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Disease Genomics: Thoughts on Genome Annotation, Prioritizing Variants, 
Highlighting Dysregulation & the Application of all of these to Cancer

Mark Gerstein

Yale

Slides freely downloadable from Lectures.GersteinLab.org & “tweetable” (via @MarkGerstein). 
No Conflicts for this Talk. See last slide for more info.
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Estimated numbers of new cases of invasive cancer in 
the United States in 2019 by sex and cancer type

1,762,450 new cases per year

~4,800 new cases per day

Segiel et al, Cancer statistics, 2019
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What if matching 
a cancer cure to 
our genetic code 
was just as easy

Much Interest 
in Precision 
Oncology

• Analysis of the exact 
somatic mutations in a 
individual

• Highlighting key 
mutations

• Targeting treatment

https://obamawhitehouse.archives.g
ov/blog/2016/02/25/precision-
medicine-health-care-tailored-you
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Overall Problem: 
Finding Key Variants in 

Personal Genomes
Millions of	variants	in	a	personal	genome
Thousands,	in	a	cancer	genome
Different	contexts for	prioritization

In	rare	disease,	only	a	few	
high-impact	variants	are	associated	with	disease	

In	cancer,	a	few	positively	selected	drivers	amongst	many	passengers

In	common	disease,	more	variants	associated	&	each	has	weaker	effect,		
But	one	wants	to	find	key	”functional”	variant	amongst	many	in	LD	

CAN YOU FIND THE PANDA?
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Overall Problem: 
Finding Key Variants in 

Personal Genomes
Millions of	variants	in	a	personal	genome
Thousands,	in	a	cancer	genome
Different	contexts for	prioritization

In	rare	disease,	only	a	few	
high-impact	variants	are	associated	with	disease	

In	cancer,	a	few	positively	selected	drivers	amongst	many	passengers

In	common	disease,	more	variants	associated	&	each	has	weaker	effect,		
But	one	wants	to	find	key	”functional”	variant	amongst	many	in	LD	

Thus:	Need	to	find	&	prioritize	high	impact	variants.	
Particularly	hard	for	non-coding	regions.

CAN YOU FIND THE PANDA?
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Common

Rare* (1-4%)

SNP 3.5 – 4.3M

Indel 550 – 625K
SV 2.1 – 2.5K 

(20Mb)
Total 4.1 – 5M

SNP 84.7M

Indel 3.6M
SV 60K

Total 88.3M

Human Genetic Variation
A Typical 
Genome

Population of 
2,504 peoples

The 1000 Genomes Project Consortium, Nature. 2015. 526:68-74  
Khurana E. et al. Nat. Rev. Genet. 2016. 17:93-108

Common

Rare (~75%)

Class of Variants

Prevalence of Variants

* Variants with allele frequency < 0.5% are considered as rare variants in 1000 genomes project.

A Cancer Genome

Coding Non-
coding

Germ-
line

22K 4.1 – 5M

Somatic ~50 5K

Origin of Variants

Driver (~0.1%)

Passenger



Disease Genomics: Thoughts on Genome Annotation, Prioritizing Variants, 
Highlighting Dysregulation, & the Application of all of these to Cancer

• RADAR Prioritization
• Adapts FunSeq approach to RBPs
• Prioritizes variants based on post-

transcriptional regulome using 
ENCODE eCLIP

• Incorporates new features related 
to RNA sec. struc & tissue specific 
effects

• uORF Prioritization
• Feature integration to find small 

subset of upstream mutations that 
potentially alter translation

• LARVA & MOAT 
• Uses parametric beta-binomial 

model, explicitly modeling genomic 
covariates

• Non-parametric shuffles. Useful 
when explicit covariates not 
available.

• Background
• PMI & Variant Prioritization
• Types of annotations: peaks, 

segmentations, regulators
• Genomic covariates
• ENCODEC: ENCODE cancer 

annotation resource
• Matched Filter Annotation 

• Integrating cross-assay signal-track 
patterns associated with enhancers

• Trained on high throughput STARR-
seq experiments

• Validation in many different contexts

• FunSeq Prioritization
• Integrates evidence, with a “surprisal” 

based weighting scheme. 
• Prioritizing variants within “sensitive 

sites” (human conserved)

• Network Rewiring
• Network rewiring highlights 

regulators that change their targets 
greatly. 

• LDA approach specifically finds 
those that greatly change their 
gene communities

• Regulatory Drivers of 
Differential Expression
• Highlighting regulators in terms of 

their power to drive differential 
expression. 

• Relationship of this to network 
hierarchy & RBP-TF cross talk

• Example of MYC & SUB1
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Human	Genome:	3 billion	base	pairs

DN
A

Protein	Coding	Regions:	
Part	of	the	genome	we	can	“see”

<	2%	of	the	genome

The	Noncoding	Regions:	Dark	Matter	in	the	Genome
• >98%	of	the	genome
• Host	~90%	of	disease	risk	loci
• contains	extensive	regulatory	information

Greenbaum	&	Gerstein,	Cell	15’Image	adapted	from	NHGRI
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Non-coding Annotations: Overview
Features are often present on multiple ”scale” (eg elements and connected networks)

Sequence features, incl. Conservation Functional Genomics
Chip-seq (Epigenome & seq. specific TF) 
and ncRNA & un-annotated transcription
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Summarizing the Signal: 
"Traditional" ChipSeq Peak Calling

Threshold

•Generate & threshold the 
signal profile to identify 
candidate target regions

- Simulation (PeakSeq), 

- Local window based Poisson 
(MACS), 

- Fold change statistics (SPP)

• Score	against	the	control

Potential	Targets

Significantly	Enriched	
targets

Normalized	Control

ChIP

Now	an	update:	"PeakSeq	2"	=>	MUSIC
[Rozowsky et al. ('09) Nat Biotech]
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Background on computationally annotation

• Peak calling:
üPeakSeq, SPP, MACS2, Hotspot …

üENCODE Encyclopedia

• Genome segmentation: partition the genome into regions (states) with distinct
epigenomic profiles, then assign each state a functional label.

üChromHMM: Multivariate Hidden Markov Model

üSegway: Dynamic Bayesian Network Model

• Supervised regulatory prediction: learn predictive models from  labeled  dataset of 
regulatory elements.

ü CSI-ANN: Time-Delay Neural Network

ü RFECS: Random Forest

ü DEEP: Ensemble SVM + Artificial Neural Network

ü REPTILE: Random Forest

ü gkm-SVM: Gapped k-mer

• Target finding
ü Ripple, TargetFinder, JEME, PreSTIGE, IM-PET

C
hr

om
H

M
M

C
SI

-A
N

N

J. Ernst, M. Kellis. Nat. Protoc., 2017

H.A. Firpi, D. Ucar, K. Tian. Bioinformatics, 2010
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Genetic variant annotation: coding and noncoding

• Tools developed specifically for coding variants:
üPolyPhen-2
üSnpEff
ü SIFT
ü...

• Tools developed specifically for noncoding variants:
üRegulomeDB
üHaploReg
üDeepSEA
üGWAVA
ü...

• Tools for both coding and noncoding variants:
üCADD
üANNOVAR
üVEP
üFATHMM-MKL
ü ….

Po
ly

ph
en

-2

I.A. Adzhubei, et al. Nat. Methods,  2010

D
ee

pS
EA

J. Zhou, O.G. Troyanskaya, Nat. Methods, 2015



Major	takeaway	from	annotation	experience	for	
disease	studies:	less	is	more

Disease Scale

rare a	few	with	high	impact	

common many	with	weak	effect

cancer a	few	drivers

Example	of	power	issue	in	disease	studies [K
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Coding and non-coding elements may synergistically contribute to cancer

[McGillivray	et	al.,	Ann.	Rev.	Biomedical	Data	Science (‘18)]
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gene gene

A	Multi-scale	View	of	gene	regulation

⋯AGCTTTACGATCCCGAAATCTGCTTTATACGATCCCGAAATC⋯ DNA	nucleotide

gene gene
Gene	expression

(high/low)

gene Regulatory	Element
function	(on/off)

Regulator→gene	
regulatory	network

Regulator↔regulator	
co-regulation	network

gene

Active	proximal	elements

Active	distal	elements

Inactive	proximal	elements

inactive	distal	elements

Regulator	to	target	gene
directional

Regulator	co-regulation
unidirectional

Regulator

gene

Epigenetic	information

Major
Challenges: • Many	levels	of	dysregulations	related	to	disease	status
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Late replicated regions
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Early replicated regions

Noncoding 
annotations
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violation	of	the	constant	mutation	rate	assumption
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mutation	rate	changes	across	tumor

mutation	rate	changes	across	patients

within	one	tumor	type

mutation	rate	changes	across	regions

within	one	tumor	type
within	one	patient

mutation	rate	changes	with	many	covariates

within	one	tumor	type
within	one	patient

Inaccurate	burden	test	results

Bad	data	fitting

inappropriate	models

[Lochovsky et al. NAR (’15)]



Disease Genomics: Thoughts on Genome Annotation, Prioritizing Variants, 
Highlighting Dysregulation, & the Application of all of these to Cancer

• RADAR Prioritization
• Adapts FunSeq approach to RBPs
• Prioritizes variants based on post-

transcriptional regulome using 
ENCODE eCLIP

• Incorporates new features related 
to RNA sec. struc & tissue specific 
effects

• uORF Prioritization
• Feature integration to find small 

subset of upstream mutations that 
potentially alter translation

• LARVA & MOAT
• Uses parametric beta-binomial 

model, explicitly modeling genomic 
covariates

• Non-parametric shuffles. Useful 
when explicit covariates not 
available.

• Background
• PMI & Variant Prioritization
• Types of annotations: peaks, 

segmentations, regulators
• Genomic covariates
• ENCODEC: ENCODE cancer 

annotation resource
• Matched Filter Annotation 

• Integrating cross-assay signal-track 
patterns associated with enhancers

• Trained on high throughput STARR-
seq experiments

• Validation in many different contexts

• FunSeq Prioritization
• Integrates evidence, with a “surprisal” 

based weighting scheme. 
• Prioritizing variants within “sensitive 

sites” (human conserved)

• Network Rewiring
• Network rewiring highlights 

regulators that change their targets 
greatly. 

• LDA approach specifically finds 
those that greatly change their 
gene communities

• Regulatory Drivers of 
Differential Expression
• Highlighting regulators in terms of 

their power to drive differential 
expression. 

• Relationship of this to network 
hierarchy & RBP-TF cross talk

• Example of MYC & SUB1



http://encodec.encodeproject.org/

[Z
ha

ng
 e

t a
l. 

('1
9)

, b
io

rx
iv

.o
rg

]



http://encodec.encodeproject.org/

Compact	&	accurate:	Enhancer,	
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Compact	&	accurate:	Enhancer,	
promoter,	TF/RBP	binding

Gene-centric:	Extended	Genes	(proximal	&	distal)

Network:	Regulatory	networks
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Unique shape associated histone signals flanking 
active enhancers identified through STARR-seq

Nature Reviews | Genetics
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Figure 3 | Genomic methods for predicting enhancers through the detection of transcription factor binding, 
‘open’ chromatin, chromatin marks, or long-range contacts. The principles of the different methods (top panel 
of each part) and the corresponding data output (such as deep sequencing read density) that is used for regulatory 
element identification (bottom panel of each part) are shown. a | Chromatin immunoprecipitation followed by 
deep sequencing (ChIP–seq) uses antibodies to determine the location of transcription factor (TF) binding sites 
genome wide. Although enhancers are bound by TFs, not all TF binding sites correspond to functional enhancers.  
b | Active enhancers and other regulatory elements are depleted of nucleosomes such that the DNA is accessible. 
Such regions can be detected by DNase I or micrococcal nuclease (MNase) digestion followed by deep sequencing 
(DNase-seq or MNase-seq, respectively). c | Nucleosomes that flank active enhancers bear characteristic histone 
modifications that can be detected by ChIP–seq using specific antibodies. d | Enhancers are brought into close 
proximity of their respective target promoters through the formation of chromatin loops, which are thought to be 
established by cohesin and Mediator complexes. ChIP–seq can detect the contact points of cohesin and Mediator 
at promoters and enhancers, and has been used to predict enhancers. e | Chromatin interaction analysis with 
paired-end tag sequencing (ChIA–PET) and chromosome conformation capture (3C)-based methods preserve and 
detect spatial contacts by crosslinking, DNA fragmentation, DNA fragment ligation and deep sequencing. ChIA–
PET includes a ChIP step to enrich for complexes that contain a specific protein, such as RNA polymerase II (Pol II). 
In contrast to ChIP–seq (part d), both ChIA–PET and 3C-based methods detect not only the contact points but also 
the pairwise connections between these points. The thin, solid lines indicate that pairwise connections between 
spatial contact points are captured in ChIA–PET and 3C-based methods. For 3C-based methods a schematic 
output of a chromosome conformation capture carbon copy (5C) or Hi-C experiment is shown; this method probes 
all interactions between defined genomic loci for their spatial proximity and physical contacts, which is similar to 
ChIA–PET in that it might (solid lines) or might not (dashed lines) correspond to regulatory interactions.

REVIEWS

6 | ADVANCE ONLINE PUBLICATION  www.nature.com/reviews/genetics

© 2014 Macmillan Publishers Limited. All rights reserved

Nature Reviews | Genetics
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of each part) and the corresponding data output (such as deep sequencing read density) that is used for regulatory 
element identification (bottom panel of each part) are shown. a | Chromatin immunoprecipitation followed by 
deep sequencing (ChIP–seq) uses antibodies to determine the location of transcription factor (TF) binding sites 
genome wide. Although enhancers are bound by TFs, not all TF binding sites correspond to functional enhancers.  
b | Active enhancers and other regulatory elements are depleted of nucleosomes such that the DNA is accessible. 
Such regions can be detected by DNase I or micrococcal nuclease (MNase) digestion followed by deep sequencing 
(DNase-seq or MNase-seq, respectively). c | Nucleosomes that flank active enhancers bear characteristic histone 
modifications that can be detected by ChIP–seq using specific antibodies. d | Enhancers are brought into close 
proximity of their respective target promoters through the formation of chromatin loops, which are thought to be 
established by cohesin and Mediator complexes. ChIP–seq can detect the contact points of cohesin and Mediator 
at promoters and enhancers, and has been used to predict enhancers. e | Chromatin interaction analysis with 
paired-end tag sequencing (ChIA–PET) and chromosome conformation capture (3C)-based methods preserve and 
detect spatial contacts by crosslinking, DNA fragmentation, DNA fragment ligation and deep sequencing. ChIA–
PET includes a ChIP step to enrich for complexes that contain a specific protein, such as RNA polymerase II (Pol II). 
In contrast to ChIP–seq (part d), both ChIA–PET and 3C-based methods detect not only the contact points but also 
the pairwise connections between these points. The thin, solid lines indicate that pairwise connections between 
spatial contact points are captured in ChIA–PET and 3C-based methods. For 3C-based methods a schematic 
output of a chromosome conformation capture carbon copy (5C) or Hi-C experiment is shown; this method probes 
all interactions between defined genomic loci for their spatial proximity and physical contacts, which is similar to 
ChIA–PET in that it might (solid lines) or might not (dashed lines) correspond to regulatory interactions.

REVIEWS
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© 2014 Macmillan Publishers Limited. All rights reserved

Shlyueva, et al., Nat Rev Genet Nie, et al., PloS oneArnold, et al., Science
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Matched Filter recognize shape patterns

Matched Filter

Score STARR-seq regulatory regions VS random negatives

H3K4me3 H3K4me1

Evaluate using ROC curve

[ biorxiv.org/content/early/2018/08/05/385237 ]
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Integrate matched filter scores of multiple features

Cross validation

0.4
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0.8
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H3K27ac
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H3K4me2

H3K4me3

H3K9ac

DHS

SVM

Large scale STARR-seq experiment data helps
to improve the performance of integrated model

[ biorxiv.org/content/early/2018/08/05/385237 ]
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Inject fertilized eggs

Validation with transgenic mouse enhancer assay

False Positive Rate
[ biorxiv.org/content/early/2018/08/05/385237 ]
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GM12878

HepG2

K562

0.0 0.1 0.2 0.3 0.4
Percentage of FANTOM5 enhancers overlapped

Matched-Filter

ChromHMM+Segway

0.000.050.100.15
Percentage overlapped with FANTOM5 enhancers

Validation using
transduction-based
reporter assay (H1-hESC,
HOS, A549 and TZMBL)

Compare overlap with
FANTOM5 enhancers

Matched-Filter can be applied across different organisms

Compare Matched-Filter
performance with other state-
of-the-art methods

[ biorxiv.org/content/early/2018/08/05/385237 ]
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Constructing a high-confidence set of cell-specific enhancers 
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Disease Genomics: Thoughts on Genome Annotation, Prioritizing Variants, 
Highlighting Dysregulation, & the Application of all of these to Cancer

• RADAR Prioritization
• Adapts FunSeq approach to RBPs
• Prioritizes variants based on post-

transcriptional regulome using 
ENCODE eCLIP

• Incorporates new features related 
to RNA sec. struc & tissue specific 
effects

• uORF Prioritization
• Feature integration to find small 

subset of upstream mutations that 
potentially alter translation

• LARVA & MOAT
• Uses parametric beta-binomial 

model, explicitly modeling genomic 
covariates

• Non-parametric shuffles. Useful 
when explicit covariates not 
available.

• Background
• PMI & Variant Prioritization
• Types of annotations: peaks, 

segmentations, regulators
• Genomic covariates
• ENCODEC: ENCODE cancer 

annotation resource
• Matched Filter Annotation 

• Integrating cross-assay signal-track 
patterns associated with enhancers

• Trained on high throughput STARR-
seq experiments

• Validation in many different contexts

• FunSeq Prioritization
• Integrates evidence, with a “surprisal” 

based weighting scheme. 
• Prioritizing variants within “sensitive 

sites” (human conserved)

• Network Rewiring
• Network rewiring highlights 

regulators that change their targets 
greatly. 

• LDA approach specifically finds 
those that greatly change their 
gene communities

• Regulatory Drivers of 
Differential Expression
• Highlighting regulators in terms of 

their power to drive differential 
expression. 

• Relationship of this to network 
hierarchy & RBP-TF cross talk

• Example of MYC & SUB1
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Funseq: a flexible framework to determine 
functional impact & use this to prioritize variants

Annotation (tf binding 
sites open chromatin, 
ncRNAs) & Chromatin 
Dynamics

Conservation
(GERP, allele freq.)

Mutational impact 
(motif breaking, Lof) 

Network (centrality 
position) [F
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l.,
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Finding "Conserved” Sites in the Human Population:
Negative selection in non-coding elements based on

Production ENCODE & 1000G Phase 1

(Non-coding	RNA)

(DNase	I	hypersensitive	sites)

Depletion	of	Common	Variants
in	the	Human	Population

Broad	categories	of	
regulatory	regions	under	

negative	selection
Related	to:
ENCODE,	Nature,	2012

Ward	&	Kellis,	Science,	2012
Mu	et	al,	NAR,	2011

(Transcription	factor	binding	sites)

(TFSS: Sequence-specific TFs)
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Differential 
selective 
constraints
among specific 
sub-categories

Sub-categorization possible 
because of better statistics from 
1000G phase 1 v pilot [Khurana	et	al.,	Science (‘13)]
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Hubs Under Constraint: 
A Finding from the Network 

Biology Community

•More Connectivity, More Constraint: Genes & proteins that have a more central 
position in the network tend to evolve more slowly and are more likely to be 
essential. 

•This phenomenon is observed in 
many organisms & different kinds of networks

- yeast PPI - Fraser et al ('02) Science, 
('03) BMC Evo. Bio.

- Ecoli PPI - Butland et al ('04) Nature 
- Worm/fly PPI - Hahn et al ('05) MBE 
- miRNA net - Cheng et al ('09) BMC Genomics

[Nielsen et al. PLoS Biol. 
(2005), HPRD, Kim et al. 
PNAS (2007)]

High likelihood of 
positive selection
Lower likelihood of 
positive selection

Not under positive 
selection
No data about 
positive selection

log(Degree)

lo
g(

Fr
eq

ue
nc

y)

Power-law distribution

Hub
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FunSeq.gersteinlab.org
HOT	region

Sensitive	region
Polymorphisms

Genome

• Info. theory based method (ie
annotation “surprisal”) for weighting 
consistently many genomic features

• Practical web server 
• Submission of variants & pre-

computed large data context from 
uniformly processing large-scale 
datasets

[Fu et al., GenomeBiology ('14)]



Disease Genomics: Thoughts on Genome Annotation, Prioritizing Variants, 
Highlighting Dysregulation, & the Application of all of these to Cancer

• RADAR Prioritization
• Adapts FunSeq approach to RBPs
• Prioritizes variants based on post-

transcriptional regulome using 
ENCODE eCLIP

• Incorporates new features related 
to RNA sec. struc & tissue specific 
effects

• uORF Prioritization
• Feature integration to find small 

subset of upstream mutations that 
potentially alter translation

• LARVA & MOAT
• Uses parametric beta-binomial 

model, explicitly modeling genomic 
covariates

• Non-parametric shuffles. Useful 
when explicit covariates not 
available.

• Background
• PMI & Variant Prioritization
• Types of annotations: peaks, 

segmentations, regulators
• Genomic covariates
• ENCODEC: ENCODE cancer 

annotation resource
• Matched Filter Annotation 

• Integrating cross-assay signal-track 
patterns associated with enhancers

• Trained on high throughput STARR-
seq experiments

• Validation in many different contexts

• FunSeq Prioritization
• Integrates evidence, with a “surprisal” 

based weighting scheme. 
• Prioritizing variants within “sensitive 

sites” (human conserved)

• Network Rewiring
• Network rewiring highlights 

regulators that change their targets 
greatly. 

• LDA approach specifically finds 
those that greatly change their 
gene communities

• Regulatory Drivers of 
Differential Expression
• Highlighting regulators in terms of 

their power to drive differential 
expression. 

• Relationship of this to network 
hierarchy & RBP-TF cross talk

• Example of MYC & SUB1
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RNA Binding Proteins (RBPs)

[Zhang*,	Liu*	et	al.,	Genome	Biology	(in	review	‘18)]

Nat Rev Mol Cell Biol. 2018 May;19(5):327-341. doi: 10.1038/nrm.2017.130. Epub 2018 Jan 17.

• Before ENCODE3: >150 expt. 
in many different cell types 

• ENCODE3 did ~350 focused eCLIP expt. 
for >110 RBPs on HepG2 & K562
(Van Nostrand...Yeo. Nat. Meth. '16; 
Van Nostrand...Graveley, Yeo 
(submitted in relation to ENCODE3))
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[Zhang*,	Liu*	et	al.,	Genome	Biology	(in	review	‘18)]

Schematic of RADAR Scoring
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[Zhang*,	Liu*	et	al.,	Genome	Biology	(in	review	‘18)]



4
5

-L
ec

tu
re

s.
G

er
st

ei
nL

ab
.o

rg

High Phastcon in RBP-overlapped annotations RNA Structure Cons. from Evofold

Enriched rare DAF in eCLIP peaks

[Zhang*,	Liu*	et	al.,	Genome	Biology	(in	review	‘18)]

R
ar
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D
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RBP

Phastcon
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Co-binding of RBPs form biologically relevant complexes

Binding hubs are enriched for rare variants

[Zhang*,	Liu*	et	al.,	Genome	Biology	(in	review	‘18)]
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RADAR Scores enriched in COSMIC genes and recurrently mutated regions

[Zhang*,	Liu*	et	al.,	Genome	Biology	(in	review	‘18)]



Disease Genomics: Thoughts on Genome Annotation, Prioritizing Variants, 
Highlighting Dysregulation, & the Application of all of these to Cancer

• RADAR Prioritization
• Adapts FunSeq approach to RBPs
• Prioritizes variants based on post-

transcriptional regulome using 
ENCODE eCLIP

• Incorporates new features related 
to RNA sec. struc & tissue specific 
effects

• uORF Prioritization
• Feature integration to find small 

subset of upstream mutations that 
potentially alter translation

• LARVA & MOAT
• Uses parametric beta-binomial 

model, explicitly modeling genomic 
covariates

• Non-parametric shuffles. Useful 
when explicit covariates not 
available.

• Background
• PMI & Variant Prioritization
• Types of annotations: peaks, 

segmentations, regulators
• Genomic covariates
• ENCODEC: ENCODE cancer 

annotation resource
• Matched Filter Annotation 

• Integrating cross-assay signal-track 
patterns associated with enhancers

• Trained on high throughput STARR-
seq experiments

• Validation in many different contexts

• FunSeq Prioritization
• Integrates evidence, with a “surprisal” 

based weighting scheme. 
• Prioritizing variants within “sensitive 

sites” (human conserved)

• Network Rewiring
• Network rewiring highlights 

regulators that change their targets 
greatly. 

• LDA approach specifically finds 
those that greatly change their 
gene communities

• Regulatory Drivers of 
Differential Expression
• Highlighting regulators in terms of 

their power to drive differential 
expression. 

• Relationship of this to network 
hierarchy & RBP-TF cross talk

• Example of MYC & SUB1
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Upstream open reading frames (uORFs) regulate 
translation are affected by somatic mutation

● uORFs regulate the translation of downstream 
coding regions.

● This regulation may be altered by somatic 
mutation in cancer.

● In Battle et al. 2014 data uORF gain & loss 
assoc. protein level change.

[Ferreira et al., Bioengineered (‘14)]

[McGillivray	et	al.,	NAR	(‘18)]

[Calvo et al., PNAS (‘09)]
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The population of functional 
uORFs may be significant

● Ribosome profiling experiments have 
low overlap in identified uORFs. 

● This suggests high false-negative rate, 
and more functional uORFs than 
currently known.

[McGillivray	et	al.,	NAR	(‘18)]

From a “Universe” of 
1.3 M pot. uORFs
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Prediction & validation of 
functional uORFs using 89 features

● All near-cognate start codons predicted.

● Cross-validation on independent ribosome 
profiling datasets and validation using in vivo 
protein levels and ribosome occupancy in 
humans (Battle et al. 2014).

[McGillivray	et	al.,	NAR	(‘18)]

Expr.
Level

Tissue
Dist.

Int. 
ATG
Start

Conser-
vation
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A comprehensive catalog of functional uORFs

● 180K: Large predicted positive set 
likely to affect translation  

● Calibration on gold standards, 
suggests getting ~70% of known

[McGillivray	et	al.,	NAR	(‘18)]

Universe of 1.3M
uORFs scored via 

Simple Bayes algo.

● Predicted functional uORFs may be intersected 
with disease associated variants.



Disease Genomics: Thoughts on Genome Annotation, Prioritizing Variants, 
Highlighting Dysregulation, & the Application of all of these to Cancer

• RADAR Prioritization
• Adapts FunSeq approach to RBPs
• Prioritizes variants based on post-

transcriptional regulome using 
ENCODE eCLIP

• Incorporates new features related 
to RNA sec. struc & tissue specific 
effects

• uORF Prioritization
• Feature integration to find small 

subset of upstream mutations that 
potentially alter translation

• LARVA & MOAT
• Uses parametric beta-binomial 

model, explicitly modeling genomic 
covariates

• Non-parametric shuffles. Useful 
when explicit covariates not 
available.

• Background
• PMI & Variant Prioritization
• Types of annotations: peaks, 

segmentations, regulators
• Genomic covariates
• ENCODEC: ENCODE cancer 

annotation resource
• Matched Filter Annotation 

• Integrating cross-assay signal-track 
patterns associated with enhancers

• Trained on high throughput STARR-
seq experiments

• Validation in many different contexts

• FunSeq Prioritization
• Integrates evidence, with a “surprisal” 

based weighting scheme. 
• Prioritizing variants within “sensitive 

sites” (human conserved)

• Network Rewiring
• Network rewiring highlights 

regulators that change their targets 
greatly. 

• LDA approach specifically finds 
those that greatly change their 
gene communities

• Regulatory Drivers of 
Differential Expression
• Highlighting regulators in terms of 

their power to drive differential 
expression. 

• Relationship of this to network 
hierarchy & RBP-TF cross talk

• Example of MYC & SUB1
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Cancer Somatic Mutation Modeling
• Suppose there are k genome 

elements. For element i, define:
– ni: total number of nucleotides
– xi: the number of mutations within the 

element
– p: the mutation rate
– Ri: the covariate rank of the element

• Non-parametric model is useful 
when covariate data is missing for 
the studied annotations

• Also sidesteps issue of properly 
identifying and modeling every 
relevant covariate 
(possibly hundreds)

Model 1: Constant Background 
Mutation Rate (Model from 
Previous Work)

[Lochovsky et al. NAR (’15)]

PARAMETRIC MODELS

Model 3a: Random 
Permutation of Input 
Annotations
Shuffle	annotations	within	local	
region	to	assess	background	
mutation	rate.

Model 2a: Varying Mutation Rate
with Single Covariate Correction

Model 2b: Varying Mutation Rate
with Multiple Covariate Correction

NON-PARAMETRIC MODELS

Model 3b: Random 
Permutation of Input Variants
Shuffle	variants	within	local	
region	to	assess	background	
mutation	rate.

Assume	constant	background	
mutation	rate	in	local	regions.

[Lochovsky et al. Bioinformatics in press]
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MOAT-a: Annotation-based permutation

[Lochovsky et al. Bioinformatics in press]
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MOAT-v: Variant-based Permutation

[Lochovsky et al. Bioinformatics in press]

Can preserve tri-nt context in shuffle
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MOAT-s: a variant on MOAT-v
• A somatic variant simulator

• Given a set of input variants, shuffle to new locations, taking genome structure into 
account

[Lochovsky et al. Bioinformatics in press]
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LARVA Model Comparison
• Comparison of mutation count frequency implied by the binomial model (model 1) and the 

beta-binomial model (model 2) relative to the empirical distribution
• The beta-binomial distribution is significantly better, especially for accurately modeling 

the over-dispersion of the empirical distribution

[Lochovsky et al. NAR (’15)]
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MOAT: recapitulates LARVA 
with GPU-driven runtime scalability

Computational efficiency of MOAT’s 
NVIDIA™ CUDA™ version, with 
respect to the number of permutations, 
is dramatically enhanced compared to 
CPU version.

MOAT’s high mutation burden elements 
recapitulate LARVA’s results & published 
noncoding cancer-associated elements.

Number	of	
permutations

Fold	speedup	of	
CUDA version

1k 14x
10k 100x
100k 256x

..

.

[Lochovsky et al. Bioinformatics in press]
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• Prioritizes variants based on post-
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to RNA sec. struc & tissue specific 
effects
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• Feature integration to find small 

subset of upstream mutations that 
potentially alter translation

• LARVA & MOAT
• Uses parametric beta-binomial 

model, explicitly modeling genomic 
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• Non-parametric shuffles. Useful 
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available.

• Background
• PMI & Variant Prioritization
• Types of annotations: peaks, 
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• ENCODEC: ENCODE cancer 

annotation resource
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• Integrating cross-assay signal-track 
patterns associated with enhancers

• Trained on high throughput STARR-
seq experiments

• Validation in many different contexts

• FunSeq Prioritization
• Integrates evidence, with a “surprisal” 

based weighting scheme. 
• Prioritizing variants within “sensitive 

sites” (human conserved)

• Network Rewiring
• Network rewiring highlights 

regulators that change their targets 
greatly. 

• LDA approach specifically finds 
those that greatly change their 
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• Regulatory Drivers of 
Differential Expression
• Highlighting regulators in terms of 

their power to drive differential 
expression. 

• Relationship of this to network 
hierarchy & RBP-TF cross talk

• Example of MYC & SUB1



Disease-associated	TFs	have	target	gain	
or	loss	eventsHypothesis
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Latent	Dirichlet	AllocationMethod
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Network	rewiring	analyses:	key	cancer-associated	regulator	identification	
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Hidden	Layer	
(50	biological	pathways?)	

De-noising	process	by	dimension	reduction

From	𝑇𝐹 → 𝑔𝑒𝑛𝑒	(109×50,000)
to	𝑇𝐹 → 𝑝𝑎𝑡ℎ𝑤𝑎𝑦	(109×50)

Challenge:	how	to	define	
appropriate	pathways?

[Zhang et al. ('19), biorxiv.org]                                                                                            Lectures.gersteinlab.org



RegLDA:	automatic	gene	topic	identification	based	on	Latent	
Dirichlet	Allocation

[Zhang et al. ('19), biorxiv.org]                                                                                            Lectures.gersteinlab.org
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Gain/Loss	Summary	Statistic	on	Topics

θ tumor = 0.9,0.05,0.05( )
θ normal = 0.05,0.05,0.9( )

θ tumor = 0.9,0.05,0.05( )
θ normal = 0.85,0.05,0.1( )

[Zhang et al. ('19), biorxiv.org]                                                                                            Lectures.gersteinlab.org
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[Zhang et al. ('19), biorxiv.org]
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[Zhang et al. ('19), biorxiv.org]                                                                                            Lectures.gersteinlab.org
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Regulatory Potential of RBPs derived from regression between gene network 
and expression levels

[Zhang*,	Liu*	et	al.,	Genome	Biology	(in	review	‘18)]
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Aggregated t-statistic	in	
regression	over	TCGA	samples

[Zhang et al. ('19), biorxiv.org]



Top	Layer:	Master	regulators,	regulating	
others	more	than	being	regulated

Bottom	Layer:	follower	regulators,	being	
regulated	more	than	regulating	others

How	much	power	each	regulator	has	in	
driving	tumor-normal	differential	expressions

promoter Exon Intron Exon
TF

Exon Exon AAAAA
RBP

Transcription

Post-transcription

TF-RBP	crosstalk

TF-RBP	regulate	the	same	
gene	at	different	levels
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initiate	
transcription

stabilize	
mRNA

MYC	KD SUB1	KD MYC+SUB1	KD

Slower	mRNA	decay	rate	in	SUB1	targets



Disease Genomics: Thoughts on Genome Annotation, Prioritizing Variants, 
Highlighting Dysregulation, & the Application of all of these to Cancer

• RADAR Prioritization
• Adapts FunSeq approach to RBPs
• Prioritizes variants based on post-

transcriptional regulome using 
ENCODE eCLIP

• Incorporates new features related 
to RNA sec. struc & tissue specific 
effects

• uORF Prioritization
• Feature integration to find small 

subset of upstream mutations that 
potentially alter translation

• LARVA & MOAT
• Uses parametric beta-binomial 

model, explicitly modeling genomic 
covariates

• Non-parametric shuffles. Useful 
when explicit covariates not 
available.

• Background
• PMI & Variant Prioritization
• Types of annotations: peaks, 

segmentations, regulators
• Genomic covariates
• ENCODEC: ENCODE cancer 

annotation resource
• Matched Filter Annotation 

• Integrating cross-assay signal-track 
patterns associated with enhancers

• Trained on high throughput STARR-
seq experiments

• Validation in many different contexts

• FunSeq Prioritization
• Integrates evidence, with a “surprisal” 

based weighting scheme. 
• Prioritizing variants within “sensitive 

sites” (human conserved)

• Network Rewiring
• Network rewiring highlights 

regulators that change their targets 
greatly. 

• LDA approach specifically finds 
those that greatly change their 
gene communities

• Regulatory Drivers of 
Differential Expression
• Highlighting regulators in terms of 

their power to drive differential 
expression. 

• Relationship of this to network 
hierarchy & RBP-TF cross talk

• Example of MYC & SUB1
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ENCODEC.gersteinlab.org

J Zhang, D Lee, V Dhiman, P Jiang, J Xu, 
P McGillivray, H Yang…. S Liu, K White

github.com/gersteinlab/MatchedFilter
A Sethi, M Gu, E Gumusgoz, L Chan, KK Yan, J Rozowsky, 
A Harrington, B Mannion, E Lee, Y Fukuda-Yuzawa, A Visel, 
D Dickel, K Yip, R Sutton, LA Pennacchio

FunSeq.gersteinlab.org

Y Fu, E Khurana, Z Liu, S Lou, J Bedford, X Mu, K Yip
E Khurana, Y Fu, H Kang, X Mu… M Rubin, C Tyler-Smith

RADAR.gersteinlab.org

J Zhang, J Liu, D Lee, J-J Feng, L Lochovsky, S Lou, 
M Rutenberg-Schoenberg

github.gersteinlab.org/uORFs
P McGillivray, R Ault, M Pawashe, R Kitchen, S Balasubramanian

{LARVA,MOAT}.gersteinlab.org

Lochovsky, J Zhang, Y Fu, E KhuranaA
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General PERMISSIONS
• This Presentation is copyright Mark Gerstein, Yale University, 2017. 
• Please read permissions statement at 

sites.gersteinlab.org/Permissions
• Basically, feel free to use slides & images in the talk with PROPER acknowledgement (via 

citation to relevant papers or website link). Paper references in the talk were mostly from 
Papers.GersteinLab.org. 

PHOTOS & IMAGES 
For thoughts on the source and permissions of many of the photos and clipped images in this 
presentation see streams.gerstein.info . In particular, many of the images have particular EXIF 
tags, such as  kwpotppt , that can be easily queried from flickr, viz: 
flickr.com/photos/mbgmbg/tags/kwpotppt


