— The above example essentially uses a polynomial kernel



Math behind the “kernel trick”

— In optimization theory, a constrained optimization problem
can be formulated into its dual problem (the original
problem is called primal problem)

— The dual formulation of SVM can be expressed as:

. 1 .
— Maximlzezai—gzyiyjaiajxi *Xx;, subjectto
l l,]

Y y,0,=0,0s;, < C

Complicated!

— The “Kernel”: x;*x;, can be replaced by more
sophisticated kernels: k(x,,x,) = f(x;,)® f(x,)



e “Support vector machine”, where does the
name come from?

T 0<o<C

— The x; for which a;> 0 are called support vectors
— They fall between or right on the separating margins

from http://cbio.ensmp.fr/~jvert/talks/110401mines/mines.pdf



Key idea in the Kernel Trick

Original SVM optimization for refining the hyperplane

parameters w & b in terms of a linear combination of x; can be

replaced by a different optimization problem using "Lagrange

multipliers” o

— One only optimizes using the product of x;*x;, now expressing the
solution in terms of o, which are non-zero for x; that function as
support vectors

In a non-linear SVM x;*x; is replaced by f(x;)*f(x;), so you don't

need to know f(x;) itself only the product

— This is further formalized in the kernel trick where f(x;)*f(x;) is just
replaced by k(x; x;). That is, one only has to know the “distance”
between x; & x; in the high-dimensional space -- not their actual
representation



 Two commonly used kernels
(and there are more)

* Polynomial kernel:

— k(x;,x;)=(x;*x, +a)
— a =1 (inhomogeneous) or 0 (homogenous)

— d controls the degree of polynomial and henceforth the
flexibility of the classifier

— degenerates to linear kernel whena=0andd =1
e Gaussian kernel:
— k(x,x;)=(-1/0llx,-x, 1”)

— o controls the width of the Gaussian and plays a similar
role as d in the polynomial kernels



More about kernels

— With kernels, non-vector data can be easily handled — we only need to
define the kernel function between two objects

— Examples of non-vector biological data include: DNA and protein
sequences (“string kernels”), nodes in metabolic or protein-protein
interaction networks, microscopy images, etc

— Allows for combining different types of data naturally — define kernels
on different data types and combine them with simple algebra
Questions for practitioners: Which kernel to use? How to
choose parameters?
— Trial and error
— Cross-validation

High-degree kernels always fit the training data well, but at
increased risks of over-fitting, i.e. the classifier will not
generalize to new data points

— One needs to find a balance between classification accuracy on the
training data and regularity of the kernel (not allowing the kernel to be
too flexible)



* Alow-degree kernel (left) and an over-fitting high-
degree kernel (right)

0 2 4 6 8 10 0 2 4 6 8 10
Expression Expression

William S Nobel. What is a support vector machine? Nature Biotechnology. 2006



* The parameter C has a similar role

— Large C will make few classification errors on the training
data

— But this may not generalize to the testing data

— Small C pursues a large separating margin at the expenses
of some classification errors on the training data.

— The accuracy more likely to generalize to testing data
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http://cbio.ensmp.fr/~jvert/talks/110401mines/mines.pdf



Supervised Mining:

Decision Boundary &
Semi-supervised
Approaches



Feature 2

Decision boundaries:
SVM v Tree v Nearest NBR

(b) (c)
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(a) A support vector machine (SVM) forms an affine decision surface (a straight line in the case of two dimensions) in the original
feature space or a vector space defined by the similarity matrix (the kernel), to separate the positive and negative examples and
maximize the distance of it from the closest training examples (the support vectors, those with a perpendicular line from the
decision surface drawn). It predicts the label of a genomic region based on its direction from the decision surface. In the case a
kernel is used, the decision surface in the original feature space could be highly non-linear. (b) A basic decision tree uses feature-
parallel decision surfaces to repeatedly partition the feature space, and predicts the label of a genomic region based on the partition
it falls within. (c) The one-nearest neighbor (1-NN) method predicts the label of a genomic region based on the label of its closest
labeled example. In all three cases, the areas predicted to be positive and negative are indicated by the red and green background
colors, respectively.

[Yip et al. Genome Biology 2013 14:205 do0i:10.1186/gb-2013-14-5-205]



Semi-supervised Methods

e Supervised & Unsupervised:
Can you combine them? YES

— RHS (c) shows modifying the optimum decision
boundary in (a) by "clustering"” of unlabeled points

(a) (b) (c)

[Yip et al. Genome Biol. ('13)]

Feature 2
Feature 2
Feature 2

v

v

Feature 1 Feature 1 Feature 1

Supervised, unsupervised and semi-supervised learning. (a) In supervised learning, the model (blue line) is learned based on the positive and negative training
examples, and the genomic region without a known class label (purple circle) is classified as positive according to the model. (b) In unsupervised learning, all examples
are unlabeled, and they are grouped according to the data distribution. (c) In semi-supervised learning, information of both labeled and unlabeled examples is used to
learn the parameters of the model. In this illustration, a purely supervised model (dashed blue line) classifies the purple object as negative, while a semi-supervised
model that avoids cutting at regions with a high density of genomic regions (solid blue line) classifies it as positive.



