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Estimated numbers of new cases of invasive cancer in
the United States in 2019 by sex and cancer type

Estimated New Cases

Males Females

Prostate 174,650 20% Breast 268,600 30%
Lung & bronchus 116,440 13% Lung & bronchus 111,710 13%
Colon & rectum 78,500 9% Colon & rectum 67,100 8%
Urinary bladder 61,700 7% Uterine corpus 61,880 7%
Melanoma of the skin 57,220 7% Melanoma of the skin 39,260 4%
Kidney & renal pelvis 44,120 5% Thyroid 37,810 4%
Non-Hodgkin lymphoma 41,090 5% Non-Hodgkin lymphoma 33,110 4%
Oral cavity & pharynx 38,140 4% Kidney & renal pelvis 29,700 3%
Leukemia 35,920 4% Pancreas 26,830 3%
Pancreas 29,940 3% Leukemia 25, 860 3%
All Sites 5'297_0 100% All Sites 591 480' 100%

P

1,762,450 new cases per year

~4,800 new cases per day
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the WHITE HOUSE  goiepINGROOM  ISSUES ~ THE ADMINISTRATION 1600 PENN

PRESIDENT BARACK OBA

Much Interest
THE PRECISION MEDICINE INITIATIVE in Precision

Oncology

 Analysis of the exact
somatic mutations in a
individual
 Highlighting key
mutations

 Targeting treatment

What if matching
PRECISION MEDICINE INITIATIVE PRINCIPLES STORIES a Ca n Ce r Cu re to

“Doctors bave always recognized that every patient is unique, and doctors bave always tried to tailor their treatments as our qenetlc COde
best they can to individuals. You can match a blood transfusion to a blood type — that was an important discovery. What if WaS iust aS easy

matching a cancer cure to our genetic code was just as easy, just as standard? What if figuring out the right dose of medicine
was as simple as taking our temperature?” https://obamawhitehouse.archives.g

g ov/blog/2016/02/25/precision-
- President Obama, January 30, L ;
s medicine-health-care-tailored-you
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Overall Problem:

. . . . AN YOU FIND THE PANDA?
Flndlng Key Variants in ST (T R O T (R % A
Personal Genomes Mo el e\ fal G D)= o
Millions of variants in a personal genome 2555 N S\eeSe
Thousands, in a cancer genome S e o
Different contexts for prioritization o s

In rare disease, only a few
high-impact variants are associated with disease

- . :
........

In cancer, a few positively selected drivers amongst many passengers

In common disease, more variants associated & each has weaker effect,
But one wants to find key “functional” variant amongst many in LD



Overa" PrObIem: CAN YOU FIND THE PANDA?
Finding Key Variants in T N ) e o )y
Personal Genomes (RN

Millions of variants in a personal genome
Thousands, in a cancer genome
Different contexts for prioritization

In rare disease, only a few
high-impact variants are associated with disease

In cancer, a few positively selected drivers amongst many passengers

In common disease, more variants associated & each has weaker effect,
But one wants to find key “functional” variant amongst many in LD

Thus: Need to find & prioritize high impact variants.
Particularly hard for non-coding regions.
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Human Genetic Variation

Population of

A Cancer Genome A Typical 2,504 peoples
° Genome ° 000
(¥ ) "M
Origin of Variants Class of Variants
Coding Non- 3.5-4.3M
coding
| 550 — 625K
2.1-25K
Somatic ~50 5K N (20Mb)
4.1 -5M

Prevalence of Variants

Driver (~0.1%) Rare* (1-4%) Rare (~75%)
* Variants with allele frequency < 0.5% are considered as rare variants in 1000 genomes project.

The 1000 Genomes Project Consortium, Nature. 2015. 526:68-74
Khurana E. et al. Nat. Rev. Genet. 2016. 17:93-108
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Disease Genomics: Thoughts on Genome Annotation, Prioritizing Variants,
Highlighting Dysregulation, & the Application of all of these to Cancer

« Background

PMI & Variant Prioritization

Types of annotations: peaks,
segmentations, regulators

Genomic covariates

ENCODEC: ENCODE cancer
annotation resource

« Matched Filter Annotation

Integrating cross-assay signal-track
patterns associated with enhancers

Trained on high throughput STARR-
seq experiments

Validation in many different contexts

« FunSeq Prioritization

Integrates evidence, with a “surprisal”

based weighting scheme.

Prioritizing variants within “sensitive
sites” (human conserved)

RADAR Prioritization

Adapts FunSeq approach to RBPs

Prioritizes variants based on post-
transcriptional regulome using
ENCODE eCLIP

Incorporates new features related
to RNA sec. struc & tissue specific
effects

uOREF Prioritization

Feature integration to find small
subset of upstream mutations that
potentially alter translation

LARVA & MOAT

Uses parametric beta-binomial
model, explicitly modeling genomic
covariates

Non-parametric shuffles. Useful
when explicit covariates not
available.

Network Rewiring

Network rewiring highlights
regulators that change their targets
greatly.

LDA approach specifically finds
those that greatly change their
gene communities

* Requlatory Drivers of

Differential Expression

Highlighting regulators in terms of
their power to drive differential
expression.

Relationship of this to network
hierarchy & RBP-TF cross talk

Example of MYC & SUB1
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Highlighting Dysregulation, & the Application of all of these to Cancer

Background « RADAR Prioritization
e PMI & Variant Prioritization + Adapts FunSeq approach to RBPs
+ Types of annotations: peaks, * Prioritizes variants based on post-

Matched Filter Annotation -

transcriptional regulome using
ENCODE eCLIP

* Incorporates new features related
to RNA sec. struc & tissue specific
effects

UORF Prioritization

segmentations, regulators

Genomic covariates

ENCODEC: ENCODE cancer
annotation resource

FunSeq Prioritization

Integrating cross-assay signal-track .
patterns associated with enhancers

Trained on high throughput STARR-
seq experiments

Feature integration to find small
subset of upstream mutations that
potentially alter translation

 LARVA & MOAT

* Uses parametric beta-binomial

Validation in many different contexts

model, explicitly modeling genomic
Integrates evidence, with a “surprisal” covariates

based weighting scheme. +  Non-parametric shuffles. Useful

when explicit covariates not
available.

Prioritizing variants within “sensitive
sites” (human conserved)

* Network Rewiring

* Network rewiring highlights
regulators that change their targets
greatly.

+ LDA approach specifically finds
those that greatly change their
gene communities

 Requlatory Drivers of
Differential Expression

+ Highlighting regulators in terms of
their power to drive differential
expression.

* Relationship of this to network
hierarchy & RBP-TF cross talk

+  Example of MYC & SUB1



Reference Genome

Protein Coding Regions:
Part of the genome we can “see”
< 2% of the genome

The Noncoding Regions: Dark Matter in the Genome
*  >98% of the genome

e Host ~90% of disease risk loci

* contains extensive regulatory information

the
Oeeper
e SENOME

human genome
than meets
the eye




[Alexander et al., Nat. Rev. Genet. ('10)]

Non-coding Annotations: Overview

Features are often present on multiple "scale” (eg elements and connected networks)

Sequence features, incl. Conservation

Large-scale sequence
similarity comparison

Functional Genomics

Chip-seq (Epigenome & seq. specific TF)
and ncRNA & un-annotated transcription

/

Identify large blocks of
repeated and deleted

| sequence:

Signal processing of raw
experimental data:

» Removing artefacts
» Normalization
» Window smoothing

—— =
C——
I— -

h
1
i
/

» Within the human
reference genome

'

» Within the human
population

» Between closely related

mammalian genomes

Segmentation of processed
data into active regions:

+ Binding sites

» Transcriptionally active

'

regions
'

—
V. N

Identify smaller-scale
repeated blocks using
statistical models

Group active regions into
larger annotation blocks
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Summarizing the Signal:
"Traditional” ChipSeq Peak Calling

Chip

* Generate & threshold the
signal profile to identify
candidate target regions

- Simulation (PeakSeq),

Threshold

- Local window based Poisson
(MACS),

- Fold change statistics (SPP) ’
Potential Targets FErirme o r T [ THHr et 1

Normalized Control

Score against the control

Significantly Enriched Il L1
targets

Now an update: "PeakSeq 2" => MUSIC
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Background on computationally annotation

* Peak calling: 2 e G e
v'PeakSeq, SPP, MACS2, Hotspot ...
v ENCODE Encyclopedia

* Genome segmentation: partition the genome into regions (states) with distinct
epigenomic profiles, then assign each state a functional label.

v'ChromHMM: Multivariate Hidden Markov Model

v'Segway: Dynamic Bayesian Network Model

ChromHMM

7
|a
i

J. Emnst, M. Kellis. Nat. Protoc., 2017
» Supervised regulatory prediction: learn predictive models from labeled dataset of

regulatory elements.
v CSI-ANN: Time-Delay Neural Network —= - - N
R fumy
v RFECS: Random Forest : | s | T h
v DEEP: Ensemble SVM + Artificial Neural Network
v REPTILE: Random Forest
v' gkm-SVM: Gapped k-mer

A Preprocessing Input Data

Histone Modifications Mathematical Features Feature Space

CSI-ANN

N
Fisher Discriminant Analysis
Feature Extraction

* Target finding
v Ripple, TargetFinder, JEME, PreSTIGE, IM-PET

H.A. Firpi, D. Ucar, K. Tian. Bioinformatics, 2010
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* Tools developed specifically for coding variants:
v'PolyPhen-2
v SnpEff
v SIFT
V..
* Tools developed specifically for noncoding variants:
v'RegulomeDB
v'HaploReg
v'DeepSEA
v GWAVA
V..
* Tools for both coding and noncoding variants:
v'CADD
v’ ANNOVAR
v'VEP

vFATHMM-MKL
Vo

Polyphen-2

DeepSEA

coding

Input

noncoding

Analysis Prediction Interpretation
Sequence
~Ma vy
Moty soun, W ARSI e e e e - :
raw mutp) -m\. s
aligrment, Idontity-based scorcs
et it Annctatio
gmémmﬁ MSA degth, CpG contat fgmn@m\
Prediction confidence

Output:
variant functionality
prediction

Output:
predicted chromatin
effect

Output:

predicted allele-
specific chromatin
profile

Pfam domain, residus velume

3D visualization

I.A. Adzhubei, et al. Nat. Methods, 2010

Functional-variant prediction

Input t
log(allele T/allele A)

30
20
10 I 2

oF

Compare

ueet 0@ @0 0@000@0
eayelelslelelclolololole)

Predict t

Training data:

ENCODE,
Roadmap Epigenomics
chromatin profiles

Train

—

Deep convolutional network
- (DeepSEA)

Input:
‘genomic sequences
(1,000 bp)

Input t

. . .GCGTGGGTACGCTTATTCGTCAAGCTTTAGCGT . . .
.. .GCGTGGGTACGCTTAATCGTCAAGCTTTAGCGT . . .

Variant position

J. Zhou, O.G. Troyanskaya, Nat. Methods, 2015
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Major takeaway from annotation experience for
disease studies: less is more

( T\np: //screen.encodeproject.org |
| DNasel
| CTCF *
| *
\ H3kdme3| *
e e . e e e e e e e -

_ Genotype
Individual —yp)Cohorts

SNP 35-43M @ SNP  84.7M

Indel 550-625K  Indel  3.6M
sV | 21-25K SV 60K
Total ~ 4.1-5M Total ~ 88.3M

V.S.

rare a few with high impact

common many with weak effect

cancer a few drivers

CTCF, 1.4%

GRCh38 |

P promoters, st

enhancer,14.7%

Example of power issue in disease studies

Power (%)
3 3

S
o

n
o

0

0 200 400 600 800 1,000
Sample size

1.97M elements
* anchored on DHS sites
+ 20.1% of the genome

25,000 promoters

650-bp Binding
promoter site

—EEHEEHEEY - {I52— Rheinbay et al.

100,000 promoters

25,000 promoters

450-bp
promoter

[Kumar & Gerstein, Nature ('17)]



Coding and non-coding elements may synergistically contribute to cancer

a

b

TF-enhancer-gene miRNA-gene Metanetwork
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[McGillivray et al., Ann. Rev. Biomedical Data Science (‘18)]
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Major
Challenges:

Many levels of dysregulations related to disease status

A Multi-scale View of gene regulation

Regulatore<regulator
co-regulation network

Regulator—gene
regulatory network

Regulatory Element
function (on/off)

77777777 gene|

gene

———————————————————————— gene|-----1-

Gene expression
(high/low)

--AGCTTTACGATCCCGAAATCTGCTTTATACGATCCCGAAATC -+

DNA nucleotide

Regulator to target gene
directional

____ Regulator co-regulation
unidirectional

O Regulator

D Active proximal elements
O Active distal elements

D Inactive proximal elements
Q inactive distal elements

[:] gene

Qj Epigenetic information



Disease Genomics: Thoughts on Genome Annotation, Prioritizing Variants,
Highlighting Dysregulation, & the Application of all of these to Cancer

Background « RADAR Prioritization
e PMI & Variant Prioritization + Adapts FunSeq approach to RBPs
+ Types of annotations: peaks, * Prioritizes variants based on post-

Matched Filter Annotation -

transcriptional regulome using
ENCODE eCLIP

* Incorporates new features related
to RNA sec. struc & tissue specific
effects

UORF Prioritization

segmentations, regulators

Genomic covariates

ENCODEC: ENCODE cancer
annotation resource

FunSeq Prioritization

Integrating cross-assay signal-track .
patterns associated with enhancers

Trained on high throughput STARR-
seq experiments

Feature integration to find small
subset of upstream mutations that
potentially alter translation

 LARVA & MOAT

* Uses parametric beta-binomial

Validation in many different contexts

model, explicitly modeling genomic
Integrates evidence, with a “surprisal” covariates

based weighting scheme. +  Non-parametric shuffles. Useful

when explicit covariates not
available.

Prioritizing variants within “sensitive
sites” (human conserved)

* Network Rewiring

* Network rewiring highlights
regulators that change their targets
greatly.

+ LDA approach specifically finds
those that greatly change their
gene communities

 Requlatory Drivers of
Differential Expression

+ Highlighting regulators in terms of
their power to drive differential
expression.

* Relationship of this to network
hierarchy & RBP-TF cross talk

+  Example of MYC & SUB1



Mutation recurrence
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Cancer Type 2
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violation of the constant mutation rate assumption

mut. rate. per Mbp

o

“m‘L.,
@Qmi‘
\\

N @

l
oo 4@0

o

- E,T

Liver ° -
Lung

Glial

>
[
c

=]

4

Prostate
Lymphoma
Breast
Pancreas
Stomach

Me‘au?l:)blastoma o o

mut. rate. per Mbp

rep. timing vs. mut. ra’e
chromatin openness vs. muf. rate

0 20 40 60 80 100
chr11 (Mbp)

[Lochovsky et al. NAR (*15)]

mutation rate changes across tumor

within one tumor type

> mutation rate changes across patients

within one tumor type
within one patient

mutation rate changes across regions

within one tumor type
within one patient

mutation rate changes with many covariates

inappropriate models

Bad data fitting

Inaccurate burden test results
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Background « RADAR Prioritization
e PMI & Variant Prioritization + Adapts FunSeq approach to RBPs
+ Types of annotations: peaks, * Prioritizes variants based on post-

Matched Filter Annotation -

transcriptional regulome using
ENCODE eCLIP

* Incorporates new features related
to RNA sec. struc & tissue specific
effects

UORF Prioritization

segmentations, regulators

Genomic covariates

ENCODEC: ENCODE cancer
annotation resource

FunSeq Prioritization

Integrating cross-assay signal-track .
patterns associated with enhancers

Trained on high throughput STARR-
seq experiments

Feature integration to find small
subset of upstream mutations that
potentially alter translation

 LARVA & MOAT

* Uses parametric beta-binomial

Validation in many different contexts

model, explicitly modeling genomic
Integrates evidence, with a “surprisal” covariates

based weighting scheme. +  Non-parametric shuffles. Useful

when explicit covariates not
available.

Prioritizing variants within “sensitive
sites” (human conserved)

* Network Rewiring

* Network rewiring highlights
regulators that change their targets
greatly.

+ LDA approach specifically finds
those that greatly change their
gene communities

 Requlatory Drivers of
Differential Expression

+ Highlighting regulators in terms of
their power to drive differential
expression.
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ENCODEC: ENCODE cancer
annotation resource

FunSeq Prioritization

Integrating cross-assay signal-track .
patterns associated with enhancers

Trained on high throughput STARR-
seq experiments

Feature integration to find small
subset of upstream mutations that
potentially alter translation

 LARVA & MOAT

* Uses parametric beta-binomial

Validation in many different contexts

model, explicitly modeling genomic
Integrates evidence, with a “surprisal” covariates

based weighting scheme. +  Non-parametric shuffles. Useful

when explicit covariates not
available.

Prioritizing variants within “sensitive
sites” (human conserved)

* Network Rewiring

* Network rewiring highlights
regulators that change their targets
greatly.

+ LDA approach specifically finds
those that greatly change their
gene communities

 Requlatory Drivers of
Differential Expression

+ Highlighting regulators in terms of
their power to drive differential
expression.

* Relationship of this to network
hierarchy & RBP-TF cross talk

+  Example of MYC & SUB1



Unique shape associated histone signals flanking
active enhancers identified through STARR-seq
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Matched Filter recognize shape patterns

! o8 Matched Filter *

v b | = y(n) r(n)
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@ g Metaprofile s(n) T o
I Matched filter h(n)
| -06 Epigenetic Signal y(n) 20
0 N ; Matched filter score  r(n)
: . Positives
Score STARR-seq regulatory regions VS random negatives Negatives
Evaluate using ROC curve
H3K27ac " H3K4me1 , H3K4me2 , H3K4me3 H3K9ac g
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12 25 6 6
8
K “ : K . H3K4me3 H3K4me1
P 15 N ) ,
n 10
2 5 T : 2
5007100 0 100 200 300 400 500 600 B0 60 4020 0 20 40 60 80 100 %06 200 0 200 400 600 800 S0 300 200 600 1000 0 200 0 200 400 600
" H3K79me2 o H3K36me3 H4K20me1 . H3K27me2 H2Av
600 M 35
500 30 30
: . : =
1o 300
. w° 200 :Z JZ 1.0
20 100 5 - '
n-|00 -50 0 50 100 150 l?30 =20 -10 o 10 20 30 40 0'4 3 -2 A [ 2 3 4 5 g|00 -50 0 50 100 150 950 60 40 -20 0 20 40 60 80 100 .. Promoter

— Enhancer

[ biorxiv.org/content/early/2018/08/05/385237 ]
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Integrate matched filter scores of multiple features

Model AUROC | AUPR
Random 0.96 (0.95)] 0.91 (0.79)
Forest

Ridge 10 .95 (0.94)] 0.90 (0.77)
Regression

Linear SVM| 0.96 (0.95)] 0.91 (0.78)
Naive 0.95 (0.93)]0.89 (0.72)
Bayes

Cross validation

. Promoter
— Enhancer

TP Rate

0.0
0.0

Integrated Models

. — 108

FP Rate

Precision

1.0

o
o°
o

Recall

[ biorxiv.org/content/early/2018/08/05/385237 ]

1.0

Large scale STARR-seq experiment data helps
to improve the performance of integrated model

0.8 -

H3K27ac
~o— H3K4me1
—o— H3K4me2
—o— H3K4me3
—o— H3K9ac
~o- DHS

SVM

AUPR value
o
D

0.4

0.1 02 03 04 05 06 07 08 09
Percentage sample
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True Positive Rate

Validation with transgenic mouse enhancer assay

Test prom Inject fertilized eggs
DNA | Reporter
N\ gene ) W
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0.8 0.8
0.6 0.6
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8
¢
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2
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&
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2
=
0.2
= Matched Filter (area = 0.76)
e ChromHMM (area = 0.69)
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False Positive Rate
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8
5 06
3
@
4
S 04
2
=
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= Matched Filter (area = 0.79)
= ChromHMM (area = 0.71)
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False Positive Rate

False Positive Rate

[ biorxiv.org/content/early/2018/08/05/385237 ]

Visualize
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False Positive Rate
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Matched-Filter can be applied across different organisms

S - B MatchedFilter
O REPTILE
O RFECS
O DELTA
O CSIANN
«© _| _
o —
(@) —
O N~
X S -
-] —
<
©
o
v
g
hindbrain limb midbrain neural tube

Compare Matched-Filter
performance with other state-

of-the-art methods
[ biorxiv.org/content/early/2018/08/05/385237 ]

20 p-Value = 5e-4
*kk

-
o

-
o

Fold Change

o

o

Negative Putative Enhancers

B vatched-Fiter
ChromHMM+Segway

0.15 0.10 0.05
Percentage overlapped with FANTOMS5 enhancers

0.00

K562

HepG2

GM12878

Validation using
transduction-based
reporter assay (H1-hESC,
HOS, A549 and TZMBL)

Compare overlap with
FANTOMS5 enhancers

0.0

0.1 0.2 0.3
Percentage of FANTOMS5 enhancers overlapped

I
~
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[Zhang et al. ('19), biorxiv.org]

DNase

N

Constructing a high-confidence set of cell-specific enhancers

Y W S

H3K27ac _—_A_A_—‘__‘AL‘_MAM

H3K4me1

H3K4me3

b) ESCAPE Enhancers

Enhancer-gene linkage
from JEME & Hi-C

cREs

TF 1 binding motifs
TF 2 binding motifs -

MatchedFilter Enhancer

c)
Merged MatchedFilter Enhancer

MatchedFilter-ESCAPE intersect

MatchedFilter-
ESCAPE intersect

MatchedFilter-
ESCAPE-cRE intersect

TFBS-pruned Matched
-Filter-ESCAPE-cRE intersect

............................................. I I
/,777 e
vvvvv _— _—
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Disease Genomics: Thoughts on Genome Annotation, Prioritizing Variants,
Highlighting Dysregulation, & the Application of all of these to Cancer

Background « RADAR Prioritization
e PMI & Variant Prioritization + Adapts FunSeq approach to RBPs
+ Types of annotations: peaks, * Prioritizes variants based on post-

Matched Filter Annotation -

transcriptional regulome using
ENCODE eCLIP

* Incorporates new features related
to RNA sec. struc & tissue specific
effects

UORF Prioritization

segmentations, regulators

Genomic covariates

ENCODEC: ENCODE cancer
annotation resource

FunSeq Prioritization

Integrating cross-assay signal-track .
patterns associated with enhancers

Trained on high throughput STARR-
seq experiments

Feature integration to find small
subset of upstream mutations that
potentially alter translation

 LARVA & MOAT

* Uses parametric beta-binomial

Validation in many different contexts

model, explicitly modeling genomic
Integrates evidence, with a “surprisal” covariates

based weighting scheme. +  Non-parametric shuffles. Useful

when explicit covariates not
available.

Prioritizing variants within “sensitive
sites” (human conserved)

* Network Rewiring

* Network rewiring highlights
regulators that change their targets
greatly.

+ LDA approach specifically finds
those that greatly change their
gene communities

 Requlatory Drivers of
Differential Expression

+ Highlighting regulators in terms of
their power to drive differential
expression.

* Relationship of this to network
hierarchy & RBP-TF cross talk

+  Example of MYC & SUB1



Funseq: a flexible framework to determine
functional impact & use this to prioritize variants

Annotation (tf binding
sites open chromatin,
ncRNAs) & Chromatin
Dynamics

Conservation
(GERP, allele freq.)

Mutational impact
(motif breaking, Lof)

Network (centrality
position)

Non-coding annotation

o ® oo m ® SNV W Indel
o

l I \

\

\

\

\

\

Degree of negative selection

Motif disruptive score

breaking | \ |

| \ } :( )/

[ \

| | \ Degree of network centrality
Enhancer/

Promoter [ ‘

, Khurana et al., Science ('13)]

[Fu et al., GenomeBiology ('14),
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Finding "Conserved” Sites in the Human Population:
Negative selection in non-coding elements based on
Production ENCODE & 1000G Phase 1
Broad Categories
Coding !

Genomic Avg ia

Enhancer .
| ancer | R Broad categories of
(Non-coding RNA) nCRNA- regulatory regions under

(DNase | hypersensitive sites) DHS h negative SEIECtion
(TFSS: Sequence-specific TFs) Related to:
(Transcription factor binding sites) TFBS ENCODE, Nature, 2012
. H Ward & Kellis, Science, 2012
| Chromatin Mu et al, NAR, 2011

Pseudogene —
]

[ I T 1 I T ]
056 058 060 062 064 0.66 0.68

Fraction of rare SNPs

Depletion of Common Variants
in the Human Population
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A

GenomicAvg 27M SNPs |

Synonymous | 0.12M

TFBS

Coding 0.27M

>
Missense | 0.15M

Enhancer

TFSS
General

Chromatin

'
Pseudogene | 57K —i
> '

Broad Categories

0.56 06

Fraction of rare SNPs

Sub-categorization possible

Specific Categories

TF Families (motifs)

Coding
HMG
Forkhead

050 055 060 065 0.70

because of better statistics from

1000G phase 1 v pilot

Differential
selective
constraints
among specific
sub-categories

[Khurana et al., Science (‘13)]
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Power-law distribution

logP(k)‘ N -
(l

log(Frequency)

(‘\

-0 P(k)~k”
. 9. Hub
N
()
AN
—
log(Degree) &k

Hubs Under Constraint:
A Finding from the Network
Biology Community

High likelihood of
positive selection

Lower likelihood of
® positive selection

* More Connectivity, More Constraint: Genes & proteins that have a more central

position in the network tend to evolve more slowly and are more likely to be

essential.

* This phenomenon is observed in
many organisms & different kinds of networks

-yeast PPI - Fraser et al ('02) Science,

('03) BMC Evo. Bio.

- Ecoli PPI - Butland et al ('04) Nature
-Worm/fly PPI - Hahn et al ('05) MBE
-miRNA net - Cheng et al ('09) BMC Genomics

@)

©)

Not under positive
selection

No data about
positive selection
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HOT region .
Sensitive region

Polymorphisms

wa = 1 + palogopa + (1 = pa)log, (1 = pa)

Info. theory based method (ie
annotation “surprisal”) for weighting
consistently many genomic features

« Practical web server
» Submission of variants & pre-

 Note: This online web server s based on Funseq2
v2.10.

s BT computed large data context from
Blm | e uniformly processing Iarge-scale
B = datasets

Um-cpedﬁcwww
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Disease Genomics: Thoughts on Genome Annotation, Prioritizing Variants,
Highlighting Dysregulation, & the Application of all of these to Cancer

Background « RADAR Prioritization
e PMI & Variant Prioritization + Adapts FunSeq approach to RBPs
+ Types of annotations: peaks, * Prioritizes variants based on post-

Matched Filter Annotation -

transcriptional regulome using
ENCODE eCLIP

* Incorporates new features related
to RNA sec. struc & tissue specific
effects

UORF Prioritization

segmentations, regulators

Genomic covariates

ENCODEC: ENCODE cancer
annotation resource

FunSeq Prioritization

Integrating cross-assay signal-track .
patterns associated with enhancers

Trained on high throughput STARR-
seq experiments

Feature integration to find small
subset of upstream mutations that
potentially alter translation

 LARVA & MOAT

* Uses parametric beta-binomial

Validation in many different contexts

model, explicitly modeling genomic
Integrates evidence, with a “surprisal” covariates

based weighting scheme. +  Non-parametric shuffles. Useful

when explicit covariates not
available.

Prioritizing variants within “sensitive
sites” (human conserved)

* Network Rewiring

* Network rewiring highlights
regulators that change their targets
greatly.

+ LDA approach specifically finds
those that greatly change their
gene communities

 Requlatory Drivers of
Differential Expression

+ Highlighting regulators in terms of
their power to drive differential
expression.

* Relationship of this to network
hierarchy & RBP-TF cross talk

+  Example of MYC & SUB1



RNA Binding Proteins (RBPs)

a RBP acting on RNA b RNA ac

omain

Processing Stability Localization Functi%

Modification Translation Interac

Nature Reviews | Molecular Cell Biology
2018 May;19(5):327-341. doi: 10.1038/nrm.2017.130. Epub 2018 Jan 17.

400 —

300 —

200 —

length (Mbp)

100 —

[Zhang*, Liu* et al., Genome Biology (in review ‘18)]

ting on RBP

5

tion Stability

25 Mbp (47%)
Not Overlapped

eCLIP Overlapping
Trans. Reg. Annotation

eCLIP

Unique to
RNA
Regulome

o

-

g

Density

Before ENCODE3: >150 expt.
in many different cell types

ENCODES3 did ~350 focused eCLIP expt.

for >110 RBPs on HepG2 & K562
(Van Nostrand...Yeo. Nat. Meth. '16;

Van Nostrand...Graveley, Yeo
(submitted in relation to ENCODE3))

ENCODE 3 - eCLIP peaks

O RBP eCLIP
Trans. Reg. Annotation (TF)

! | 1

500
Average Peak Length (bp)

50
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Schematic of RADAR Scoring
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[Zhang*, Liu* et al., Genome Biology (in review ‘18)]
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Co-binding of RBPs form biologically relevant complexes

Literature supported RBP complexes

Splicing Regulator - - - Splicing

branch pont ]

Poly()Tail

Intron Intron
Ribosome Interaction

‘ Splicing U2AF2  U2AFL

60S Ribosome

£

ot ﬂ

Unique co-binding patterns of RBPs

50
oo
B®
33
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FAM120A

Binding hubs are enriched for rare variants

|
0oo

Hub Number
(Hotness)
|

Chromosome 1

[Zhang*, Liu* et al., Genome Biology (in review ‘18)]
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RADAR Scores enriched in COSMIC genes and recurrently mutated regions
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[Zhang*, Liu* et al., Genome Biology (in review ‘18)]
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Disease Genomics: Thoughts on Genome Annotation, Prioritizing Variants,
Highlighting Dysregulation, & the Application of all of these to Cancer

Background « RADAR Prioritization
e PMI & Variant Prioritization + Adapts FunSeq approach to RBPs
+ Types of annotations: peaks, * Prioritizes variants based on post-

Matched Filter Annotation -

transcriptional regulome using
ENCODE eCLIP

* Incorporates new features related
to RNA sec. struc & tissue specific
effects

UORF Prioritization

segmentations, regulators

Genomic covariates

ENCODEC: ENCODE cancer
annotation resource

FunSeq Prioritization

Integrating cross-assay signal-track .
patterns associated with enhancers

Trained on high throughput STARR-
seq experiments

Feature integration to find small
subset of upstream mutations that
potentially alter translation

 LARVA & MOAT

* Uses parametric beta-binomial

Validation in many different contexts

model, explicitly modeling genomic
Integrates evidence, with a “surprisal” covariates

based weighting scheme. +  Non-parametric shuffles. Useful

when explicit covariates not
available.

Prioritizing variants within “sensitive
sites” (human conserved)

* Network Rewiring

* Network rewiring highlights
regulators that change their targets
greatly.

+ LDA approach specifically finds
those that greatly change their
gene communities

 Requlatory Drivers of
Differential Expression

+ Highlighting regulators in terms of
their power to drive differential
expression.

* Relationship of this to network
hierarchy & RBP-TF cross talk

+  Example of MYC & SUB1



cap

Upstream open reading frames (UORFs) regulate
translation are affected by somatic mutation

5’ UTR main coding sequence 3’ UTR polyA .
| I I I 1 ® UORFs regulate the translation of downstream
e ARAAAA coding regions.
u u . . .
[Calvoetal, PNAS (09)] e This regulation may be altered by somatic
Fegieln® mutation in cancer.
uORF coding ORF .
' 2 e |n Battle et al. 2014 data uORF gain & loss
—a——— assoc. protein level change.
Initiation at No initiation at uORF.
.\ uORF A 43S “leaks” by. [ uORF gain
—.:l—i:l— - s> — L F I UORF loss [McGillivray et al., NAR (‘18)]
3 \ 5= v o
g g g 1 " " B - - - ﬁ $
= = 3= o
v g"g .‘A‘ 3 0 T -- - --- - - - ---
— e {—— = £ )
v 3
D
No translation of Translation of : : g g . : . . . . :
protein-coding ORF protein-coding ORF 10 11 12 13 14 15 16 17 18 19 20
[Ferreira et al., Bioengineered (‘14)] # study subjects increasing power
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ribosome profilng labeled uORFs

From a “Universe” of
1.3 M pot. uORFs

The population of functional
uORFs may be significant

functional uORFs
population size unknown

ribosome profiling labeled uORFs
known population size

high false negative rate

high false positive rate

&

all uORFs all uORFs
e Ribosome profiling experiments have
low overlap in identified uORFs.
e This suggests high false-negative rate,

and more functional uORFs than

currently known.

[McGillivray et al., NAR (‘18)]
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Prediction & validation of
functional uORFs using 89 features

e All near-cognate start codons predicted.

e (Cross-validation on independent ribosome
profiling datasets and validation using in vivo
protein levels and ribosome occupancy in
humans (Battle et al. 2014).

— training validation ROC
=

& o4 union @

T | Dintersection Gao,

é 0.3

g ____________________ [ ——

a 0.24 @‘

53 |-h AUC 0.82

ho‘o_woootq:uo'?ow """""""""" T
EOLFE=RRI2R

start codon @ x

[McGillivray et al., NAR (‘18)]

ribosome profiling
UORFs

l extract 89 feature attributes |

| discretize feature values |

| train classifier |

v

| score UORFs |

v

| threshold scores |

‘eéative uORE:? positive uORFs

| validation |

KS statistic
0 Oil Oi2 0i3 0i4 0i5

log(expression level)
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\ J ]
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w
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N
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—

log(GERP score)

# internal ATG (start) codons

Expr.
Level

Tissue
Dist.

Conser-
vation
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A comprehensive catalog of functional uORFs

Epositive score
Onegative score

total predicted positive 60, 2-voted positive
unlabeled Dpredicted positive 1.8X10° } §
8x10° dlmd]jﬂjj H HH]
: 0 L
Universe of 1 .3M £ ‘ d”H“ @ @ @
o i
UORFs scored via = o —=d O e o v 1-voted positive

70% 71% 72%

Slmple Bayes algo' 1746/2485 1228/1738 705/976

score

| sl

-

#UORFs

® 180K.: Large predicted positive set

e Predicted functional uORFs may be intersected likely to affect translation

with disease associated variants. _ ,
e (Calibration on gold standards,

suggests getting ~70% of known

[McGillivray et al., NAR (“18)]
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Highlighting Dysregulation, & the Application of all of these to Cancer

Background « RADAR Prioritization
e PMI & Variant Prioritization + Adapts FunSeq approach to RBPs
+ Types of annotations: peaks, * Prioritizes variants based on post-

Matched Filter Annotation -

transcriptional regulome using
ENCODE eCLIP

* Incorporates new features related
to RNA sec. struc & tissue specific
effects

UORF Prioritization

segmentations, regulators

Genomic covariates
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annotation resource
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Trained on high throughput STARR-
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Feature integration to find small
subset of upstream mutations that
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* Uses parametric beta-binomial

Validation in many different contexts
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Integrates evidence, with a “surprisal” covariates

based weighting scheme. +  Non-parametric shuffles. Useful

when explicit covariates not
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Prioritizing variants within “sensitive
sites” (human conserved)

* Network Rewiring

* Network rewiring highlights
regulators that change their targets
greatly.

+ LDA approach specifically finds
those that greatly change their
gene communities

 Requlatory Drivers of
Differential Expression

+ Highlighting regulators in terms of
their power to drive differential
expression.

* Relationship of this to network
hierarchy & RBP-TF cross talk

+  Example of MYC & SUB1



Cancer Somatic Mutation Modeling

PARAMETRIC MODELS

» Suppose there are k genome

Model 1: Constant Background
Mutation Rate (Model from
Previous Work)

x; * Binomial(n;,p)

elements. For element /i, define:
— n;: total number of nucleotides

— x;: the number of mutations within the
element

Model 2a: Varying Mutation Rate
with Single Covariate Correction
x; + Binomial(n;,p;)

D; ¢ Beta(,u|Rl-,a|Ri)

,u|Rl-, O'|RL- : constant within the same
covariate rank

— p: the mutation rate
— R;: the covariate rank of the element

» Non-parametric model is useful
when covariate data is missing for
the studied annotations

» Also sidesteps issue of properly

Model 2b: Varying Mutation Rate
with Multiple Covariate Correction
x; + Binomial(n;,p;)

p; ¢ Beta(,u|Rl-,a|Ri)

,u|Rl-, O’lRi : constant within the same
covariate rank

identifying and modeling every
relevant covariate
(possibly hundreds)

[Lochovsky et al. NAR ('15)]

Assume constant background
mutation rate in local regions.

Model 3a: Random
Permutation of Input

Annotations
Shuffle annotations within local

region to assess background
mutation rate.

Model 3b: Random
Permutation of Input Variants
Shuffle variants within local
region to assess background
mutation rate.

[Lochovsky et al. Bioinformatics in press]
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MOAT-a: Annotation-based permutation

% annotation
W permutations

| = original variants
d_max

>

- - o] - w— = ==

.

[Lochovsky et al. Bioinformatics in press]
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MOAT-v: Variant-based Permutation

Can preserve tri-nt context in shuffle

bin width W

% annotation

| = original variants
- = permuted variants

W=72%d _max

L

=

I
I
I
I
I
I
I
I
I
1

[Lochovsky et al. Bioinformatics in press]
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MOAT-s: a variant on MOAT-v

« A somatic variant simulator
» Given a set of input variants, shuffle to new locations, taking genome structure into

account
| = original variants
B : = permuted variants
Binning whole genome
l | | [ [ I I [ | e

Marking equivalence classes (bins with similar covariate vectors)

Overlaying variants (with tri-nucleotide indexing)

I | l | | | | [ |
: 2. 2 333 33 4444444 55 6 7
Shuffling variants R ——— .
| L g1 ¢ B ey A ¢ L |
2 5 1 43 3444343 4 2 6 5 7
443

[Lochovsky et al. Bioinformatics in press]
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[Lochovsky et al. NAR ('15)]

LARVA Model Comparison

» Comparison of mutation count frequency implied by the binomial model (model 1) and the
beta-binomial model (model 2) relative to the empirical distribution

» The beta-binomial distribution is significantly better, especially for accurately modeling
the over-dispersion of the empirical distribution

density
0.04 0.06

0.02

0.00

0.08

—6— empirical

beta—binomial
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°
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o
[}
°
[ \
‘ \
/ o
c°°0° \
9 ° °
°f % \
o ) %o
o’ -] o ©
7
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o 2 \0"0
/ / v 8og,
° o \o ‘7?'.3,_,@
'o,o ,°/ ‘o. LY 04
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08 00° o ° V000000000
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mutation counts
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[Lochovsky et al. NAR ('15)]

adjusted P w/. correction

4.5

20 25 3.0 35 4.0

15

LARVA Results

TSS LARVA results

@ PRRC2B

O TP53 o

These have
literature-verified
o LMO3 cancer associations

a AGAP5,PROZ

oo TERT
Lo
o

G0000000000000000000
aoo

[essssss)
Q0000000000000

noncoding annotation
p-values in sorted order

ﬁ —{—e— observed-bottom 10% D
~o— beta-binomial-bottom 10% #©
% S [~ binomial-bottom 10% °
® * |+ observed-top 10% O
> oo - beta-binomial-top 10% /O
g binomial-top 10% _°
O - > i
S ~°
g = v - P 4
o -
<5 8% ,._R_Q:R:_‘Ls
- o ae®=U=NIE=TTT
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MOAT: recapitulates LARVA
with GPU-driven runtime scalability

Computational efficiency of MOAT's
SLC3A1 Cysteine transporter SLC3A1 promotes breast cancer 28382174 NVIDIATM CUDATM VerS|On, W|th

tumorigenesis

ADRA2B  reduce cancer cell proliferation, invasion, and migration 25026350 res peCt tO th e num be r Of pel"m UtatIOn S y
SIL1 subtype-specific proteins in breast cancer 23386393 : :
TCF24  NA NA is dramatically enhanced compared to
AGAPS significant mutation hotspots in cancer 25261935 ;
TMPRSS13 | Type II transmembrane serine proteases in cancer and viral 19581128 CPU version.

infections

EROIL Overexpression of EROI1L is Associated with Poor Prognosis 26987398

of Gastric Cancer - FOId speedup Of
: nermutations CUDA version

MOAT’s high mutation burden elements 1k 14x
recapitulate LARVA's results & published 10k 100x
noncoding cancer-associated elements.

100k 256X
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Network rewiring analyses: key cancer-associated regulator identification
through network comparisons

Normal network

Fact TF— gene regulation is important

Disease-associated TFs have target gain

Hypothesis
yp or loss events

Method Latent Dirichlet Allocation

108 Transcription Factors (TF)

N 7 N 7N 7N N 7N\ BiOIOgYIntUition
||1/| (2) (3) (4 ) (5 ) eee (109)

/N \_/ \__/

Sparse & noisy network: ~50k
Usually <5k target genes (10%) target genes in total, <10% active in
one cell type

Interpretability: natural units are
molecular pathways (unobserved)

w Y
=]
*

BCDEFGllllGKL---

Soft clustering: may have significant
overlapping between pathways

50k target genes

Cell cycle pathway p53 signaling pathway

[Zhang et al. ('19), biorxiv.org]



De-noising process by dimension reduction

109 Transcription Factors (TF)

FromTF — gene (109x50,000)

@@ ® ®® toTF — pathway (109x50)

Hidden Layer
@ (50 biological pathways?)

AllB|{c|ID]||E||F|FGIIHI[! ||G||K|[|L]|-.ee [50k

Challenge: how to define

50k target genes appropriate pathwayS?
Cell cycle pathway p53 signaling pathway

[Zhang et al. ('19), biorxiv.org] Lectures.gersteinlab.org



RegLDA: automatic gene topic identification based on Latent
Dirichlet Allocation

TF — gene network

109 Transcription Factors (TF)

Q@@@pma
N s

nnn@H;%mm@Enmﬂ

50k target genes
Cell cycle pathway p53 signaling pathway

[Zhang et al. ("19), biorxiv.org]

Latent Dirichlet Allocation

Documents

@ Prior info

0. to%ic distribution per document

Topics (Z)

@ Prior info

@: word distribution per topic

Words (W)
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latent Dirichlet allocation

n = 50k genes

p TFs in Normal

p TFs in Tumor

gene, X Xy,
gene || x, X,
gene, T

words

Y o Ny,

Yia Vi
Y Yuj
documents

(
I

| per-document (TF)

~topic )
¢ distribution for |
' documents (TF);

Dirichlet prior on the'

5 a Ké\
(@ —+(0)

| topic distribution

,:} Dirichlet prior on the E
~ | per-topic word (gene) !
Lo distribution [ 77

! The assigned o
| hidden topic | |
= | ]

 The specific ‘:

. word (gene) |

observed

Gain/Loss Summary Statistic on Topics <:|

""" =(0.9,0.05,0.05)
""" =(0.05,0.05,0.9)

[Zhang et al. ('19), biorxiv.org]

A4
a4
. ’ ’ ’ 4 4 . 7’

topic, X1 X1 X, | Yu Y1, Yip
" . . . :
] . :
Q ) ’ ’ ’ ’ / 4
) .
b lopic, Xia Xij Xip | Yia Yij YVip
Y : .
=2 . ’ ’ ’ ’ ’ ’

lopic, Xia X T Xy Yia Yij Yip

p TFs in Normal

p TFs in Tumor

etumor

(0.9,0.05,0.05)

""" =(0.85,0.05,0.1)
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Normal Network

Co-regulation
TF/RBP to gene

TF/RBP

O
[l

High low
. .
expression expression

gene

[Zhang et al. ("19), biorxiv.org]

Disease Network :
dotted line = lost edge

I|I IIE] [e] [F]

Principles

Direct target
gain/loss

Target gene
expression changes
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Regulatory Potential of RBPs derived from regression between gene network
and expression levels

Regulatory
A Potential
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Aggregative Target Exp.

Cancer Type
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Top Layer: Master regulators, regulating
others more than being regulated

Adadarr anal i

N .
———————————J Target Expression

o Correlation
\ Bottom Layer: follower regulators, being
regulated more than regulating others

Target Expression
Correlation

How much power each regulator has in
driving tumor-normal differential expressions

TF-RBP crosstalk

TF-RBP regulate the same
gene at different levels Post-transcription Exon | Exon | AAAAA

Transcription promoterl | Exon | Intron | Exon |

[Zhang et al. ('19), biorxiv.org]
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Disease Genomics: Thoughts on Genome Annotation, Prioritizing Variants,
Highlighting Dysregulation, & the Application of all of these to Cancer

« Background

PMI & Variant Prioritization

Types of annotations: peaks,
segmentations, regulators

Genomic covariates

ENCODEC: ENCODE cancer
annotation resource

« Matched Filter Annotation

Integrating cross-assay signal-track
patterns associated with enhancers

Trained on high throughput STARR-
seq experiments

Validation in many different contexts

« FunSeq Prioritization

Integrates evidence, with a “surprisal”

based weighting scheme.

Prioritizing variants within “sensitive
sites” (human conserved)

RADAR Prioritization

Adapts FunSeq approach to RBPs

Prioritizes variants based on post-
transcriptional regulome using
ENCODE eCLIP

Incorporates new features related
to RNA sec. struc & tissue specific
effects

uOREF Prioritization

Feature integration to find small
subset of upstream mutations that
potentially alter translation

LARVA & MOAT

Uses parametric beta-binomial
model, explicitly modeling genomic
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when explicit covariates not
available.

Network Rewiring

Network rewiring highlights
regulators that change their targets
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LDA approach specifically finds
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