iomedical Data Science:
Introduction
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Overview: what is
Biomed. Data science?

(Placing it into the
context of Data
Science, in general)



Jim Gray’s 4t Paradigm

The

PARADIGM

DATA-INTENSIVE SCIENTIFIC DISCOVERY

Science Paradigms

Thousand years ago:

science was empirical
describing natural phenomena

Last few hundred years:

theoretical branch N2
using models, generalizations [g]=4ﬂGp_ c”
Last few decades: e

a computational branch
simulating complex phenomena

Today: data exploration (eScience)
unify theory, experiment, and simulation

— Data captured by instruments
or generated by simulator

— Processed by software
— Information/knowledge stored in computer

— Scientist analyzes database/files
using data management and statistics
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#3 - Simulation

Prediction based on
physical principles (eg

Exact Determination of
Rocket Trajectory)
Emphasis on:
Supercomputers

Jim Gray’ s 4th Paradigm

Science Paradigms

* Thousand years ago:
science was empirical
describing natural phenomena
» Last few hundred years:
theoretical branch
using models, generalizations e
N Last few decades: [*] )
a computational branch
simulating complex phenomena
p Today:
data exploration (eScience)
unify theory, experiment, and simulation
— Data captured by instruments
Or generated by simulator
— Processed by software
— Information/Knowledge stored in computer

— Scientist analyzes database / files
using data management and statistics

Gray died in '07.
Book about his ideas came out in ‘09.....

[Slide from : http://research.microsoft.com/en-us/um/people/gray/talks/stanford%2520symbolic%2520systems%2520seminar.ppt]
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What is Data Science? An overall, bland definition...

» Data Science encompasses the study of the entire lifecycle of data

- Understanding of how data are gathered &
the issues that arise in its collection

- Knowledge of what data sources are available
& how they may be synthesized to solve problems

- The storage, access, annotation, management, &
transformation of data

» Data Science encompasses many aspects of data analysis

— Statistical inference, machine learning, & the design of algorithms
and computing systems that enable data mining

— Connecting this mining where possible with physical modeling
- The presentation and visualization of data analysis
- The use of data analysis to make practical decisions & policy
« Secondary aspects of data, not its intended use — eg the data exhaust
— The appropriate protection of privacy
- Creative secondary uses of data — eg for Science of science
- The elimination of inappropriate bias in the entire process




* Ads, media, product ] ] _
placement, P Data Science in the wider world:

supply optimization, a buzz-word for successful Ads
* Integral to success of

GOOG, FB, AMZN, Eﬁ;}’:;gs
WMT... Review

, Bt it | :
Em,ﬂ}‘mm | Data Scientist: The Sexiest Job of the 21st Century
by Thomas H. Davenport and D.J. Patil

5:00.-0-04:'!40 i+ | mm.mw I

The data deluge

ANE HOW 53 BANGLE I A 34-PALT SPOOAL RIP2RT

Quentin Gallivan is CEO of Pentaho Corp., an Orlando, Florida-based
g provider of business analytics software.

DIDC
108 QIO Network o Cognizant
ﬁ :\x%j\}lb IDEAS FOR TECH NOLOGY LEADERS.
e 4 : N -
— o Rio Tyate . Artwork: Tamar Cohen, Andrew J Buboltz, 2011, silk screen on a page from a higH
— Why Big Datq Is All Retailers ’ ’
B Want for Christmas ) ) ) )
s Y When Jonathan Goldman arrived for work in June 2006 at LinkedIn, the business n
Do up. The company had just under 8 million accounts, and the number was growing q
uest post written by Quentin Gallivan . . e N . . .
2 Guestpostwrien by Quentin G friends and colleagues to join. But users weren’t seeking out connections with the p

[Oct. ‘12 issue]
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Data
Science in
Traditional

Science

High energy physics - o

Large Hadron Collider

Astronomy -
Sloan Digital Sky survey

Science

SCIENCE IN THE
PETABYTEERA

Pre-dated commercial mining
Instrument generated

Large data sets often created by large teams not to
answer one Q but to be mined broadly

Often coupled to a physical/biological model
Interplay w/ experiments

Ecology
& Earth Sci.
- Fluxnet

Neuroscience -
The Human
Connectome Project

Genomics
DNA
sequencer

[Navarro et al. GenomeBiol. (19, in press)]
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» Scientific data often coupled to a physical/biological model

« Lauffenburger’s Sys. Biol. 4Ms: C.oup.ll.ng of
Measurement, Mining, Modeling & Manipulation Scientific Data
(Ideker et al.’06. Annals of Biomed. Eng.) to Models &

« Weather forecasting as an exemplar Experimen ts

- Physical models & simulation useful but not sufficient (“butterfly” effect)
— Success via coupling to large-scale sensor data collection

AAAAAAAA

uuuuuu

Models + Data Mining

Forecasts

[Navarro et al.

GenomeBiol. (19, , ‘
in press)] Image from http://web.aibn.uq.edu.au/cssb/ResearchProjects.htm * :
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Biomed. Data science:

Scaling & Integration



Drivers of
Biomedical
Data
Science

* Integration
across data

types

%)
* Scaling §
=\

of individual
data types

[Navarro et al. GenomeBiol. (19, in press)]

Sadfjousud
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Case Study: Amazing Progress

in Scaling & Integration with

Genotype-Phenotype
Relationships

Integrated

health data
1000
Genomes UKBB study
Sequenced with over 500K
participants,
Genome Catalogue genotypes to
DOl{ble H of human phenotypic
Helix influenzae variation details &
clinical
Watson information

& Crick

11 = Lectures.GersteinLab.org



The Scaling of
Genomic Data
Science:

Powered by

exponential

increases in
data & computing

(Moore’s Law)

Cost per Raw Megabase of DNA Sequence

Moore's Law

$1

m) National Human Genome
Research Institute
$0.1

genome.gov/sequencingcosts
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Kryder’s Law and

S-curves
underlying
exponential
growth

* Moore’s & Kryder’s

Laws

- As important as the
increase in computer speed
has been, the ability to
store large amounts of
information on computers is
even more crucial

« Exponential increase
seen in Kryder'’s law
is a superposition of
S-curves for different
technologies
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Sequencing
cost
reductions
have
resulted in
an explosion
of data

* The type of
sequence data
deposited has
changed as well.

Number of Bases
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The changing costs of a sequencing pipeline

= Sample collection and [ Sequencing Data reduction Downstream

Experimental experimental design W Data management analyses
s design
collection

l 100% _

-
TQ)

(Data reduction,

— '
High-level summaries
(VCF, Peaks, RPKM)

Downstream analyses

management

—
M, MRF)
eaks, RPKI

(differential expression, 0%~
novel TARS, regulatory Pre-NGS Now Future
G ba) (Approximately 2000)  (Approximately 2010)  (Approximately 2020)

From ‘00 to ~’ 20,
cost of DNA sequencing expt. shifts from

the actual seq. to sample
collection & analysis

[Sboner et al. ( “11), Muir et al. (“15) Genome Biology]
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The changing costs of a sequencing pipeline

100% _

i !

STQ)

Mapped reads
(BAM, CRAM, MRF)
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= Sample collection and [ Sequencing Data reduction Downstream

Experimental experimental design W Data management analyses
s design
collection

(Data reduction,__,
— v —

High-level summaries
(VCF, Peaks, RPKM)

i 1

Downstream analyses

\

(differential expression, 0% =
novel TARs, regulatory Pre-NGS Now
networks, ...) (Approximately 2000)  (Approximately 2010)

Future
(Approximately 2020)

From ‘00 to ~’ 20,
cost of DNA sequencing expt. shifts from
the actual seq. to sample
collection & analysis

B Labor

3 Instrument depreciation and maintenance
Il Reagents and supplies

3 Indirect costs

[Sboner et al. ( “11), Muir et al. (“15) Genome Biology]
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The changing costs of a sequencing pipeline

= Sample

100% _

Sequencing

Data reduction

High-level summaries
(VCF, Peaks, RPKM)

€
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and .

Experimental experimental design
Sample
design
collection

Pre-NGS

Now

" Data reduction
W Data management

Downstream
analyses

Future

- -
(Approximately 2000)  (Approximately 2010)  (Approximately 2020)

From ‘00 to ~’ 20,

cost of DNA sequencing expt. shifts from

the actual seq. to sample
collection & analysis

[Sboner et al. ( ‘11), Muir et al. (‘15) Genome Biology]

Alignment algorithms scaling to keep
pace with data generation
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The changing costs of a sequencing pipeline

= Sample collection and Data reduction Downstream
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[Sboner et al. ( ‘11), Muir et al. (“15) Genome Biology]
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A Success of
Scale & Integration:
Many GWAS

variants found,
most not in genes,
but affecting
regulatory network
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THE GENOME-WIDE TIDE

Large genome-wide association studies that involve more than
10,000 people are growing in number every year — and their
sample sizes are increasing.

Sample sizes: M More than 200,000 100,000-199,999
M 50,000-99,999 H 10,000-49,999

Cumulative study number
N
o
o

2008 2009 2010 2011 2012 2013 2014 2015 2016

A 1st GWAS done at Yale, for AMD:
(Klein et al. 05, Science)

* Many since then

* Most SNVs fall into non-coding

regulatory regions
(major contributions by Yale groups to this
ENCODE annotation effort)

[Nature 489: 91]
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 Large-scale ‘omics data
as an anchor to
organize phenotypic
data — EMRs,
wearables...

* 1st ['05-]: Exomes &
chips of disease-
focused cohorts — init.

~ GWAS, TCGA, PGC
fm, PCAWG

mmm”M e 2nd ['15-]: Integration of
full WGS with rich &

diverse phenotypes -

9 \ UKBIiobank, TopMed,
Genomics England,

PCAWG, All of Us

Basic Science to Medicine

2T lstsnorc

TCGAE

Genomics

INITIRTIVES

STARTUPS

Medical Big Data: Promise and Challenges (Lee and Yoon , Kidney Res. Clin. Pract., 2017)
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Biomed. Data science:

The Future



Our field as future Gateway —
Personal Genomics
as a Gateway into Biology

Personal genomes soon will become a commonplace part of medical research & eventually treatment
(esp. for cancer). They will provide a primary connection for biological science to the general public.
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Placing the
individual into
the context of
the population
&

using the
population to
build a
interpretative
model
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Exomes or Genomes)

Cumulative # of Structure

—_

-]
($]
|

10% 3

How will the Data Scaling Continue?
The Past, Present & Future Ecosystem
of Large-scale Biomolecular Data

Molecular
Structures

Seqgences
(Human WGS & /

1985 1990 1995 2000 2005 2010 2015
Year
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Cumulative # of X-ray structures and # exomes

0e+00
l

Trends in data generation point to growing opportunities for leveraging
sequence variants to study structure (and vice versa)

The volume of sequenced exomes is outpacing that of structures, while
solved structures have become more complex in nature.

1e+05
|

8e+04
|
T
8
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|
|
6
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|
|
4

2e+04
I

|
2
(Jeah yoea 10} 9,01 dol) gad Jad suieyd # bay

1980 1990 2000 2010
Year

Exome data hosted on NCBI Sequence Read Archive (SRA) [Sethi et al. COSB (’15)]
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Growing sequence redundancy in the PDB (as evidenced by a reduced pace of novel fold
discovery) offers a more comprehensive view of how such sequences occupy conformational
landscapes — Gene & Struc. Families as main organizing principle

% Increase
0.15 0.20 0.25 0.30
| | | |

0.10
I

0.05
I

0.00
I

I I I I I I I I I I I I
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

Year
PDB: Berman HM, et al. NAR. (2000)

CATH: Sillitoe I, et al. NAR. (2015)
[Sethi et al. COSB ('15)] SCOP: Fox NK et al. NAR. (2014)
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Examples of Imports & Exports to/from Genomics & Other Data
Science Application Areas

Cultural Imports

Technical Imports
P Importing CASP
Networks and graphs tech. CASptareet 51301
; developed  |**"

in other big

g the 5
L & ‘human

Technical Exports
Circos plot

E Am:yﬁ:_r

Education

-----------
...................

EIL‘"!L ) e iy
I Bl |  PeEE
B =S Pome S

What is The Art Genome Project? Seven Facts about th
Discovery and Classification System That Fuels Artsy

Tt AR GiNOWE PRONCE
BY MATTHEW ISRALL, JESSICA BACEUS AND OLIVIA JINE FAGON

[Navarro et al. GenomeBiol. (19, in press)]




Biomed. Data science:

The Course



Defining Bioinformatics
— by crowd-sourced
judgement

* Bioinformatics

- Related terms

 Biological Data Science

* Bioinformatics & / or / vs
Computational Biology

« Biocomputing
+ Systems Biology

+ Qbio
* Wh at a re Its Introductory Level
b oun d aries Advanced Level
- Determini ng the Undergraduate Level
"Support VeCtorS” Graduate Level
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Biomedical = (Molecular) BIOINFORMATICS
Data
Science

Data Mining

Sequence &
Genome Analysis

Other 'omic
& Network Analyses

Medical & Translational
Informatics

3D Structure Analysis

Systems Analysis

30 = Lectures.GersteinLab.org
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What is Bioinformatics?

* (Molecular) Bio - informatics

* One idea for a definition?
Bioinformatics is conceptualizing biology in terms of
molecules (in the sense of physical-chemistry) and
then applying “informatics” techniques (derived
from disciplines such as applied math, CS, and
statistics) to
the information associated with these molecules,
on a

 Bioinformatics is a practical discipline with many

31 -



Class Web Page

GersteinLab.org/courses/452

Assignment #0 Page
http://bit.ly/cbb752b20-hw0
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Short Office Hours

Today right after class,

On Wed. 1/16:
Right before & after class,

After that email me!

(in Bass 432,

contact.gerstein.info)

33 -



Biomed. Data science:

More details on
Bioinformatics
as a sub-discipline



What is Bioinformatics?

* (Molecular) Bio - informatics

* One idea for a definition?
Bioinformatics is conceptualizing biology in terms of
molecules (in the sense of physical-chemistry) and
then applying “informatics” techniques (derived
from disciplines such as applied math, CS, and
statistics) to
the information associated with these molecules,
on a

 Bioinformatics is a practical discipline with many
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What Information to Organize?

Sequences (DNA & Protein)

« 3D Structures
* Network & Pathway Connectivity
* Phylogenetic tree relationships

 Large-scale gene expression & functional
genomics data

* Phenotypic data & medical records....

36 -



What is the Information?

Molecular Biology as an Information Science

* Central Dogma * Central Paradigm
of Molecular Biology for Bioinformatics
DNA Genomic Sequence Information
-> RNA -> mRNA (level)
-> Protein -> Protelin Sequence
-> Phenotype -> Proteiln Structure
-> DNA -> Biological Function

-> Organilismal Phenotype

sInformation transfer (MRNA)

Genetic material *Protein synthesis (tRNA/mMRNA)
*Some catalytic activity

37 ™ Lectures.GersteinLab.org



Molecular Biology Information - DNA

 Raw DNA Sequence
-4 bases:
AGCT
-~1 K 1n a
gene, ~2 M
1n genome

- ~3 Gb Human

atggcaattaaaattggtatcaatggttttggtcgtatcggcecgtatcgtattceccgtgea
gcacaacaccgtgatgacattgaagttgtaggtattaacgacttaatcgacgttgaatac
atggcttatatgttgaaatatgattcaactcacggtcgtttcgacggcactgttgaagtyg
aaagatggtaacttagtggttaatggtaaaactatccgtgtaactgcagaacgtgatcca
gcaaacttaaactggggtgcaatcggtgttgatatcgctgttgaagcgactggtttattce
ttaactgatgaaactgctcgtaaacatatcactgcaggcgcaaaaaaagttgtattaact
ggcccatctaaagatgcaacccctatgttegttecgtggtgtaaacttcaacgcatacgceca
ggtcaagatatcgtttctaacgcatcttgtacaacaaactgtttagctcctttagcacgt
gttgttcatgaaactttcggtatcaaagatggtttaatgaccactgttcacgcaacgact
gcaactcaaaaaactgtggatggtccatcagctaaagactggcgcggcggecgecggtgceca
tcacaaaacatcattccatcttcaacaggtgcagcgaaagcagtaggtaaagtattacct
gcattaaacggtaaattaactggtatggctttccgtgttccaacgccaaacgtatectgtt
gttgatttaacagttaatcttgaaaaaccagcttcttatgatgcaatcaaacaagcaatc
aaagatgcagcggaaggtaaaacgttcaatggcgaattaaaaggcgtattaggttacact
gaagatgctgttgtttctactgacttcaacggttgtgctttaacttctgtatttgatgca
gacgctggtatcgcattaactgattctttcgttaaattggtatc

. caaaaatagggttaatatgaatctcgatctccattttgttcatcgtattcaa
caacaagccaaaactcgtacaaatatgaccgcacttcgctataaagaacacggcttgtgg
cgagatatctcttggaaaaactttcaagagcaactcaatcaactttctcgagcattgcett
gctcacaatattgacgtacaagataaaatcgccatttttgcccataatatggaacgttgg
gttgttcatgaaactttcggtatcaaagatggtttaatgaccactgttcacgcaacgact
acaatcgttgacattgcgaccttacaaattcgagcaatcacagtgcctatttacgcaacc
aatacagcccagcaagcagaatttatcctaaatcacgccgatgtaaaaattctcttegtce
ggcgatcaagagcaatacgatcaaacattggaaattgctcatcattgtccaaaattacaa
aaaattgtagcaatgaaatccaccattcaattacaacaagatcctctttcttgcacttgg
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Molecular Biology Information: Protein Sequence

« 20 letter alphabet

- ACDEFGHIKLMNPQRSTVWY butnot BJOUXZ

« Strings of ~300 aa in an average protein (in bacteria),
~200 aa in a domain

« >12 M known protein sequences
(uniprot, , 2011)

dldhfa LNCIVAVSQNMGIGKNGDLPWPPLRNEFRYFQRMTTTSSVEGKQ-NLVIMGKKTWEFSI
d8dfr  LNSIVAVCONMGIGKDGNLPWPPLRNEYKYFQRMTSTSHVEGKQ-NAVIMGKKTWEFSI
d4dfra ISLIAALAVDRVIGMENAMPWN-LPADLAWFKRNTL-------- NKPVIMGRHTWESI
d3dfr4: TAFLWAQDRDGLIGKDGHLPWH-LPDDLHYFRAQTV-—————--— GKIMVVGRRTYESF

dldhfa_ LNCIVAVSQNMGIGKNGDLPWPPLRNEFRYFQRMTTTSSVEGKQ-NLVIMGKKTWEFSI
d8dfr  LNSIVAVCONMGIGKDGNLPWPPLRNEYKYFQRMTSTSHVEGKQ-NAVIMGKKTWEFSI
d4dfra ISLIAALAVDRVIGMENAMPW-NLPADLAWFKRNTLD-------- KPVIMGRHTWESI
d3dfr4: TAFLWAQDRNGLIGKDGHLPW-HLPDDLHYFRAQTVG————-—-—-—— KIMVVGRRTYESF

dldhfa VPEKNRPLKGRINLVLSRELKEPPQGAHFLSRSLDDALKLTEQPELANKVDMVWIVGGSSVYKEAMNHP
d8dfr  VPEKNRPLKDRINIVLSRELKEAPKGAHYLSKSLDDALALLDSPELKSKVDMVWIVGGTAVYKAAMEKP
d4dfra ---G-RPLPGRKNIILS-SQPGTDDRV-TWVKSVDEAIAACGDVP--—-—---— EIMVIGGGRVYEQFLPKA
d3dfr4: ---PKRPLPERTNVVLTHQEDYQAQGA-VVVHDVAAVFAYAKQOHLDQ----ELVIAGGAQIFTAFKDDV

dldhfa_ -PEKNRPLKGRINLVLSRELKEPPQGAHFLSRSLDDALKLTEQPELANKVDMVWIVGGSSVYKEAMNHP

d8dfr  -PEKNRPLKDRINIVLSRELKEAPKGAHYLSKSLDDALALLDSPELKSKVDMVWIVGGTAVYKAAMEKP
d4dfra -G---RPLPGRKNIILSSSQPGTDDRV-TWVKSVDEAIAACGDVPE----- IMVIGGGRVYEQFLPKA
d3dfr  -P--KRPLPERTNVVLTHQEDYQAQGA-VVVHDVAAVFAYAKQHLD----QELVIAGGAQIFTAFKDDV
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http://www.ebi.ac.uk/uniprot/TrEMBLstats/

Molecular Biology Information:
Macromolecular Structure

 DNA/RNA/Protein
— Mostly protein

(RNA Adapted From D Soll Web Page,
Right Hand Top Protein from M Levitt web page)

3" ,Amino acid DNA

@ attachment site

Amino acid
attachment site

Anticodon

Anticodon

Histone
protein
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ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
ATOM

ATOM
ATOM
ATOM
ATOM
ATOM
ATOM
TER

Molecular Biology Information:
Protein Structure Details

 Statistics on Number of XYZ triplets
200 residues/domain => 200 CA atoms, separated by 3.8 A

Avg. Residue is Leu: 4 backbone atoms + 4 sidechain atoms, 150 cubic A
=> ~1500 xyz triplets (=8x200) per ¢

>100K Domains, ~1200 folds (scop 1

W~ oUW WN

1444
1445
1446
1447
1448
1449
1450

ACE
ACE
ACE
SER
SER
SER
SER
SER
SER
ARG
ARG
ARG

LYS
LYS
LYS
LYS
LYS
LYS
LYS

NN PR R PR P00 O

186
186
186
186
186
186
186

.401
.432
.876
.753
.242
.453
.593
.052
.294
.360
.548
.502

.836
.422
.531
.452
.735
.887

.166
.832
L7677
.755
.200
.500
.607
.189
.409
.819
.316
.501

.263
.452
.198
.402
.104
.841

.595
L7222
.226
.685
.974
.579
.814
.974
.930
.827
.532
.500

.567
.180
.185
.860
.811
.647

R e = =

[ R e

1GKY 67 .
1GKY 68
1GKY 69
1GKY 70
1GKY 71
1GKY 72
1GKY 73
1GKY 74
1GKY 75
1GKY 76
1GKY 77
1GKY 78
1GKY1510
1GKY1511
1GKY1512
1GKY1513
1GKY1514
1GKY1515
1GKY1516

[
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Molecular Biology Information:
Whole Genomes

* The Revolution Driving Everything
FleiSCh ma n n, R. D., Adams, M. D., White, O., Clayton, R. A., Kirkness, E. F.,

Kerlavage, A. R., Bult, C. J., Tomb, J. F., Dougherty, B. A., Merrick, J. M., McKenney, K., Sutton, G.,

Fitzhugh, W., Fields, C., Gocayne, J. D., Scott, J., Shirley, R., Liu, L. I., Glodek, A., Kelley, J. M., Weidman, J.

F., Phillips, C. A., Spriggs, T., Hedblom, E., Cotton, M. D., Utterback, T. R., Hanna, M. C., Nguyen, D. T.,
Saudek, D. M., Brandon, R. C., Fine, L. D., Fritchman, J. L., Fuhrmann, J. L., Geoghagen, N. S. M., Gnehm,

C.L., McDonald, L. A., Small, K. V., Fraser, C. M., Smith, H. O. & Ve nte r, J. C.
( 1 995) "Whole-genome random sequencing and assembly of

Haemophilus s SCIENCE 205 496512
(Picture adapted from TIGR website, http://www.tigr.org)

* Timeline
1995, HI (bacteria): 1.6 Mb & 1600 genes done
1997, yeast: 13 Mb & ~6000 genes for yeast
1998, worm: ~100Mb with 19 K genes
1999: >30 completed genomes!
2000, draft human
2003, human: 3 Gb & 100 K genes...
2010, 1000 human genomes!
2017, 13K human genomes
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1995

Bacteria,
1.6 Mb,

~1600 genes
[Science 269: 496]

1997

Eukaryote,
13 Mb,

~6K genes
[Nature 387: 1]

1998

Animal,
~100 Mb,

~20K genes
[Science 282:
1945]

20007

Human,
~3 Gb,
~20K genes

U
Loy
Y

ENCE

$7.00

CI

28 JuLy 1995
VOL. 269 » PAGES 449 604

Human
Genome
Sequence

C. elegans

Sequence to Biology

A

Bioinfo_rmatics

prediction that

came true!

‘98 spoof

real thing, Apr ‘00




I

1 | Known e;

Gene Expression Data:
On & Off

I

RRRRRR
tttttt

« Early experiments yeast

- Complexity at 10 time
points,
6000 x 10 = 60K floats

* Then tiling array
technology

- 50 M data points to tile
the human genome at
~50 bp res.

oooooooooo

junctions

* Now Next-Gen
Sequencing (RNAseq)

- 10M+ reads on the

human genome,

counts

« Can only sequence
genome once but can do
an infinite variety of
expression experiments
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Molecular Networks: Connectivity  reguiatory Networks

Get readouts of
where proteins
bind to DNA :
Chip-chip then
chip-seq

Protein Interaction
Networks
For yeast: 6000 x
6000/2 ~18M

possible
interactions
Protein-protein Interaction networks TF-target-gene Regulatory networks (Maybe ~30K real)
=D
Fed
.:Zl\. N.\kv [Toenjes, et al, Mol. BioSyst. (2008); Jeong et

al, Nature (2001); [Horak, et al, Genes &
Development, 16:3017-3033; DeRisi, lyer, and
. . B , Sci , 278:680-686; D Izo, et al,
Metabolic pathway networks miRNA-target networks Mol Sust Biol. 8:604] escalzo, eta
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Molecular Biology Information:

Other Integrative Data

 Information to
understand genomes

- Whole Organisms
Phylogeny, traditional
zoology

- Environments, Habitats,
ecology

- Phenotype
Experiments
(large-scale

KOs,

transposons)

- The Literature
(MEDLINE)

 The Future....

Ml sgRNA

Mixed population

\ sgRNA Library

/CRISPR phenotypic screen

‘erary
Library Assembly

Compound

o
m . » 0°.%
2 o:.

Treatment

Resistant cells

G)mparative genomic)
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What is Bioinformatics?

* (Molecular) Bio - informatics

* One idea for a definition?
Bioinformatics is conceptualizing biology in terms of
molecules (in the sense of physical-chemistry) and
then applying “informatics” techniques (derived
from disciplines such as applied math, CS, and
statistics) to
the information associated with these molecules,
on a

 Bioinformatics is a practical discipline with many
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D L2 "[from Heidi Sofia, NHGRI]
Seq Un°lve r.se . SRA >1 petabyte .

TCGA endpoint: ~2.5 Petabytes - |
~1.5 PB exome .
~1 PB. whole genome

< 78 %@

—_—
—
&
1000 Genomes ~."" -, *.* k13 L™ -
» A Deep Catalog of Human Gene‘t‘ﬁi\fadﬁiidrg’;"f%,ﬁ 1 \ # ! ‘~ A € ) . . /
- L v ! “ I' ; : - » - " ‘ -'. : " . . » @g .

ARRA

Autism 2 O 1 6
B (e TCoA - 2300 TB
¢ BN 1000 Genomes - 222 TB
== ADSP - 68 TB
EEE NHGRI LSSP - 40 TB
B GTeX - 34 TB
BN NHLBI ESP - 32 TB
. . - 1 HMP - 29 TB
Sofia, 2-28-14 3 ’ . ] - Bl ARRA Autism - 24 TB

™ ENCODE - 97TB



What is Bioinformatics?

* (Molecular) Bio - informatics

* One idea for a definition?
Bioinformatics is conceptualizing biology in terms of
molecules (in the sense of physical-chemistry) and
then applying “informatics” techniques (derived
from disciplines such as applied math, CS, and
statistics) to
the information associated with these molecules,
on a

 Bioinformatics is a practical discipline with many
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General Types of

“Informatics” techniques

in Computational Biology
— a mix between mining & modeling

 Databases

- Building, Querying

- Representing Complex data
« Data mining

- Machine Learning techniques

- Clustering & Tree construction

- Rapid Text String Comparison &
textmining

- Detailed statistics of significance
& association

* Network Analysis
- Analysis of Topology (eg Hubs)
- Predicting Connectivity

« Structure Analysis &
Geometry
- Graphics (Surfaces, Volumes)
— Comparison & 3D Matching
(Vision, recognition, docking)
* Physical Modeling
- Newtonian Mechanics
- Minimization & Simulation

- Modeling Chemical Reactions &
Cellular Processes
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Data science analysis stack.

Machine Learning
classification, modeling,
visualization & data Integration

Scalable Algorithms

Streaming, Sampling, Indexing, Parallel

Compute Systems
CPU, GPU, Distributed, Clouds, Workflows

Michael C. Schatz Genome Res. 2015;25:1417-1422

© 2015 Schatz; Published by Cold Spring Harbor Laboratory Press
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Bioinformatics

Key Practical
Applications



What is Bioinformatics?

* (Molecular) Bio - informatics

* One idea for a definition?
Bioinformatics is conceptualizing biology in terms of
molecules (in the sense of physical-chemistry) and
then applying “informatics” techniques (derived
from disciplines such as applied math, CS, and
statistics) to
the information associated with these molecules,
on a

 Bioinformatics is a practical discipline with many
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Major Application I:
Designing Drugs from Structural Targets

« Understanding how structures bind other molecules

» Designing inhibitors using docking, structure modeling
* In silico screens of chemical and protein databases

(A) Docking

A
¢ \
QA(# pf' Protein of interest

\(Q‘_(qu

v

b

(From left to right, figures adapted from Olsen Group Docking Page at Scripps, Zheng et al. Trends in Pharmacological Sciences 2013)

54 -



[Adapted from Sci. Am.]

Major Application IlI: Finding Homologs,
to Find Experimentally Tractable Gene Targets

— AN EIECEERITTIURED

1 ISOLATE HUMAN DNA SEQUENCE ‘
.GAGAACTGTTTAGATGC CAAAATCCACAAGT ...

2 TRANSLATE DNA SEQUENCE INTO AMINO
ACID SEQUENCES

ENCLDAKSTS ...

3 FIND SIMILAR SEQUENCES IN DATA-

BASES OF MODEL ORGANISM PROTEINS

( reflect great differences; ‘
, smaller variations) 5 FIND DRUG THAT

4 MODEL HUMAN PROTEIN ~ BINDSTO

HUMAN ..ENCLDAIKS ST S ... STRUCTUREBASEDON MODELED
KNOWN STRUCTURE OF PROTEIN
. A SIMILAR PROTEIN FROM
FLY ‘\\ - A MODEL ORGANISM

(D. melanogaster) \ ...ENS LDAQSTH .. (red area Is encoded by the
. sequence shown)
WORM ENSLDAGATE
(C. elegans)
©
YEAST e . ENSIDANATM

(S. cerevisiae)

W, SO, =
BACTERIA #%...ENSLDAGATR
(E.coli ) -
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Major Application lli:
Customizing treatment in oncology

* |dentifying disease causing mutations in individual
patients

» Designing targeted therapeutics
- e.g. BCR-abl and Gleevec
- Cancer immunotherapies targeting neoantigens

» p\/@ ‘ atb

disease

- — umor-
specific ) .
antigen signals » Cell killing
' + Disrupts micro-
environmen
\

(From left to right, figures adapted from Druker BJ. Blood 2008 and the Lim Lab at UCSF)
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for diseases we know little about (Neuro-psychiatic Diseases)

Major Application IV:
Finding molecular mechanisms & drug targets

Disease Heritability™ Molecular Mechanisms N
|, Phenotype
Schizophrenia 81%
Bipolar disorder 70% | = e
Alzheimer's disease | 58 - 79% Apolipoprotein E (APOE), Tau ~‘
pathways,
30% Renin—angiotensin—aldosterone circuits
34-53% Atherosclerosis, VCAM-1 Cell types ot Sads
Stroke 32% Reactive oxygen species (ROS), T T 24
Ischemia elements Genes
Type-2 diabetes 26% Insulin resistance
25'56% BRCA, PTEN - Genotype -’

Many psychiatric conditions are highly heritable
Schizophrenia: up to 80%

But we don’t understand basic molecular mechanisms underpinning this association
(in contrast to many other diseases such as cancer & heart disease)

Moreover, current models substantially underestimate heritability using genetic data
Schizophrenia : ~25%

Thus, interested in developing predictive models of psychiatric traits which:
Use observations at intermediate (molecular levels) levels to inform latent

structure.

Use the predictive features of these “molecular endo phenotypes” to begin to
suggest actors involved in mechanism

*https:/www.snpedia.com/index.php/Heritability
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Major Application IV:
Finding molecular mechanisms & drug targets
for diseases we know little about (Neuro-psychiatic Diseases)

"I;mow‘lﬂlrﬁ&‘m Ndﬂﬁ(hnllpuu Dreaming up the next great E‘

Disease Heritability* Molecular Mechanisms B | T =
Schizophrenia 81% - S Clence occeuees 208 ﬁ
Q.

Bipolar disorder 70% - AVAAAS s
X

Alzheimer's disease | 58 - 79% Apolipoprotein E (APOE), Tau §
30% Renin—angiotensin—aldosterone §

(&)

R

©

34-53% Atherosclerosis, VCAM-1 Q

C

(/7]

Stroke 32% Reactive oxygen species (ROS), :
Ischemia %

Type-2 diabetes 26% Insulin resistance 2_
Breast Cancer 25-56% BRCA, PTEN ILLUMINATING £

THE BRAIN

Bxamining gene expression,
development and disease p 1262

Many psychiatric conditions are highly heritable

(in contrast Science

Moreover, ¢ Recent Rollout in Science Tﬁ‘gﬁl@f}%&l
Thus, interd addressing this, involving

many Yale Researchers

Use the pré
suggest actors involVae



Major Application V:
Holistic Personal Genome
Characterization,
in Normal Individuals

AN EXAMINED LIFE

The longitudinal study collected data at daily and three-month
intervals, and allowed personalized interventions -- such as
changes in diet -- as the study proceeded.

BRAIN
What'’s measured:
Sleep patterns

<4 Frequency: Daily
Method: Wrist sensor

HEART

Pulse, physical-activity level
<4 Daily

Wrist sensor

COLON
Microbiome ecology
<4 Every three months
Stool sample

Institute for

Systems Biology

LIVER, LUNGS, BRAIN
& HEART
100 proteins to track
organ health
<4 Every three months
Blood sample

LYMPHATIC SYSTEM
Immune-cell activity

<4 Every three months
Blood sample

INSULIN SENSITIVITY
Blood glucose

<4 Every three months
Blood sample

CHROMOSOMES
Whole-genome sequence
<4 Atenrollment
Blood sensor

(Figure from Institute for Systems Biology)

 Mental disease & cancer are two
extremes with respect to
genomics (CEN, 92: 26)

- Many other conditions in
between, often involving
interaction with the
environment

* Pers. Genome Characterization
- |dentify mutations in personal
genomes (SNPs, SVs, &c)

- Estimate phenotypic (deleterious
or protective) impact of variants.
— Compare one person to wider
population.
» Track changes over time &
consider interaction w/
environment

- Transcriptome studies

— Longitudinal health studies
(e.g. 100K wellness project,
Framingham Heart Study)
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The Key Application in
Personal Genomics

More Detalls



Personal Genomics
as an an organizing theme for this class

A personal genome can reveal a lot about an individual.
- Disease risks, ancestry, personal traits, etc.

In this class, we will look at how to identify key genomic variants with
the most impact.

Next step: Personal genome annotation combined with multi-omic and
longitudinal health data can inform new links between genotype and
phenotype relevant to an individual and the larger population. It can act
as a center for large-scale data integration.

In preparation for this future, we will use analysis techniques including
systems and network modeling as well as structural modeling to
contextualize future multi-omics data sets and better interpret the
mechanisms through which variants impact health

Genomic privacy will become increasingly important as precision
medicine becomes more common.
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Analyzing Carl Zimmer’s genome

CARLZIMMER'S

AME OF (GENOM

SEASON |

Protein P *gj
Structure | &5

Wild-type

s T e
Amoiie 2 )'.S?,;s
Ancestry T T
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Personal Omics Profiling

SAMPLE TYPE METHOD ANALYSES
N Eamlt
WQOIe Sonome Variant Calling / Phasing [~ ' / |
equencing o ||
— ! LL:J“
Heteroallelic & Variant o Z [ #” . -
Expression — -7
Whole Transcriptome g { s "
PBMC > Sequencing > RNA-Editing —> ==
(mRNA and miRNA) J”; / e
Quantitative Differential — °s, °
Expression & Dynamics =5 m Sig:'g(“ ii"’ :%
) oo .. :
. Variant Confirmation in U - .
Proteome Profiling RNA and Protein —> m 77—4 =
A "
Untargeted Proteome .| Quantitative Differential N w - b
Profiling Expression & Dynamics O | Eﬁi
)Z> RO
Targeted Proteome . i . B B
Profiling (Cytokines) > Quantitative Expression [~ g —
\ B A4
Serum > Metabolome Profiling > Dynamics —> 6
\ &h T ltﬂl
A“t°'§:‘gf?l?:g°me >  Differential Reactivity [~ —
> g |
Medical / Lab Tests p Glucoss, HEATL, CRR,
Telomere Length
14

(Figure from Chen et al

RNA Edits

Heteroallelic SNVs

Protein-Downregulated
(HRV vs Healthy)

Protein-Upregulated
(HRV vs Healthy)

RNA-Downregulated
(HRV vs Healthy)

RNA-Upregulated
(HRV vs Healthy)

Indels
SV-Duplications

SV-Deletions

Chr. Ideogram

Chr. Number

. Cell 2012)
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The Other Side of the
Data Science Coin:

The Data Exhaust from
Personal Genomics

(SOS)



Data Exhaust

» Creative use of data is key to data science!

» Data exhaust = exploitable byproducts of big

data collection and analysis

(

Data collection
and analysis

~

k52

/
~ z@

~

~

\ Core scientific purposes

/

[photos: wikipedia/wikimedia]

\_

metadata

infrastructure
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Exhaust Mining Application:
Using Science to Study Science (SOS)

ENCODE member
non-member
ENCODE member broker

non-member broker * Mining output of science
—— co-authorship (Scientific Publications) to
understand how science
works as a social
enterprise

® ¢ & O

« Co-authorship network of

, =y members of the human

< ,g genome annotation group
L - (ENCODE) & users of this

groups data

@ LSRN Y ..

T ® o TR
E-3
.

2D @ g 2P ©

550 § %

®oo .
PP @ o ®
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o
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HMMand 5
Network papers  §
L

[Navarro et al.
GenomeBiol.
(’19, in press)]

0.00

Hidden Markov Models

2005
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=== Genomics =s= Other Topics
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The Other Side of the
Data Science Coin:

The Data Exhaust from
Personal Genomics
(Privacy
considerations)



Genomics has similar
"Big Data" Dilemma as

in the Rest of Society

» We confront privacy risks every day we access
the internet (e.g., social media, e-commerce).

» Sharing & "peer-production” is central to
success of many new ventures, with analogous
risks to genomics

- EG web search: Large-scale mining
essential

Genetic Exceptionalism :
The Genome is very fundamental data, potentially very
revealing about one’s identity & characteristics
Personal Genomic info. essentially meaningless currently
but will it be in 20 yrs? 50 yrs?
Genomic sequence very revealing about one’s children. Is
true consent possible?
Once put on the web it can’t be taken back
Ethically challenged history of genetics
Ownership of the data & what consent means (Hela)
Could your genetic data give rise to a product line?

[Seringhaus & Gerstein ('09), Hart. Courant (Jun 5); Greenbaum & Gerstein ('11), NY Times (6 Oct), D Greenbaum & M Gerstein ('08). Am J. Bioethics; D
Greenbaum & M Gerstein, Hartford Courant, 10 Jul. '08 ; SF Chronicle, 2 Nov. '08; Greenbaum et al. PLOS CB (‘11) ; Greenbaum & Gerstein ('13), The Scientist;
Photos from NY Times, it.wisc.edu]
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Robert Munsch

We Share

EVERYTHING!

illustrated by Michael Martchenko

The Dilemma

* The individual (harmed?) v the
collective (benefits)
- But do sick patients care
about their privacy?
* How to balance risks v rewards
— Quantification

[Yale Law Roundtable (‘10). Comp. in Sci. & Eng. 12:8; D Greenbaum & M Gerstein (‘09). Am. J. Bioethics; D
Greenbaum & M Gerstein (‘10). SF Chronicle, May 2, Page E-4; Greenbaum et al. PLOS CB (‘11)]

The Other Side of the Coin:
Why we should share

» Sharing helps speed research

— Large-scale mining of this information is important
for medical research

- Statistical power
- Privacy is cumbersome, particularly for big data

Dawd Parkins

[Economist, 15 Aug ‘15]
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Current Social & Technical Solutions:
The quandary where are now

* Closed Data Approach
- Consents
- “Protected” distribution via dboGAP
- Local computes on secure computer
» |ssues with Closed Data
- Non-uniformity of consents & paperwork
« Different, confusing int’l norms
— Computer security is burdensome
- Many schemes get “hacked” .

- Tricky aspects of high-dimensional
data (ease of creating quasi-identifiers)

 Open Data
- Genomic "test pilots” (ala PGP)?
» Sports stars & celebrities?

- Some public data & data donation is helpful but is this a realistic solution for an
unbiased sample of ~1M
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Extra stuff



Class Web Page

GersteinLab.org/courses/452

Assignment #0 Page
http://bit.ly/cbb752b20-hw0
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Plagiarism
( QUOTED(!) from Yale College Dean’s Office Memo of 9-Sept-2019 )

» Please tell your students, in your syllabi and orally:

- to cite all sources in papers, including drafts, every time they use a
source,

- to place quotation marks around any cited or cut-and-pasted
materials, in addition to footnoting or otherwise marking the source,

- to mark each paraphrased source, as though it were quoted,

- to list all sources consulted for the draft or paper in the closing
materials, such as a bibliography or roster of sources consulted,

- to follow the above rules even in STEM courses that require a search
of research literature,

- not to collaborate unless explicitly allowed,

— not to submit another person's solution to a problem, including a
solution found online,

- not to submit or reuse material from the same paper in multiple
courses unless both instructors provide written permission to do so.
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Are They or Aren’ t They
Comp. Bio.? (#1 )

.« ( Digital Libraries & Medical Record Analysis

- Automated Bibliographic Search and Textual
Comparison
- Knowledge bases for biological literature
o ( Motif Discovery Using Gibb's Sampling
o ( Methods for Structure Determination
- Computational Crystallography
* Refinement

- NMR Structure Determination
o ( Distance Geometry

o« ( Metabolic Pathway Simulation
o ( The DNA Computer
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Are They or Aren’ t They
Comp. Bio.? (#1, Answers)

- (YES?) Digital Libraries & Medical Record Analysis

- Automated Bibliographic Search and Textual
Comparison

- Knowledge bases for biological literature
- (YES) Motif Discovery Using Gibb's Sampling
e (NO?)

- (YES) Distance Geometry
« (YES) Metabolic Pathway Simulation

* (NO)
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Are They or Aren’ t They

Comp. Bio.? (#2 )
« ( Gene identification by sequence characteristics
- Prediction of splice sites
e ( DNA methods in forensics
. ( Modeling of Populations of Organisms

- Ecological Modeling (predator & prey)
« ( Modeling the nervous system

- Computational neuroscience

- Understanding how brains think & using this to make
a better computer

.« ( Molecular phenotype discovery — looking for
gene expression signatures of cancer

- What if it included non-molecular data such as age ?
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Are They or Aren’ t They
Comp. Bio.? (#2, Answers)

- (YES) Gene identification by sequence characteristics

- Prediction of splice sites
- (YES) DNA methods in forensics
* (NO)

 (NO?)

« (YES) Molecular phenotype discovery — looking for
gene expression signatures of cancer

- What if it included non-molecular data such as age ?



(
(

Are They or Aren’ t They
Comp. Bio.? (#3 )

RNA structure prediction
Radiological Image Processing

- Computational Representations for Human
Anatomy (visible human)

(

Artificial Life Simulations

- Artificial Immunology / Computer Security

- (

N N N N N

Genetic Algorithms in molecular biology
Homology Modeling & Drug Docking
Char. drugs & other small molecules (QSAR)
Computerized Diagnosis based on Pedigrees
Processing of NextGen sequencing image files
Module finding in protein networks
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Are They or Aren’ t They
Comp. Bio.? (#3, Answers)

« (YES) RNA structure prediction
* (NO)

* (NO)

— (NO?)
« (YES) Homology Modeling & Drug Docking
« (YES) Char. drugs & other small molecules (QSAR)
* (NO)
* (NO)
* (YES)
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