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SUMMARY

A key issue in drug design is howpopulation variation
affects drug efficacy by altering binding affinity
(BA) in different individuals, an essential consider-
ation for government regulators. Ideally, we would
like to evaluate the BA perturbations of millions of
single-nucleotide variants (SNVs). However, only
hundreds of protein-drug complexes with SNVs
have experimentally characterized BAs, constituting
too small a gold standard for straightforward statisti-
cal model training. Thus, we take a hybrid approach:
using physically based calculations to bootstrap
the parameterization of a full model. In particular,
we do 3D structure-based docking on �10,000
SNVs modifying known protein-drug complexes to
construct a pseudo gold standard. Then we use
this augmented set of BAs to train a statistical model
combining structure, ligand and sequence features
and illustrate how it can be applied to millions of
SNVs. Finally, we show that our model has good
cross-validated performance (97% AUROC) and
can also be validated by orthogonal ligand-bind-
ing data.

INTRODUCTION

In recent years, the immense growth of both genetic variation

(Muir et al., 2016; Zuk et al., 2014) and protein structure datasets

(Rose et al., 2015), which benefit from significant advancement in

related techniques, has enabled us to study in depth the impact

of genomic variants on protein structure and function (Sethi

et al., 2015). Great efforts have been made to understand how

genetic variants associate with various diseases at a population

level, and to exploit those associations in order to potentially

enhance drug effectiveness in the era of personalized medicine

(Collins and Varmus, 2015; Ginsburg and McCarthy, 2001; Laing
Struc
et al., 2011). Studies have shown that many drugs are effective

toward only a limited fraction of individuals due to different re-

sponses frompatients (Meyer et al., 2013; Spear et al., 2001;Wil-

kinson, 2005). One of the reasons for this loss of efficacy is drug-

resistant genetic variants carried by patients (Madian et al.,

2012; Wilkinson, 2005). A patient’s genetic-centric prescription

may be a reasonable approach to address the problem of

drug ineffectiveness, especially because recent advances of

sequencing technologies make it practical and affordable to

carry out high-throughput personal genomic analysis.

There are many tools to evaluate the effect of sequence vari-

ants. Some widely used tools include SIFT (Kumar et al., 2009;

Ng and Henikoff, 2003), PolyPhen-2 (Adzhubei et al., 2013),

and combined annotation-dependent depletion (CADD) (Kircher

et al., 2014). These mainly focus on sequence conservation

within and across species to quantify the general impact of a

non-synonymous single-nucleotide variants (SNVs). Studies for

this purpose are usually limited to the available experimentally

measured SNV-implication characterizations on native and

mutant protein samples. Conceptually, we can map SNV data

onto associated protein structures to quantitatively investigate

how related physical properties are altered upon point mutation.

In practice, experimentally measured data are limited to only a

small pool of mutations. Specifically, while consortia projects

such as The Cancer Genome Atlas (TCGA) and the Exome

Aggregation Consortium (ExAC) have identified more than ten

million exonic SNVs, available experimental measurements

characterizing variant impacts such as protein-ligand binding af-

finity change are scarce (Pires et al., 2015). When we expand the

scope to structural bioinformatics (i.e., just having a structure but

not requiring direct experimental measurement of binding affin-

ity), the scale expands. The number of available high-quality

3D protein structures deposited in the RSCB Protein Data

Bank (PDB) is significant: there are about 41,000 protein struc-

tures available from Homo sapiens in the RSCB PDB (Berman

et al., 2000). By one estimate, nearly 175,000 exonic variants

can be mapped to at least one protein PDB file (with a resolution

of at least 2.8 Å) (Kumar et al., 2016). Thus, leveraging knowledge

gained from mapping variants onto the considerable databases

of 3D protein structures (Glusman et al., 2017; Kumar et al., 2016)
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provides a promising way for understanding SNV functional im-

pacts, such as influence on drug effectiveness. Although the

quantification of functional impact depends on the quality of

available computational methods, recent advances directed to-

ward reliable physical property calculations can aid significantly

in such an endeavor.

Computational simulations of proteins have been extensively

validated as a method to study protein dynamics and conforma-

tions (De Vivo et al., 2016). In addition, computational simula-

tions can be used to calculate associated physical properties,

such as free energy change, especially when large-scale exper-

imental throughput is limited by available resources. The field

has seen rapid and consistent development from the pioneering

molecular dynamics work by Levitt and Warshel (1975) and

McCammon et al. (1977) decades ago, to more recent structure

modeling and docking tools such as UCSF DOCK (Kuntz et al.,

1982), Rosetta (Rohl et al., 2004), AutoDock4 (AD4) (Morris

et al., 2009), and MODELLER (Webb and Sali, 2016). At every

stage, there have been concerted efforts to establish the corre-

spondence with experimental data, such as through the Critical

Assessment of Structure Prediction (Moult et al., 2016). With the

concurrent growth of genetic variation data at the population

level, linking 3D protein structures and genomics using compu-

tational models has proven to be a powerful and innovative

approach for precision medicine (Meyer et al., 2018). Such inte-

grated approach combining different data type (i.e., structural,

physical modeling, and genetic information) can enhance the ac-

curacy and completeness of a model, especially when experi-

mental measurement is limited (Ward et al., 2013). Here, we pri-

marily focused on protein-drug interactions and aimed to

determine the likelihood that an SNV perturbs the interaction be-

tween a protein and its associated drug ligands. Once the set of

genetic variants carried by an individual are identified, the focus

can then be shifted to how single-locus alteration of protein res-

idues caused by SNVs would influence drug efficacy. Thus,

robust methods to accurately predict if an SNV of interest would

disrupt the binding of a drug to its protein target would help

determine how an individual’s carried variants would potentially

affect drug efficacy.

To implement this idea, we developed a supervised learning

method, GenoDock, to bridge SNVs on a large population scale

and high-resolution protein-drug co-crystal structures. Our pri-

mary goal was to investigate how a given variant affects pro-

tein-drug binding affinity. We first constructed our database by

mapping germline and somatic variants onto their associated

protein residues, within co-crystal structures that include drug

molecules. We subsequently generated a computational model

of the mutated protein based on its sequence and the structure

of the native protein using MODELLER (Webb and Sali, 2016).

We then examined the binding affinity change (DBA) for the

bound drug between the native and mutated protein structures

associated with each SNV in our database through molecular

docking. We grouped the variants based on whether they would

lead to a positive shift in binding affinity (DBA > 0) or not (DBA%

0), with a positive shift in binding affinity indicating that the cor-

responding SNV is a disruptive one. The disruptive SNVs were

our main focus in this study due to their high potential to be asso-

ciated with drug resistance. Due to the fact that available exper-

imentally measured ligand binding affinity change data are highly
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limited (Benore, 2010), it is not practical to train a supervised

learning model based on experimental data. Therefore, in our

method we circumvented this issue by constructing a calculated

binding affinity change set as our pseudo gold standard using

molecular docking programs. This enabled us to train a super-

vised learning model using a Random Forest algorithm to predict

the probability of a given SNV to destabilize protein-drug binding

by integrating genomic, structural, and physicochemical fea-

tures from SNV annotations, protein structures, and drug

ligands.

RESULTS

Building the GenoDock Dataset and with Pseudo Gold
Standard Set of DBA
Figure 1 shows the overall framework of this study. We first build

the GenoDock dataset containing SNV, structure, and ligand

features for selected SNV-Structure-Ligand entries. Then we

leverage physical calculations to construct the pseudo gold

standard set of binding affinity changes for the variants in the

GenoDock dataset. In the end, we train a full statistical learning

model after a feature exploration and engineering step, to score

the likelihood of an SNV of interest to disrupt protein-drug ligand

binding.

Figure 1A highlights our strategy to construct the dataset

(publicly available from the GenoDock website, http://

genodock.molmovdb.org/). The database contains 10,283

non-synonymous SNVs from 228 proteins in Homo sapiens,

and 113 Food and Drug Administration (FDA)-approved drug li-

gands, which have co-crystal structures with at least one of the

228 proteins. We screened over 30,000 human proteins with

high-resolution (better than 3.0 Å) X-ray-solved PDB structures

(https://www.rcsb.org/), and kept those with at least one FDA-

approved drug ligand in the co-crystal structures. After

removing any redundancy in the structures based on sequence

alignment, we mapped germline SNVs from the ExAC (Lek

et al., 2016) and somatic SNVs from TCGA (Cancer Genome

Atlas Research Network, 2008, 2012; Cancer Genome Atlas

Research Network et al., 2013) datasets to these 228 protein

structures, utilizing the BioMart-derived correspondence be-

tween human gene, transcript, and PDB ID (Kasprzyk, 2011).

In total, we identified 8,565 SNVs in 166 PDB structures for

ExAC germline variants, and 1,718 SNVs in 135 PDB structures

for TCGA somatic mutations (see Data S1). The SNVs, protein

structures, and drug ligands formed SNV-Structure-Ligand

3-tuple entries in our database. For each SNV-Structure-Ligand

entry, as visualized in Figure 1B, we used the MODELLER pro-

gram suite (Webb and Sali, 2016) to generate a putative struc-

tural model of the point mutation through homology modeling.

We then used AutoDock Vina (Trott and Olson, 2010) to calcu-

late the binding affinity score for the binding of the ligand with

the wild-type protein (DGWT) and with the mutated protein

(DGMUT) in order to determine the score change (DBA) in

kcal/mol (DBA = DGMUT � DGWT). The set of DBA values served

as the reference dataset, or pseudo gold standard for the

GenoDock program suite.

GenoDock aims to predict the change in binding affinity of the

drug ligand after the protein target is mutated, based on a

Random Forest classifier. DBA > 0 indicates that less energy is

http://genodock.molmovdb.org/
http://genodock.molmovdb.org/
https://www.rcsb.org/
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Figure 1. Framework of the GenoDock Project from Dataset Preparation to Model Construction

(A) A flowchart for collecting and processing rawdata to construct theGenoDock database from the protein structure data source (RCSBPDB), SNV data sources

(ExAC and TCGA), and drug ligand data source (PubChemCompound). SNVs were mappedwith protein-drug co-crystal structures to form each SNV-Structure-

Ligand entry in our database. We then calculated the binding affinity change for each mutation to construct the pseudo gold standard for the machine-

learning model.

(B) Illustration of protein-ligand binding affinity change calculations. For each native co-crystal structure in our dataset, we generated a mutant structure using

Modeller. For each native and mutated structure pair, we calculated the binding affinity using Vina, in order to obtain the binding affinity change (DBA) upon the

point mutation. DBA for each SNV served as the pseudo gold standard set for the subsequent classification model.

(C) Construction of the Random Forest model to predict the direction of protein-ligand binding affinity change (DBA > 0 orDBA% 0). With feature engineering and

exploration, several SNV features, drug ligand features, and structure features were combined to predict the direction of protein-ligand binding affinity change.

The GenoDock program suite was trained based on Random Forest, with four application models available. We employed the Platinum dataset as our real gold

standard providing about 100 LBA records for human protein mutations. By constructing docking calculations for binding affinity changes, we calculated the

binding affinity change for each of the �10,000 mutations in the GenoDock database, making it possible to train a supervised learning model with confidence.

With the trainedGenoDockmodel, it is then possible to screen large-scale datasets for drug ligands (e.g.,�2.6k drug ligands associated with�60k SNVs), human

protein structures (�30,000 from the RCSB PDB website with resolution higher than 3.0 Å), and exonic SNVs (�1,000,000 sequenced exonic SNVs; �175,000

SNVs mapped with at least one human protein structure with 2.8 Å or higher resolution from the RCSB PDB database).
required to break the binding between the protein and the ligand,

and thus that the point mutation plays a disruptive role that could

potentially cause drug resistance. As shown in Figure 1C, we

categorized DBA values for each SNV-Structure-Ligand entry

into two classes: if DBA was positive, we tagged it as ‘‘disrup-

tive’’; if DBAwas non-positive, we tagged it as ‘‘non-disruptive.’’

We integrated selected genomic, structural, and physicochem-

ical features of SNVs, protein structures, and ligands to train

the classifier: SNV annotation features included allele frequency,

SIFT (Kumar et al., 2009), PolyPhen-2 (Adzhubei et al., 2010), and

GERP (Davydov et al., 2010) scores; ligand features included

molecular weight, hydrogen bond donor and acceptor count,

rotatable bond count, and polar surface area; and protein struc-
ture features included binding site, side-chain hydropathy and

volume change, and distance of the mutated residue from ligand

(see the STARMethods for details of Random Forest model con-

struction and feature selection; Figures 1, 4, S1, and S2).

An ideal approach is to use experimentally measured ligand

binding affinity (LBA) data to characterize the impact of SNVs

on protein-drug binding. However, the quantity of available

LBA data are far from enough for the training task. For example,

the Platinum database (Pires et al., 2015) is a recent effort to

collect experimentally measured LBA data for over 1,000 muta-

tions, which could potentially serve as the real gold standard of

binding affinity change. However, only around 100 mutations

of the Platinum dataset are associated with human proteins.
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Figure 2. Boxplot of Ligand Binding Affinity

Changes for Different Types of SNVs in

GenoDock

An overall comparison of common, rare, passenger,

and driver SNVs in terms of binding affinity change

from theGenoDock data source. SNVswithDBA > 0

were plotted in order to compare the extent of

destabilization of ligand binding by each SNV group.

The mean values for those SNVs leading to ligand-

binding disruption for common, rare, passenger,

and driver SNVs from the ExAC and TCGA dataset

were 0.117, 0.129, 0.159, and 0.236 kcal/mol,

respectively. The difference between common and

rare SNVs from the ExAC dataset was not signifi-

cant; the difference between passenger and driver

SNVs from TCGA was significant, with a p value of

3.60 3 10�4, where driver SNVs were more likely to

disrupt ligand binding compared with other groups.

The green-dotted and pink-dotted lines in the figure

show the percentage of SNVs from each group

that lead to non-positive shift of binding affinity

(DBA < 0 or DBA = 0; 94%, 93%, 91%, and 85%, respectively), and those that do not change the binding affinity (DBA = 0; 88%, 87%, 87%, and 77%,

respectively). It is clear that cancer driver SNVs have a greater probability to result in a positive binding affinity change compared with the other three groups.
By constructing the pseudo gold standard set for each of the

SNV-Structure-Ligand entries, our training dataset can be

expanded to �10k, which is a 10-fold increase relative to avail-

able entries in Platinum. We then validate that the accuracy of

GenoDock predictions is acceptable using these Platinum

experimentally measured records. Thus, the GenoDock model

enables us to prioritize SNVs that may potentially disrupt pro-

tein-drug binding by leveraging large-scale database drug

ligand, protein structure, and exonic SNV datasets. For instance,

there are more than ten million exonic variants sequenced from

consortium projects such as ExAC and TCGA; in one study,

more than 175k exonic variants were mapped onto at least one

protein structure with a resolution of at least 2.8 Å from the

PDB (Kumar et al., 2016). The DrugBank database (Wishart

et al., 2018) contains �2.6k approved small-molecule drugs,

and �60k SNVs could be associated with these via �800

drug-related genes (Sch€arfe et al., 2017). All of these datasets

could potentially be screened with the GenoDock program suite

to prioritize the disruptive SNVs.

Sequence Characterization and Distributions of DBA
for SNVs
After constructing the GenoDock dataset, we first analyzed the

mutation landscape of TCGA somatic and ExAC germline vari-

ants in our dataset (see Figures S3A and S3B). This allowed us

to measure known amino acid changes and mutation trends

that are under high selective constraint or potentially lead to dis-

ease. Next, using the ExAC germline SNVs in our dataset, we

then examine whether there is a significant difference between

the rare and the common SNV groups in terms of destabilization

of the protein-drug complex. Rare and ultra-rare SNVs are

generally interpreted as having higher impact than common

ones. The allele frequency values in population-level studies

also indicate varying degrees of constraint under natural selec-

tion. Similarly, we divided the TCGA somatic SNVs into highly

deleterious driver SNVs and neutral passenger SNVs to investi-

gate differences in the impact of the two groups on drug binding
1472 Structure 27, 1469–1481, September 3, 2019
(Stefl et al., 2013) (see the STAR Methods for details regarding

common, rare, passenger, and driver SNV tagging).

Figure 2 visualizes the distributions of binding affinity change

for each group, especially the positive shift in DBA by disruptive

SNVs, which contribute to 6.0% and 8.9% of all SNVs in the

ExAC and TCGA datasets, respectively (Figure S3C). Although

we did not observe a significant difference in DBA distributions

between common and rare SNVs, when we compared the top

common and rare germline SNVs with positiveDBA (the ‘‘outlier’’

region in the boxplot), the top rare SNVs had a significantly

higher DBA than the top common ones. This finding implies

that the rare SNV pool containsmore extremely deleterious sam-

ples in terms of disrupting drug-protein binding than those from

the common SNV pool (e.g., the difference between the top 50

rare and common SNV groups has p = 3.5 3 10�7; Figure S3D).

This observation is intuitively consistent with our expectations,

as the rarity of variants stems from higher selective constraints

due to greater impacts on protein stability.

Efforts made to characterize cancer genomes (Cancer

Genome Atlas Research Network, 2008, 2012; Forbes et al.,

2011) have validated important roles of driver SNVs in driving

cancer progression (Hong et al., 2015; Raphael et al., 2014).

These findings motivated us to probe the impact of SNVs in

driver genes on perturbing interactions between associated pro-

tein residues and drug ligands. Indeed, our analysis revealed a

significant difference between SNVs in passenger and driver

genes (Figure 2): cancer-associated driver SNVs tend to desta-

bilize protein-drug binding to a greater extent compared with

neutral passenger SNVs (p = 3.60 3 10�4). In Figure 2, we also

plotted the percentage of SNVs that led to a non-positive DBA

together with the percentage of SNVs that did not change the

binding affinity upon point mutation (DBA = 0). We found that

the portion of SNVs that would cause a non-positive DBA

decrease from common (94%), rare (93%), passenger (91%),

to driver (85%) groups. This indicates that, based on our metric,

the driver SNV group has a larger proportion of variants that

impair drug binding compared with the other groups.
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Figure 3. Boxplot Distribution between Disruptive SNVs (Positive Binding Affinity Shift) and Non-disruptive SNVs (Non-positive Binding

Affinity Shift) for Different Features Groups

(A) PolyPhen-2, SIFT, and GERP scores as SNV features. We observed that PolyPhen-2, SIFT, and GERP scores for the two groups of SNVs were all significantly

different with p values smaller than 0.05 from two-sample Wilcoxon tests. SNVs that disrupt ligand-protein binding had a higher mean PolyPhen-2 score (median

PolyPhen-2 value: 0.916 and 0.549 for disruptive and non-disruptive SNVs, respectively) and a lower SIFT score (median SIFT value: 0.010 and 0.030 for

disruptive and non-disruptive SNVs, respectively), both indicating a more deleterious role of disruptive SNVs on protein function. In terms of GERP score, SNVs

leading to positive binding affinity changeweremore likely to be associated with protein residues frommore conserved regions, indicated by a highermeanGERP

score (median GERP value: 4.37 and 4.15 for disruptive and non-disruptive SNVs, respectively).

(B) Side-chain volume and hydropathy change as protein structure features; distance between ligand and mutated residue when co-crystal structure is present.

Amino acid side-chain volume and hydropathy change before and after mutation directly affect interaction of the protein residue with the ligand.We observed that

the mean value of both side-chain volume and hydropathy were statistically significant. On average, SNVs that destabilized ligand binding had decreased side-

chain volumes compared with the other class of non-disruptive SNVs (median volume change index: �0.240 and 0 for disruptive and non-disruptive SNVs,

respectively). For side-chain hydropathy change, there was also a significant difference between the two classes of SNVs (median hydropathy change: 0.40 and

0.30 for disruptive and non-disruptive SNVs, respectively). When protein-drug co-crystal structures were present, we directly calculated the distance of the

mutated protein residue from the drug ligand. As expected, the SNVs that positively shifted binding affinity weremore likely to bemapped onto residueswithin the

binding pocket (median distance from ligand: 5.42 and 17.4 Å for disruptive and non-disruptive SNVs, respectively).

(C) Polar surface area and molecular weight as ligand features. Within the context of protein-drug ligand interaction, physicochemical features of drug molecules

play vital roles in interpreting SNV implications. We observed that for SNVs that disrupted binding affinity, the associated drug ligands tended to have a significant

smaller average polar surface area that those corresponding to SNVs in the other class (median ligand polar surface area: 77.2 and 77.8 Å2 for disruptive and non-

disruptive SNVs, respectively). We also observed that the averagemolecular weight of drug ligands interacting with disruptive SNVs was significantly higher than

those corresponding to the non-disruptive SNVs (medianmolecular weight of ligand: 357.8 and 300.4 g/mol for disruptive and non-disruptive SNVs, respectively).
Feature Exploration and Engineering to Classify
Disruptive and Non-disruptive SNVs
Genomic, structural, and physicochemical properties (features)

of variants, proteins, and ligands play an important role in

discerning between disruptive and non-disruptive classes of var-

iants. Thus we extracted and defined a list of features that

discriminate the disruptive SNVs from non-disruptive ones,

and that thus serve as training parameters in our classifier (see

the STARMethods for details on feature selection and construc-

tion). For each SNV-Structure-Ligand entry in the GenoDock

database, we constructed three groups of features: SNV annota-

tion features (Figure 3A), protein structure features (Figure 3B),

and drug ligand features (Figure 3C). We observed that disrup-

tive compared with non-disruptive SNVs have a significantly
lower median SIFT score (mean = 0.010 and mean = 0.030,

respectively; p = 1.553 10�19) and a significantly higher median

PolyPhen-2 score (median = 0.916 and median = 0.549, respec-

tively; p = 9.343 10�25) (Figure 3A). This result indicates that the

more deleterious SNVs, indicated by a lower SIFT or a higher

PolyPhen-2 score (Adzhubei et al., 2010, 2013; Gonzalez-Perez

and Lopez-Bigas, 2011; Kumar et al., 2009; Tennessen et al.,

2012), are more likely to cause a positive shift in DBA. The me-

dian GERP scores for the two classes also differed significantly

(p = 0.000141). SNVs that cause positive DBA are likely to be

mapped onto more conserved regions, indicated by a higher

GERP score (Genomes Project et al., 2012; Khurana et al.,

2013; Tennessen et al., 2012), on the protein structure than the

other group (median = 4.37 versus median = 4.15).
Structure 27, 1469–1481, September 3, 2019 1473



In Figure 3B, we show the boxplot distributions of the two

classes of SNVs with respect to protein structure features.

The distance between the mutated amino acid residue and

the drug molecule is perhaps the most important feature to

determine whether a point mutation would be likely to affect

ligand binding. We observed that a greater proportion of

SNVs that impair binding activity are in the binding pocket (me-

dian distance = 5.42 Å) than in the non-disruptive class (median

distance = 17.4 Å, p = 1.95 3 10�284). If the distance is greater

than our threshold for being within the binding pocket (8 Å), the

mutation is less likely to affect the protein and drug ligand bind-

ing due to a weaker putative interaction. Another important

physical property affecting drug binding is the side-chain vol-

ume change between the wild-type and mutated residue. Given

our definition of the volume change index between native and

mutated amino acid residues, we observed that SNVs that

disrupt ligand binding are more likely to result in a decreased

side-chain volume (median = �2.40, see the STAR Methods

for the definition of the volume change index), whereas on

average the SNVs that lead to a non-positive DBA minimally

change the side-chain volume (median = 0; p = 8.81 3

10�21). Side-chain hydropathy change is another feature to

consider in ligand-protein interactions. For example, the

change in the side-chain hydropathy score (Kyte and Doolittle,

1982), which increases from a hydrophilic residue to a hydro-

phobic one, may result from breaking a hydrogen bond network

or salt bridge between the wild-type residue and drug ligand

(see Discussion for detailed case analysis) (Boccuto et al.,

2014; Doss and Nagasundaram, 2012; Kumar et al., 2013;

Zhang et al., 2013). We observed this trend from the SNVs in

our database; the SNVs with a positive DBA had a higher hy-

dropathy change (median = 0.40) than the non-positive DBA

class (median = 0.30), indicating that disruptive SNVs tend to

lead to a more hydrophobic character for the mutant residue

(p = 0.0257).

To study an SNV’s impact on protein-ligand binding, ligand

properties are also an important aspect to consider (Figure 3C).

We extracted five features among various physicochemical

properties for each drug molecule in our database (Figures 3A

and S3E). We observed that SNVs with a positive DBA residue

were significantly more likely (p = 2.04 3 10�3) to be in a protein

structure with a heavier drug ligand (median = 357 g/mol)

than the non-positive DBA group (median = 300 g/mol). In

addition, we found that the polar surface area of the drug

ligands with an SNV that leads to positive DBA tends to be

smaller (median = 77.2 Å2) comparedwith the non-positive group

(median = 77.8 Å2; p = 0.042). One reason for this may be that the

sensitivity of a heavier ligand and of a ligand with smaller polar

surface area is higher in response to the side-chain volume or

hydropathy change upon point mutation.

After a feature exploration and engineering process based on

the differential effects of each feature on disruptive and non-

disruptive SNVs, we selected the training feature candidates

shown in Figure 3 for our machine-learning method. Based on

this, the GenoDock classification model includes the following

input features: SNV annotation scores including PolyPhen-2,

SIFT, and GERP, and ligand molecule properties such as polar

surface area, protein structural alterations, and side-chain vol-

ume change.
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Construction and Evaluation of the GenoDock Toolkit in
Classifying Binding Affinity Change
In this study, we present our GenoDock classifier to predict bind-

ing affinity score change upon point mutations using docking

calculations as the gold standard for DBA. We designed this

tool to identify potential SNVs that cause ligand-binding disrup-

tion and drug resistance. We implemented a machine-learning

approach to achieve this purpose, with additional steps inte-

grated into our pipeline to evaluate our predictions. To ensure

that the GenoDock classifier is unbiased, we designed a method

that involves a cross-validation step to pick the best-performing

model among a set of chosen learning methods; a grid-search-

based model selection step to optimize the parameters for

learning model construction; and an evaluation step using an in-

dependent test set isolated from the training set (Figure S4A; see

the STAR Methods for details). We also recognize that, when

applying GenoDock to a new test case, it is possible that some

of the features identified above will not be available to a user.

For example, a user may only have an SNV and a drug ligand

to investigate whether the SNV would be disruptive in ligand

binding, with no protein structure available. Thus, we provide

four independent models depending on information availability:

SNV only; SNV + Structure; SNV + Ligand; SNV + Structure +

Ligand.We apply the above procedure to eachmodel separately

to allow our pipeline to cover all such instances that may arise. In

model selection for different learning methods, we found that the

Random Forest classifier performed the best (Figure S4B; see

the STAR Methods for model selection).

During our preparation of the training data, we tuned the num-

ber of samples of disruptive SNVs and non-disruptive SNVs to be

1:1 in our training set to avoid potential bias from an imbalance in

samples from the two classes, while keeping the original sample

ratio of two classes unchanged in the test set. For the models in

which either the PDB structure or ligand molecule is present, we

evaluated the classification performance with the ‘‘Binding Site’’

feature included and excluded during the training process, sepa-

rately. As depicted in Figure 4A, we tested the classifier trained

with the SNV’s Binding Site feature (Binding Site is ‘‘known’’)

to get the probability of SNVs to disrupt binding. The area under

the receiver operator curve (AUROC) for predictions of four

models were 0.73 (SNV only), 0.91 (SNV + Structure), 0.96

(SNV + Ligand), and 0.97 (SNV + Structure + Ligand), respec-

tively. If it was unknown whether target SNVs were in the binding

pocket or not, we trained our classifier with the Binding Site

feature excluded (Binding Site is unknown) during the training

and test process for the ‘‘SNV + Structure’’ and ‘‘SNV + Ligand’’

models. As shown in Figure 4B, the AUROC values for these two

models were 0.74 and 0.79, respectively (see Table S1 for

AUROC list of different GenoDock models). As a general rule,

when we fed the GenoDock classifier with more features, the

performance of predictions improved: when the input integrates

all of the three feature groups, our method is able to identify most

of the SNVs that lead to a positive shift toward binding affinity

with an AUROC of 0.97. If we only consider the top 100 predic-

tions ranked according to the predicted ‘‘disruptive’’ probability,

the precision reaches 0.92. Using the same learning pipeline, we

back-tested the performance of GenoDock with the perfor-

mance of SIFT, PolyPhen-2, GERP, and CADD (Kircher et al.,

2014), independently. GenoDock gave the highest AUROC value



Figure 4. Performance and Implementation of GenoDock for Binding Affinity Change Prediction

(A) ROC plots for four models with different input feature groups (with ‘‘Binding Site’’ feature included during training process in ‘‘SNV + Structure’’ and ‘‘SNV +

Ligand’’ models). Our classifier achieved an AUC of 0.73 (SNV only), 0.91 (SNV + Structure), 0.96 (SNV + Ligand), and 0.97 (SNV + Structure + Ligand),

respectively. For SNV + Structure and SNV + Ligand models, we trained the model including binding site information, and we tested the data with original binding

site information of each single SNV.

(B) ROC plots for four GenoDock models with different input feature groups (with Binding Site feature excluded during training process in SNV + Structure and

SNV + Ligand models). Our classifier achieved AUC of 0.73 (SNV only), 0.74 (SNV + Structure), 0.79 (SNV + Ligand), and 0.97 (SNV + Structure + Ligand),

respectively. For ‘‘SNV + PDB’’ and SNV + Ligand models, we train and test the model without the Binding Site feature to predict the influence of SNVs onto

binding affinity change in casewe cannot tell whether the associated protein residue is on the binding site or not. In the GenoDock web interface, users can switch

Binding Site to be known or unknown for predictions of interest.
among these tools, as it was specifically developed to address

the impact of SNVs on ligand-binding affinity change instead of

a general annotation of potential benign or deleterious influences

on protein function (Table S1 and Figure S4C).

We then applied Gini importance scoring to identify the relative

importance of different features during the decision-making pro-

cess (Menze et al., 2009). We observed that the relative impor-

tance of features such as the SNV annotations and binding site

remained stable across our different models, revealing the

robustness of our method. Identifying the relative importance

of a range of genomic and structural features under a uniform

learning pipeline provides us with a reasonable way to draw in-

sights into how an SNV would impact ligand binding

(Figure S4D).

Independent Validation of GenoDock Predictions Using
Experimentally Measured Data
To further evaluate the performance of GenoDock, we applied

the program suite on an independent test set parsed from the

Platinum database, containing experimentally measured binding

affinity changes upon point mutations (see the STAR Methods

for details on dataset preparation; see Data S2 for parsed Plat-

inum dataset). For the 86 data entries drawn from Platinum,

the area under the curve (AUC) of the ROC reached 0.62, which

shows reasonable accuracy of GenoDock benchmarked with

experimentally measured results. We then evaluated the preci-

sion of GenoDock predictions on the Platinum dataset by tuning

the cutoff between disruptive and ‘‘non-disruptive’’ based on a

predicted probability of DBA > 0. For example, when we set a

cutoff of 0.5, SNVs with a probability of positive DBA greater

than 0.5 were assigned disruptive, and all other SNVs were
assigned non-disruptive. We counted the number of true-posi-

tive and false-positive entries benchmarked with the gold stan-

dard set and calculated the precision. With a cutoff of 0.5, the

precision reached 0.84 (Figure S5A).

Based on our performance evaluation results, we have shown

that, by integrating features fromSNV annotations, protein struc-

tures, and drug ligand properties, GenoDock can clearly identify

SNVs that lead to a positive DBA shift with high accuracy. The

performance on the independent test set drawn from experimen-

tally measured LBA data further validates the prediction reli-

ability of GenoDock.

GenoDock Helps Identify Known and Unknown SNVs
that Disrupt Protein-Ligand Binding
We present two examples of the implicit decision-making pro-

cess of GenoDock in Figure 5, based on the overall importance

score rankings of different features for the ‘‘SNV + Structure +

Ligand’’ model. The T790M mutation example in Figure 5A

shows how GenoDock correctly predicts a known drug-bind-

ing-disruption variant; in contrast, the R112H mutation example

in Figure 5B shows that GenoDock could help to identify a drug-

binding-disruptive variant that has not yet been characterized by

LBA or clinical studies.

As shown in Figure 5A, GenoDock successfully predicted that

the somatic T790M mutation (rs55181378) on human epidermal

growth factor receptor (EGFR) (PDB: 2ITY) is very likely to impair

the binding between one of its tyrosine kinase inhibitors (TKIs),

gefitinib, and the EGFR kinase domain (probability of DBA >

0 was 64%). Through molecular and clinical studies, researchers

have shown that the resistance toward gefitinib arises from the

substitution of a bulkier methionine residue for threonine at
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Figure 5. Case Study: GenoDock Identifies Known and Unknown Drug-Resistance Mutations

(A) Identification of the T790M mutation on EGFR with the gefitinib-resistant effect. The threonine on chain A in human EGFR protein (PDB: 2ITY) is mutated to

methionine by a somatic SNV (rs55181378). T790M is a well-studied mutation in clinical research. Patients with somatic-activating mutations in the EGFR gene

would develop resistance to TKIs such as gefitinib (Ligand ID: IRE). With the T790Mmutation, drug resistance arises from the steric hindrance of gefitinib binding

due to the increased side-chain volume of methionine, leading to a positive shift to binding affinity. GenoDock correctly predicted this shift step-by-step during its

decision-making process.

(B) Identification of an unknown mutation potentially leading to drug resistance: resistance effect toward zoledronate acid by R112H mutation on human ASH1L.

The arginine on chain A in ASH1L protein (PDB: 4P0W) is mutated to histidine by a somatic SNV (rs155317993). Due to the breaking of the salt bridge between the

ARG side chain and the drug ligand zoledronic acid (Ligand ID: ZOL), the resulting uncharged HIS binds to the ligand much more weakly, indicated by a positive

shift of binding affinity change, which was correctly predicted by GenoDock.
position 790 (Balak et al., 2006; Janne, 2008; Kobayashi et al.,

2005; Kosaka et al., 2006; Pao et al., 2005). Further studies on

the EGFR-gefitinib co-crystal structure showed that the larger

methionine residue leads to steric hindrance of the aromaticmoi-

eties of the gefitinib molecule, preventing the accessibility of ge-

fitinib to the binding pocket of the EGFR kinase domain (Balak

et al., 2006; Daub et al., 2004; Janne, 2008; Kobayashi et al.,

2005). This biophysical rationale is traced in the classification

process of GenoDock. From the decision flow in Figure 5A, the

mutated residue is mapped in the binding pocket of the kinase

domain, and the side-chain volume is increased by one-third

from threonine to methionine, which may potentially block the

interaction of the ligand to the binding pocket. Furthermore,

the functional annotations of the SNV associated with the

T790Mmutation indicate that this variant is of high impact, which

strengthens our confidence that this variant would impair pro-

tein-ligand binding. Together with the fact that the side-chain hy-

dropathy changes from a hydrophilic threonine to a hydrophobic
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methionine, GenoDock classifies this SNV as very likely to cause

a positive shift in binding affinity.

In Figure 5B, we present an example representing the method

by which GenoDock helps identify new variant candidates that

could potentially lead to drug resistance, using the SNV +

Structure + Ligand model. Farnesyl diphosphate synthase

(FPPS) is an important target for the bisphosphonate class of

drugs such as zoledronate (ZOL). ZOL targets FPPS as an immu-

nomodulator, which alters macrophages from a tumor-promot-

ing to a tumor-killing phenotype (Coscia et al., 2010; Kunzmann

et al., 1999; Martin et al., 2001; Russell, 2011; Shipman et al.,

1998; Wood et al., 2002). ZOL is a highly hydrophilic binder to

FPPS via electrostatic and hydrogen bond interactions (Liu

et al., 2014). We visualized the interaction between ZOL and

FPPS (PDB: 4P0W) in Figure 5B, in which the ZOL ligand binds

to ARG112A via a salt bridge between the positively charged

guanidium with the negatively charged sulfate group of ZOL.

However, with the mutation R112H (rs155317993), this binding
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Figure 6. An Example of GenoDock Application on Large-Scale Dataset

We applied GenoDock (‘‘SNV + Ligand’’ model) on a pool of 10 drug ligands on a set of 290,515 somatic exonic variants from the original TCGA dataset to

estimate how vulnerable each drug ligand is to be disrupted by individual carried variants. We assumed that each variant is associated with amino acids locating

in the binding pocket in order to estimate the maximum probability of this SNV to disrupt protein-ligand binding. Each curve depicts the density distribution of the

probabilities of each of�0.3 million variants of being disruptive to the binding of a given drug ligand. Variants with a probability higher than 0.5 are highly likely to

impair the binding. The fewer disruptive SNVs a drug is associated with the more likely it is for the drug to retain its efficacy for individuals carrying a variety of

variants. Within the ten drug ligands selected, imatinib had the highest proportion of SNVs (65%) that are likely to disrupt its binding with proteins; relatively,

acetazolamide had the lowest proportion of disruptive SNVs (7%) compared with other drug ligands.
network no longer exists. GenoDock classifies this SNV as a

disruptive one with a probability of 99.8%, following a similar de-

cision-making pipeline as discussed in the previous example.

Although, the disruptive role of R112H in ZOL binding to FPPS

has not yet been characterized by experimental assays, Geno-

Dock provides evidence that this variant is highly likely to impair

the inhibitor effectiveness, warranting further investigation. We

validated the predictions of both examples using AD4, which re-

sulted in DBA > 0. More biological functional assays can be per-

formed in the future in addition to and motivated by computa-

tional prediction. Overall, and as explained below, we have

used GenoDock to process large numbers of SNV candidates

for disruptive variant screening.

Application of GenoDock to Large-Scale Disruptive
Variant Screening for Drug Ligands
We designed the GenoDock program suite for a range of appli-

cations. Previous studies revealed that variants have direct

impact upon protein structures, which could have significant

consequences for drug binding (Collins and Varmus, 2015; Gins-

burg and McCarthy, 2001; Laing et al., 2011). However, no

computational tool yet provides a large-scale analysis for the im-

plications of variants on drug efficacy. Here, we applied the pro-

gram to evaluate how likely a drug ligand can be disrupted by the

significant numbers of somatic SNVs carried by individuals. We

retrieved 290,515 somatic exonic variants from the TCGA data-
set, with SNV annotation features (SIFT, PolyPhen-2, and GERP)

assigned to each SNV. We then selected the two drug ligands

from our previous case study, gefitinib(IRE) and ZOL, together

with eight other randomly picked drug ligands from the

GenoDock database: risedronate (RIS), sildenafil (VIA), acetazol-

amide (AZM), imatinib (STI), progesterone (STR), testosterone

(TES), androstenedione (ASD), and dorzolamide (ETS). We ran

the GenoDock (‘‘SNV + Ligand’’ model) for each of the ten

drug ligands with every SNV in the pool to calculate the cumula-

tive probability of a certain drug being associated with SNV-dis-

rupted protein binding. We assumed that each variant is associ-

ated with amino acid residues located within the binding pocket

for that drug in order to evaluate the maximum probability of this

variant to be disruptive. For each drug ligand, we plotted the

density distribution curve. Each curve represents �0.3 million

calculated probabilities of variant disruption (corresponding to

the number of tested SNVs) (Figure 6). Based on the optimized

cutoff derived from the Platinum dataset test results, an SNV

with a probability higher than 0.5 is likely to impair the binding

of an associated drug ligand. This gives us a rough sense of

how easily a drug ligand is affected when interacting with protein

residues associated with various somatic variants. The higher

the proportion of SNVs with a disruption probability higher than

0.5 for a drug ligand, the more likely that drug is to be affected

in its efficacy. Of the ten drug ligands, imatinib has the highest

number of SNVs that could potentially disrupt its binding with
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protein residues, whereas only 7% of the somatic SNVs could

potentially impair binding activity for acetazolamide. This

approach provides a reasonable method to evaluate drug ligand

candidates with similar functionality, and we suggest to conduct

further computational and experimental efforts to addmore con-

fidence and accuracy to the predicted results. A drug ligand with

less SNVs that could disrupt its bindingmay be a relatively better

choice compared with other candidates with a higher proportion

of disruptive SNVs within a given variant pool.

DISCUSSION

In this study, we constructed a dataset to map SNVs with their

annotations from different datasets onto high-resolution protein

structures for downstream analysis. Based on this dataset, we

parameterized a highly sensitive classification model to prioritize

SNV candidates that could potentially cause protein-drug bind-

ing disruption based on the integration of genomic annotations

and structural properties. We also built a user-friendly web inter-

face, theGenoDock server, which rapidly provides predictions of

binding affinity change for SNVs of interest. The GenoDock

method is a ‘‘hybrid model’’ that leverages physical calculations

as a pseudo gold standard to train a statistical learning model

when the availability of experimentally measured gold standards

is highly limited.

For the construction of the GenoDock dataset, we employed

the ExAC Consortium and the TCGA project databases as the

sources of germline and somatic variants, respectively. From a

pool of �2.5 million ExAC germline variants and �1 million

Pan-Cancer somatic mutations, we successfully mapped

�10,000 SNVs onto �300 human proteins, each of which has

a high-resolution co-crystal structure with an FDA-approved

drug ligand available. Considering that the original dataset is

not large enough for effective training, we separated it into a

training set and a test set and applied a ‘‘training + cross-valida-

tion’’ strategy for model assessment and selection (Figure S4A),

instead of splitting it into a training set, validation set, and test

set. We identified 735 SNVs with a predicted positive shift in

binding affinity from 123 proteins of that �300 protein pool,

covering 85 drug ligands (see Data S3). For the prioritization of

SNVs that would cause binding disruption, we demonstrated

that GenoDock is an efficient classifier with an AUC of 0.97

when all features are available. The independent test on the

experimentally measured binding affinity change data from Plat-

inum further shows reasonable prediction sensitivity and preci-

sion with an AUC of 0.62 and a precision of 0.84 (Figure S5A).

Themajor challenge of this study was to construct a gold stan-

dard set for binding affinity change between mutated and wild-

type protein-ligand co-crystal structures, given the lack of asso-

ciated experimentally measured ligand-binding assay results.

For example, Platinum contains about 1,000 mutations, and

less than 10% of the mutations (86) are associated with SNVs

mapped onto human proteins. These 86 experimental results

of binding affinity changes could have been served as the real

gold standard set in our study. However, this dataset is far

from enough to construct a supervised learning model. To fill

this gap, we constructed a pseudo gold standard set of binding

affinity change for each of the �10,000 SNVs in our GenoDock

dataset via docking calculations (we built a ligand-bindingmodel
1478 Structure 27, 1469–1481, September 3, 2019
using Modeller for each SNV). The prediction results of

GenoDock based on the pseudo gold standard is reasonable

when benchmarked with the independent test set of 86 experi-

mentally measured entries. This test set (86 entries) is indepen-

dent from our training set (�10k entries), serving as the direct

validation of GenoDock statistical learning model. In terms of

validating the rigorousness of the pseudo gold standard set, it

is hard to directly benchmark with experiment results due to a

severe lack of laboratory measurements. Instead, we achieve

this by accessing the rigorousness of the ligand-binding model

by testing the accuracy of docking calculations on an indepen-

dent experiment dataset that is available, and the reasonable

rigorousness of the model indicates a good reliability of our

pseudo gold standard set used for our core statistical model

(see Table S2 for clarification of datasets and models used for

validation purposes). By conducting computational docking cal-

culations to construct a relatively large pseudo gold standard da-

taset to train our statistical learning model, we are then able to

process large numbers of variants and structure datasets.

Although our approach can identify SNV candidates that

potentially impair protein-drug binding in a rapid yet accurate

manner, the method is still limited in two aspects. First, the

lack of high-resolution co-crystal structures of protein-drug

complexes limits the size of our pseudo gold standard set. As

structural data are sparse, only 1% of exome SNVs are mapped

onto protein-drug co-crystal structures. Fortunately, with the

development of protein structure determination techniques

such as nuclear magnetic resonance, electron microscopy,

and cryoelectron microscopy (Bai et al., 2015), we foresee that

the amount of highly reliable protein-drug structural data will in-

crease rapidly. In addition, remarkable progress in putative 3D

protein-drug interaction models based on homology modeling

techniques may also potentially expand the structure pool

(Marks et al., 2011; Zhan and Guo, 2015). Combined with

tremendous progress in revealing the mutational landscape of

human genomes via large-scale sequencing projects such as

the UK 10000 Project and the International Cancer Genomics

Consortium, we will periodically update the GenoDock dataset

with new SNV-Structure-Ligand entries for better prediction

results.

Second, our binding affinity change data (pseudo gold stan-

dard) is calculated based on docking calculations, which limits

the upper boundary of our prediction accuracy. Calculation or

prediction of binding affinity change between protein and ligand

molecules is still a challenging task (Ballester et al., 2014; Smith

et al., 2016; Yan et al., 2016). To obtain a relatively reliable bind-

ing affinity change calculation set, we constructed our pseudo

gold standard from Vina and then validated calculated results

by two additional docking programs with different score func-

tions, AD4 and MDock. Vina is state-of-the-art and one of the

most reliable docking programs widely used in pharmaceutical

research projects (Castro-Alvarez et al., 2017; Wang et al.,

2016). We checked the consistency of the DBA results for

each SNV-Structure-Ligand entry with AD4 and MDock, with re-

sults confirming that Vina is consistent with the other two

methods. To further access the scientific rigorousness of

our docking calculations, we also conducted the Vina calcula-

tion on binding affinity change on a different Platinum experi-

mentally measured dataset, and the docking calculations and



experimental measurements reached a good consistency (see

the STAR Methods for details of consistency evaluation; see

Table S2 for clarification of datasets for validation of GenoDock

model and of docking calculations). Thus, we have endeavored

to make our physical calculation set a reliable one. Admittedly,

at the current stage, the pseudo gold standard set based on

docking calculations is still far fromperfect, and there is huge po-

tential to improve the accuracy of our physical calculations with

more powerful docking methods available in the future. If we

have enough experimentally measured LBA data for mutations

recoded in GenoDock database in the future, we plan to update

the DBA values with experimental results under the same pipe-

line to further enhance the reliability of GenoDock predictions.

In addition, we fixed the protein backbone while conducting

docking calculations to avoid concerns and problems raised

from protein flexibilities, which makes it hard to probe influence

toward binding activities by protein motions or conformational

changes. We could address this in the future by more complex

computational optimizations involving protein and ligand

motional degrees of freedom.
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Deposited Data

GenoDock Dataset This paper http://genodock.molmovdb.org/download

Structure of proteins in GenoDock dataset RCSB PDB (Berman et al., 2000) https://www.rcsb.org/

Structure of Human Epidermal Growth Factor

Receptor

RCSB PDB (Yun et al., 2007) PDB: 2ITY

Structure of Farnesyl Diphosphate Synthase RCSB PDB (Liu et al., 2014) PDB: 4P0W

Germline exonic variants ExAC release (Lek et al., 2016) ftp://ftp.broadinstitute.org/pub/ExAC_

release/release1/

Somatic exomic variants TCGA network (http://cancergenome.

nih.gov)

http://portal/gdc.cancer.gov/repository

Genomic Evolutionary Rate Profiling Davydov et al., 2010 http://mendel.stanford.edu/SidowLab/downloads/

gerp/index.html

FDA-approved drug ligands DrugBank (Wishart et al., 2018) https://www.drugbank.ca/

Drug ligand physiochemical features PubChem (Kim et al., 2016) https://pubchem.ncbi.nlm.nih.gov/

Platinum Dataset Pires et al., 2015 http://biosig.unimelb.edu.au/platinum/

Software and Algorithms

GenoDock method This paper http://genodock.molmovdb.org/download

SNV-PDB mapping algorithm Kumar et al., 2016 N/A

AutoDock Vina Trott and Olson, 2010 http://vina.scripps.edu/

AutoDock 4 Morris et al., 2009 http://autodock.scripps.edu/

Mdock Yan et al., 2016 http://zoulab.dalton.missouri.edu/

mdock.htm

Modeller Webb and Sali, 2016 https://salilab.org/modeller/

Scikit-learn package Pedregosa et al., 2011 https://scikit-learn.org/

PyMOL molecular graphics system ver. 2.0, Schrodinger, LLC https://pymol.org/2/
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Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Mark

Gerstein (mark@gersteinlab.org).

METHODS DETAILS

GenoDock Database Preparation
Germline exonic variants were collected from the ExAC release 1 (Lek et al., 2016) (download source: ftp://ftp.broadinstitute.org/pub/

ExAC_release/release1/). Somatic exonic variants came from TCGA network (http://cancergenome.nih.gov; download source:

http://portal/gdc.cancer.gov/repository). ‘‘Simple Nucleotide Variation’’, ‘‘Masked Somatic Mutation’’, and ‘‘MuTect2 Variant Aggre-

gation and Masking’’ served as filters for ‘‘Data Category’’, ‘‘Data Type’’, and ‘‘Workflow Type’’, respectively. The list of FDA-

approved drug ligands was directly obtained from DrugBank (Wishart et al., 2018). Human protein 3D structures with a resolution

better than 3.0 Å were downloaded from the PDB (https://www.rcsb.org/) (Berman et al., 2000). A careful curation to filter structures

in the PDB that contain FDA-approved drug molecules was conducted. The mapping of the variants from both the ExAC and TCGA

datasets to the curated co-crystal PDB structures was done using a modified version of a previously publishedmethod (Kumar et al.,

2016). For tagging common and rare variants from the ExAC dataset, a variant occurrence cutoff of 1 was used to differentiate rare

SNVs from common ones: if a variant occurred only once in the ExAC dataset, we tagged this SNV as rare; if a variant occurrence

count is greater than 1, we tagged it as a common SNV. For tagging driver and passenger SNVs from TCGA dataset, SNVs were

tagged as enriched-in-driver variants if they were variants in cancer driver genes listed in the Catalogue of Somatic Mutations in
e1 Structure 27, 1469–1481.e1–e3, September 3, 2019
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Cancer (COSMIC), version 83. If a variant was not in a cancer driver gene, we tagged it as a passenger variant. Not all SNVs in driver

genes are driver variants, but they are more likely to be driver variants, which is sufficient for the purpose of this study.

Mutant Structure and Binding Affinity Change Calculation
For each entry recorded in our database, we generated a mutant structure associated with that SNV through homology modeling

using Modeller (ver. 9.18) (Webb and Sali, 2016), using the corresponded native co-crystal structure as a template. During the

modeling process, adjustments were made to the target residue under stereo-chemical and homology-derived constraints, followed

by a minimization step of the constraints to deliver the final mutant structure. In this project, 10,283 mutant PDB structures were

generated in total.

For each native-mutated protein structure pair, we used Vina (Trott and Olson, 2010) to evaluate the change in drug binding affinity

to setup the pseudo gold-standard set: DBA = DG(MUT)� DG(WT), in kcal/mol, where DG(MUT) and DG(WT) are binding affinities of

the drugwith themutated andwild-type protein target, respectively, evaluated using Vina. During the calculation, we fixed the protein

structure to avoid concerns from protein flexibility. ‘‘Local optimization’’ was applied for the ligand-binding model, and the ‘‘Vina

score’’ was set as the scoring function. Due to the lack of experimentally measured LBA data for every entry in GenoDock dataset,

we validated the calculations of Vina by applying the same procedure with AD4 (ver. 6.2.6) (Morris et al., 2009) andMDock (Yan et al.,

2016) to check the consistency of the results. The three programs evaluate the binding affinity scores via different score functions.

Vina employs a score function derived from both the conformational preferences of protein-ligand complexes and the experimental

binding affinities, which thus combines the advantages of empirical scoring functions and knowledge-based potentials. AD4 employs

a purely empirical scoring function with the parameters derived only by fitting the experimental affinity measurements. MDock em-

ploys statistical potentials derived from the protein-ligand complex structures. If for a given structure pair, DBA values calculated by

two out of the three scoring methods were of the same sign (both positive, indicating both tools assigned a drug binding disruptive

role to the SNV; or both non-positive, indicating both tools assigned a drug binding non-disruptive role to the SNV), thenwe regard the

result as consistent between these two methods. Vina and AD4 achieved a consistency of 84%; Vina and MDock achieved a con-

sistency of 93%. The two sets of results from Vina and AD4 reached a Pearson product-moment correlation of 0.89, and that of 0.94

between Vina and MDock (Figure S5B), indicating strong consistency.

To further access the rigorousness of our ligand-bindingmodel on binding affinity change calculations to evaluate the pseudo gold-

standard used for our core statistical model, we conducted docking calculations using available Platinum experimental records.

Modeller and Vinawere used to generate themutant structure and to score the binding affinity change.We followed the same pipeline

to get binding affinity change as we did for the GenoDock pseudo gold-standard set. For the �120 entries in this test, the docking

calculation and the experimentally measured set reached a consistency of 71.3% with a Matthews Correlation Coefficient of 0.272,

indicating a reasonable scientific rigorousness of our docking calculations to construct the pseudo gold-standard set.

Features Extraction and Construction for the Machine-Learning Method
SNV Features

SIFT and PolyPhen-2: SIFT score and Polyphen-2 score for somatic and germline exonic SNVs in our study were directly extracted

from the ‘‘INFO’’ column of VCF files from ExAC consortium and TCGA project.

GERP: GERP scores were retrieved directly from the Sidow lab (http://mendel.stanford.edu/SidowLab/downloads/gerp/index.

html) (Davydov et al., 2010).

Ligand Features

Ligand features includingmolecular weight, H-bond donor and acceptor count, rotatable bond count, and polar surface area for each

drug molecule in our database were extracted from PubChem database (Kim et al., 2016).

Structure Features

Amino acid side chain volume change index: defined asDVindex = log2

�
VMUT

VWT

�
, where VMUT and VWT stand for van der Waals volume

(Darby and Creighton, 1993) of the mutant and wild-type protein residue, respectively.

Amino acid side-chain hydropathy change: for each amino acid, we employed the amino acid hydropathy scale by Kyte and Doo-

little (Kyte and Doolittle, 1982) as the hydropathy metric. Amino acid side chain hydropathy change index is defined as

Dhydropathy = hydropathyðmutantÞ� hydropathyðWTÞ.
Distance between mutation and drug ligand: The distance between a protein residue to a ligand was defined as the shortest dis-

tance of a heavy atom of that residue to a heavy atom of the associated ligand.

Binding site (‘‘on’’/‘‘off’’): This is a binary feature describing whether the mutation is inside or outside the binding site. If a residue

had a distance less than 8Å from the target ligand in the co-crystal structure, we considered that this residue is in the binding pocket.

Though this feature is grouped into the structure feature set, it could still be used when only one out of the drug ligand structure and

protein structure is available. We constructed the ‘‘SNV + Ligand’’ model and ‘‘SNV + Structure’’ model under two scenarios: ‘‘Bind-

ing Site’’ is known and ‘‘Binding Site’’ is unknown. The former model was trained with the ‘‘Binding Site’’ feature included, and users

need to tell GenoDock whether the SNV of interest is associated with residues on or off the binding pocket. The latter model was

trained with the ‘‘Binding Site’’ feature excluded. In practice, with the ‘‘Binding Site’’ being ‘‘on’’, we are able to predict the maximal

probability of the target SNV being ligand-binding disruptive. Users are also free to set the ‘‘Binding Site’’ to ‘‘off’’ if they want the

prediction for protein residues of associated variants that are not in binding sites. When the user does not care about binding status
Structure 27, 1469–1481.e1–e3, September 3, 2019 e2
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when applying the ‘‘SNV + Ligand’’ or ‘‘SNV + Structure’’ models, they can use remove this feature and set the ‘‘Binding Site’’ to un-

known. We engineered GenoDock source scripts for both application scenarios.

During feature engineering and exploration, p-values between the median values of disruptive and non-disruptive SNV groups for

each feature were calculated via a two-sample Wilcoxon test.

Protein-Ligand Complex Visualization
All figures regarding protein-ligand complex were generated by the PyMOL molecular graphics system, Version 2.0 Schrö-

dinger, LLC.

QUANTIFICATION AND STATISTICAL ANALYSIS

Training, Testing, and Evaluating the Performance of a Machine-Learning Method
GenoDock dataset was separated into a training set (70%) and test set (30%) in a randommanner. To avoid potential bias raised from

imbalanced composition of the two classes of samples in our dataset (735 entries for disruptive SNVs; 9,458 entries for non-disrup-

tive SNVs), we counted the number of disruptive SNV samples (DBA > 0) and randomly selected an equal number of non-disruptive

SNV samples from (DBA % 0) to make up the balanced training set. The Scikit-learn package (Pedregosa et al., 2011) was used for

learning model development. We tested classification methods including Lasso Regression, Support Vector Machine, Random For-

est, and Gradient Boosting Decision Tree. We trained each learning model through a tenfold grid-search cross-validation process.

For each training set, the additional 30% data was tested for performance evaluation. Based on the AUC values, Random Forest had

the highest AUC among all methods (Figure S4B). Feature selection was performed by evaluating the AUC for each feature. If the

selection power of a feature was near or worse than random selection, we removed it from our feature pool (e.g., allele frequency).

With the same procedure, we trained and optimized a random forest model for each of the four feature combinations (SNV only;

SNV + Structure; SNV + Ligand; SNV + Structure + Ligand) for GenoDock.

Curation of the Independent Test Set Based on Experimental Measurements
We also prepared an independent benchmark dataset comprising experimentally measured binding affinity change upon mutation

from the Platinum database (Pires et al., 2015). Briefly, the full Platinum database content was downloaded as a flat comma-sepa-

rated file from http://biosig.unimelb.edu.au/platinum/. Amino acid mutations other than single-point mutations and those found in

species other than human were excluded. In addition, mutations that do not result from SNV were also removed because GenoDock

uses the GERP score as one of the predictive features, and the GERP score is position specific. Further, mutations that could not be

mapped onto their associated UniProtKB canonical amino acid sequences were discarded. In the end, 86 unique data points were

obtained (two data points with the same mutation but different ligands were considered to be different) and used as the independent

test set. Each data point in this set was labeled as ‘‘disruptive’’ if its associated fold change in binding affinity upon mutation,�
BAWT�BAMUT

BAWT

�
, was negative or ‘‘non-disruptive’’ otherwise. Note that the curation of this test set was conducted in a manner that

was completely blinded from the training of GenoDock. Ligand features and structure features were assigned for eachmutation entry

for the database to run GenoDock. We then applied ‘‘SNV + Structure + Ligand’’ model (auROC = 0.97) on the dataset to evaluate the

reliability of GenoDock predictions.

DATA AND SOFTWARE AVAILABILITY

To make our method easily accessible, we provide a web interface called the GenoDock web server (http://genodock.molmovdb.

org/). We tailored GenoDock to four separate models (with different levels of prediction accuracy) based on the accessibility of input

features to broaden the applicability of our tool. Users can import their sample data using the GenoDock graphic user interface with

different feature-set combinations: SNV feature only; SNA feature and structure feature; SNV feature and ligand feature, and all three

groups of features. The predicted result will be returned in the form of an HTML webpage. The calculation page can be accessed at

http://genodock.molmovdb.org/calculation/0. Users can also download our open-source Python code to run large-scale inputs on

local computers or on high-performance computing clusters.
e3 Structure 27, 1469–1481.e1–e3, September 3, 2019
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Supplementary Figures and Tables 

 

S1. Detailed flowchart of SNV mapping and ligand-binding modeling (related to Figure 1) 

The construction of the GenoDock dataset mainly consists of three steps. First, we mapped the SNVs onto 

PDB structures, together with their annotation scores including polyphen-2, GERP and SIFT. Second, for 

each associated amino acid residue on a PDB structure, we model the point mutant structure and conduct 

physical calculations for binding affinity change. Third, we construct other physiochemical features on   

the structure side including polarity change, side chain volume change, etc. to finish the GenoDock data 

source. 

 

S2. Comparison of protein-drug co-crystal structure covered by GenoDock database and those by 

three alternative databases including PDBBind_DB, PDID, and DrugBank (related to Figure 1) 

In order to compare our GenoDock database with existing protein-drug interaction databases, we match 

PDB entries of PDB Bind DB, Drug Bank and Protein-Drug Interaction DB (PDID) with the FDA drug list 

to filter out protein-drug crystal-structures that meets our criteria. The Venn Diagram depicts the overlap 

between the 4 datasets. The GenoDock database is filtered from the Whole RCSB PDB library, it covers 

the most protein-drug structures (795) and drug molecules (264) compared with the other three. Part of 

structures from PDBBind_DB and PDID are excluded from our database, and this is due to the resolution 

of PDBs did not meet our 3.0Å baseline. 

 

S3. GenoDock dataset characterization (related to Figure 1, Figure2, and Figure3) 

S3 (a) Heat map for amino acid mutation landscape in GenoDock database (related to Figure 1) 

X-axis and y-axis refer to types of mutated amino acids and wild type amino acids, respectively. Different 

counts for each mutation pair are colored from white to cyan. The percentage distribution in wildtype and 

mutated amino acid pools are shown outside of the heat map in green and purple, respectively. In the heat 

map, the two most abundant mutation pairs are arginine to cysteine and arginine to histidine, which are 

referred as “mutation signatures” in previous literatures.  Analyzing the mutational landscape of our 

database is very useful for the ensuing study of how a point mutation affects drug efficacy, which is further 

tailored to be sensitive to how side-chains interact with ligands differently before and after mutational 

replacement. Within the GenoDock database, we found that the two most abundant mutations are arginine 

to cysteine and arginine to histidine. This observation is consistent with previous expectations: first, 

arginine is the most frequently occurring native amino acid among the somatic mutations and germline 

variants that can be mapped onto a PDB structure in our protein pool (14% in wild-type distribution,; 

second, the arginine-to-cysteine mutation is also the most common mutation identified that causes human 

disease in disease-associated variant datasets such as the Human Gene Mutation Database (Stenson et al., 

2014), the Online Database of Mendelian Inheritance in Man (Hamosh et al., 2005), and ClinVar (Hamosh 

et al., 2005; Landrum et al., 2014; Peterson et al., 2013; Stenson et al., 2014); third, many cancer mutation 

signatures are enriched in the arginine-to-histidine mutation (Peterson et al., 2013). Previous literature 



shows that mutation from arginine to histidine can confer protein pH sensitivity to the mutant and thus 

alter protein function leading to disease (Reichold et al., 2010; Szpiech et al., 2017; Zhang et al., 2012). 

S3 (b) Percentage distribution of polarity from amino acid point mutation by SNV in TCGA and 

ExAC dataset (related to Figure 1) 

We group amino acid residues into three groups according to their side chain polarity, and the polarity 

index assigned to each group of residues are listed below: 

C (charged residue; polarity index = 1 or -1) including GLU, ASP, ARG, LYS; 

P (polar residue; polarity index = 0.5) including GLN, ASN, HIS, SER, THR, TYR; 

H (hydrophobic residue; polarity index = 0) including ALA, ILE, LEU, MET, PHE, VAL, PRO, GLY. 

In the figure, we visualize the distribution of mutation pairs in terms of polarity change between the 

native and mutated residue. Overall, we observed that around one third of somatic SNVs lead to point 

mutations from a charged amino acid residue to a polar one; whereas among the germline variants, the 

most frequently occurred mutations are between two hydrophobic amino acids. 

S3 (c) Percentage distribution of positive and non-positive samples in GenoDock data source from 

ExAC and TCGA database (related to Figure 2) 

We can see that in the ExAC and TCGA datasets, the frequency of disruptive SNVs (positive binding 

affinity change) is 6.0% and 8.9%, respectively. 

S3 (d) Comparison of top common and rare SNV pairs with most positive binding affinity changes 

in ExAC dataset of GenoDock data set (related to Figure2) 

We compare the top range of common and rare nsSNVs from EXAC to see the difference of two sets of 

germline variants in terms of protein-drug binding destabilization. We select the same number of nsSNVs 

from the common set and the rare set each time and compare the difference. We observe that rare variants 

have a greater extent of positive binding affinity shift than common ones, and the difference is significant 

from the two-body Wilcoxon test. Also, the p-value is decreasing as we compare a larger number of nsSNVs 

from the two sets. 

S3 (e) Boxplot distribution between disruptive SNV (binding affinity change >0) and non-disruptive 

SNV (binding affinity change <0 or =0): other 4 features in model (related to Figure 3) 

Among various features we select for final feed for our classifier, some of the features are not strong 

enough in terms of sensitivity of prioritizing disruptive nsSNV candidates to be kept in our final model.  

We here list the distributions between positive class and non-positive class of nsSNVs in our database in 

term of H-bond acceptor/donor count and rotatable count of drug ligands associated with each nsSNVs, as 

well as the allele frequency of nsSNV. 

 

S4. Statistical learning model construction, performance benchmark and feature significance 

analysis (related to Figure 4) 

S4 (a) Flowchart of machine learning method for GenoDock 

We start our supervised learning model construction by dividing the GenoDock data source into 70% and 

30% for training and testing purpose, respectively. We tune the sample nsSNV count of “Class 1” (∆𝐵𝐴 > 



1) and “Class 2” (∆𝐵𝐴 ≤ 0) to be 1:1 to avoid potential bias. During the training process, we employ a 

10-fold cross-validation training and testing process on different learning algorithms (Random Forest, 

Lasso Regression, Support Vector Machine, and Gradient Boosting Decision Tree) to pick up the one with 

best performance. To make our features more efficient, we conduct a feature selection process by 

evaluating AUC of each feature independently to make sure our features are sensitive enough. 

S4 (b) Model Selection among RF, LR, SVM and GBDT 

We follow the same pipeline to evaluate the sensitivity of each model to pick up the best one in terms of 

prioritizing disruptive nsSNV candidates. Random Forest classifier stands out. 

The Scikit-learn package is used for learning model development: 

random forest: RandomForestClassifier ; 

lasso regression: linear_model.Lasso; 

support vector machine: SVR; 

gradient boost decision tree: GradientBoostingClassifier 

S4 (c) Performance comparison of GenoDock with other SNV annotation tools 

S4 (d) Gini distance for relative feature significance in four models 

We employ Gini distance as a measurement for feature importance in 4 models of GenoDock. We find 

GERP score, amino acid side chain volume change, polar surface area of drug ligand, distance between 

mutated amino acid residue and drug ligand are the most important features in SNV annotation features, 

PDB features, ligand features, and structure features, respectively. With more features feeding into our 

classifier, the significance of each feature is stable across different models. Particularly, binding site is an 

important feature if there is at least one structural component (protein PDB, drug ligand or co-crystal 

structure) present during the classification process of GenoDock. If the protein residue associated with the 

nsSNV of interest is not on binding pocket, the probability of this nsSNV to disrupt the drug-protein 

binding is much smaller than those nsSNVs that are associated with binding pocket residues. 

 

S5. Validation of statistical learning model on experimental dataset and rigorousness assessment of 

physical calculations on binding affinity change (related to Figure 1) 

S5 (a) Performance evaluation of GenoDock on Platinum Experimental Dataset 

We parse Platinum dataset which contains experimental assay data on binding affinity change upon point 

mutations, and only keep proteins from homo sapiens. For the 86 data entries parsed from Platinum, we 

apply GenoDock (“SNV annotations + Ligand + Structure” model) to process the dataset and plot the 

ROC. The AUC reaches 0.62, which is a reasonable result that helps validate the reliability of GenoDock 

predictions, given that the data source collected in Platinum is highly heterogeneous from across different 

labs, publication years, assay methods, and experiment pipelines. We also evaluate reliability of  

GenoDock by calculate precision of predictions based on our parsed Platinum dataset. We observe that by 

setting the cutoff to be 0.5 (when predicted probability of ∆𝐵𝐴 > 0 is greater than 0.5, we assign this data 

entry as “disruptive”; otherwise we assign the data entry as “non-disruptive”), we can reach a precision of 

1.84 and a recall of 0.59 after comparing this predicted result with experimental binding affinity change 



recorded in Platinum. Among the 86 samples, we have True Positive count = 7, True Negative count = 13, 

False Positive count = 7, False Negative count = 27. 

S5 (b) Binding affinity calculation validation by AutoDock Tools (ADT) and MDock 

In order to check the reliability of the binding affinity change calculations between native and mutated 

amino acid residues by Vina, we evaluate the consistency between results given by Vina with those from 

ADT and MDock. Vina, ADT and MDock have different scoring functions. The Pearson product-moment 

correlation (PPMC) between two sets of results by Vina and ADT for each nsSNV entry in our GenoDock 

database is 0.89, and that between Vina and MDock reaches 0.94. It indicates a strong consistency of the 

results given by Vina. Due to the lack of experimental data from ligand binding assays for SNV-Ligand- 

PDB entries in our database at the current stage, checking the ∆BA prediction reliability via calculation 

consistency with another package is a practical way. When more experimental data are available, we will 

update the experimental binding affinity change data into our pipeline for better classification results. 

 

 

Supplementary Table 1. AUROC list of different GenoDock models and of other benchmark 

methods (related to Figure 4) 

 

Supplementary Table 2. List of models and datasets in the study (related to Figure 1) 

We list the statistical model (Model #1) and the ligand binding model (Model #2) with instructions of their role, 

validation method, and how we parameterize them. Model #1 is the core model and the main method we aim 

to deliver in this study. We also list the two datasets used for parameterization and for validation purpose for 

training and testing the core model. Note that we though did not directly validate Model #2 containing the 

pseudo gold standard due to unavailable experimental measurements, we did access the rigorousness of 

Model #2 by testing the accuracy of docking calculations on an independent experiment dataset (see Methods 

for details of evaluating Model #2), and the reasonable rigorousness of the model indicates a good reliability 

of our pseudo gold standard set. 
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Supplementary Table S1:  AUROC list of different GenoDock models and of other benchmark 
methods (related to Figure 4) 
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Supplementary Table S2: List of models and datasets in the study (related to Figure 1) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Core dataset constructed for training the 
statistical model. Contains pseudo gold 
standard set as the target feature.

Supervised learning model using the 
pseudo gold-standard set as target feature. 
The direct validation of this model is to 
apply the model to an independent, experi-
ment-based validation dataset.

The human protein subset from Platinum.  
used as direct validation dataset of our 
statistical method.

A physical-based, previously published 
computational ligand-docking model to 
calculate binding affinity change for the 
pseudo gold standard set.

Model Role Parameterization Validation Description

Dataset Size

ΨGS

Core
Model

Auxillery
Model

~10k
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1

2
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1

ΨGS

Statistical model
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Physically
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1

Built from

2

Experiment

Role Source Description
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