
Gerstein lab experience in leading consortium data analysis 

centers to build data processing pipelines. We have extensive 

experience developing QC metrics and uniform processing pipelines 

for consortia (ENCODE[1, 2], PyschENCODE[3, 4], and the 

Extracellular RNA Communication Project (exRNA))[5, 6]. We have 

lead bake-off style analysis comparisons for applications such as 

enhancer prediction for ENCODE and RNA-seq quantification for 

the RNA-seq Genome Annotation Assessment Project[7]. As part of 

the exRNA consortium, we developed the extracellular RNA 

processing toolkit (exceRpt) pipeline (Fig. 1) for uniform processing 

throughout the consortium[5, 6]. exceRpt has been used over 80,000 

times. exceRpt performs sequential alignment of RNA to 

contaminants, to human transcriptome and genome sequences, to 

human repetitive elements, and finally to exogenous sequences. 

 

Prior lab experience processing bulk and single-cell chromatin 

accessibility data analyses. We have extensive experience 

processing epigenetic profiling data in big consortia. For example, we developed (1) PeakSeq[8] for the genome-

wide identification of transcription factor (TF) binding sites from ChIP-Seq data, which is used by ENCODE; 

and (2) MUSIC[9], a peak caller that performs multiscale decomposition of ChIP-Seq signal. For scATAC-seq 

data, we have recently developed a prototype of a stand-alone scATAC-seq data processing pipeline. 

 

Experience with constructing the PsychENCODE brain cell atlas. We led the PsychENCODE data analysis 

center’s effort to construct a cell atlas of prefrontal cortex in human brain[3]. Specifically, we carefully 

developed a way of clustering cells by incorporating pre-existing clusters to ensure that our new clusters were 

consistent with the old clusters. 

 

Experience with deconvolution methods to detect cell proportion changes. We previously investigated how 

changes in cell proportions contribute to variations in tissue-level gene expression across individuals[3]. Adding 

publicly available data, we first used NMF to decompose bulk tissue data. We found that the top principal 

components correlated with cell expression signatures, suggesting single-cell contributions to the bulk tissue 

gene expression. We then deconvolved the bulk tissue expression across 1,866 individuals in PsychENCODE 

and GTEx using single-cell data via non-negative least squares and found that the cell fraction changes were 

associated with aging and disorders. 

 

Tools to detect rewiring of regulatory networks. We have extensive experience conducting network 

comparisons. We developed many tools for comparative gene regulatory network analyses, including 

Loregic[10], which analyzes regulatory cooperativity; OrthoClust[11], which discovers novel human gene 

functions via clustering cross-species gene co-expression networks; DREISS[12], which analyzes the dynamics 

of gene regulatory networks using dynamic models. We also identified the rewiring pattern for human gene 

regulatory networks to prioritize genes for human diseases[13].  

 

Our deep learning models for GWAS analysis. We developed an interpretable Deep Structured Phenotype 

Network (DSPN)[3], a deep learning model based conditional Deep Boltzmann Machine architecture with 

multiple layers. DSPN improved GWAS disease prediction by sixfold compared to additive polygenic risk 

scores. DSPN highlights key genes and allows imputation of missing transcriptome from genotype. 

 

We have extensive experience developing pipelines and characterizing data quality for transcriptomic[14-17], 

extracellular RNA[5], proteomic[18-20], genomic[21-23], and protein interaction data[24], which have been adopted 

by major consortia[25-27]. We also have experience with developing software for processing RNA-seq data in 

 
Figure 1. Flowchart of exceRpt. 



general. For instance, our software RSEQtools[14] provides an efficient package for basic RNA-Seq data that 

uses a compact data summary format, the Mapped Read Format (MRF) that enables anonymization; and, more 

recently, a privacy BAM format that may minimize the leakage of genetic information from single cell RNA-

Seq data[28]. 

 

Finally, the Gerstein lab has extensive experience developing and actively maintaining a well-catalogued and 

well-organized lab frequently asked questions (FAQ) page using WordPress (faq.gersteinlab.org), wherein 

queries are emailed to the PI by other research groups, and the anonymized questions are then publicly posted 

(along with detailed answers) on this FAQ page.  
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