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Abstract (previously 162 words – LIMIT to 100 words) 14 
Data science allows the extraction of practical insights from large-scale data. Here, we 15 
contextualize it as an umbrella term encompassing several disparate subdomains. We focus on 16 
how genomics fits in as a specific application subdomain, in terms of well-known 3V data and 4M 17 
process frameworks (Volume-Velocity-Variety and Measurement-Mining-Modeling-18 
Manipulation, respectively). We further analyze the technical and cultural “exports” and “imports” 19 
between genomics and other data-science subdomains (e.g. astronomy). Finally, we discuss how 20 
data value, privacy, and ownership are pressing issues for data science applications, in general, 21 
and are especially relevant to genomics, due to the persistent nature of DNA. 22 

Introduction 23 
Data science as a formal discipline is currently popular because of its tremendous commercial 24 
utility. Large companies have used several well-established computational and statistical 25 
techniques to mine high volumes of commercial and social data [1]. The broad interest across 26 
many applications stirred the birth of data science as a field that acts as an umbrella, uniting a 27 
number of disparate disciplines using a common set of computational approaches and techniques 28 
[2]. In some cases, these techniques were created, developed, or established in other data-driven 29 
fields (e.g. astronomy and earth science). In fact, some of these disciplines significantly predate 30 
the formal foundation of data science and have contributed to several techniques to cope with 31 
knowledge extraction from large amounts of data. 32 
 33 
Many scholars have probed the origins of data science. For example, in 1960 Tukey described a 34 
new discipline called data analysis, which some consider being a fore-runner of data science. He 35 
defined data analysis as the interplay between statistics, computer science, and mathematics [3]. 36 
Jim Gray also introduced the concept of data-intensive science in his book “The Fourth Paradigm” 37 
[4], and discussed how the developments in computer science would shape and transform segments 38 
of science to a data-driven exercise. More practically, the maturation of modern data science from 39 
an amorphous discipline can be tracked to the expansion of the technology industry and its 40 
adoption of several concepts at the confluence of statistics and algorithmic computer science, such 41 
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as machine learning [5]. Somewhat less explored is the fact that several applied disciplines have 42 
contributed to a collection of techniques and cultural practices that today comprise data science. 43 
 44 

Contextualizing natural science within the data science umbrella 45 

Long before the development of formal data science, and even computer science or statistics, 46 
traditional fields of natural sciences established an extensive culture around data management and 47 
analytics. For instance, physics has a long history of contributions of several concepts that are now 48 
at the foundation of data science. In particular, physicists such as Laplace, Gauss, Poisson, and 49 
Dirichlet have led the way for the development of hypothesis testing, least squares fits, and 50 
Gaussian, Poisson, and Dirichlet distributions[6]. 51 
 52 
More recently, physics also has contributed new data techniques and data infrastructure. For 53 
example, Ulam originally invented the Monte Carlo sampling method while he was working on 54 
the hydrogen bomb [7], Berners-Lee, from the CERN (European Organization for Nuclear 55 
Research), developed the World Wide Web [8] to enable distributed collaboration in particle 56 
physics. While most disciplines are now experiencing issues with rapid data growth [9,10], we 57 
find it interesting that physics had issues with data management long before most disciplines. As 58 
early as in the 1970s, for example, Jashcek introduced the term “information explosion” to describe 59 
the rapid data growth in astrophysics [11]. 60 
 61 
Fundamental contributions to data management and analytics have not been exclusive to physics. 62 
The biological sciences, perhaps most prominently genetics, also have significantly influenced 63 
data science. For instance, many of the founders of modern statistics, including Galton, Pearson, 64 
and Fisher, pioneered principal component analysis, linear regression, and linear discriminant 65 
analysis while they were also preoccupied with analyzing large amounts of biological data [6]. 66 
More recently, methods such as logistic regression [12], clustering [13], decision trees [14], and 67 
neural networks [15] were either conceptualized or developed by researchers focused on biological 68 
questions. Even Shannon, a central figure in information theory, completed a short Ph.D. in 69 
population genetics [16].   70 

Genomics & data science  71 

More recent biological disciplines such as macromolecular structure and genomics have inherited 72 
many of these data analytics features from genetics and other natural sciences. Genomics, for 73 
example, emerged in the 1980s at the confluence of genetics, statistics, and large-scale datasets 74 
[17].The tremendous advancements in nucleic acid sequencing allowed the discipline to swiftly 75 
assume one of the most prominent positions in terms of raw data scale across the all the sciences 76 
[18]. This preeminent role of genomics also inspired the emergence of many “-omics” terms inside 77 
and outside academia [19,20].  Although today genomics is preeminent in terms of data scale, this 78 
may change over time due to technological developments in other areas, such as cryo-electron 79 
microscopy (cryo-EM [21])  and personal wearable devices [22]. Moreover, it is important to 80 
realize that many other existing data-rich areas in the biological sciences are also rapidly 81 
expanding, including image processing (including neuroimaging), macromolecular structure, 82 
health records analysis, proteomics, and the inter-relation of these large data sets, in turn, is giving 83 
rise to a new sub-field termed biomedical data science (Figure 1A).  84 
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Here, we explore how genomics has been, and probably will continue to be, a preeminent data 85 
science sub-discipline in terms of data growth and availability. We first explore how genomics 86 
data can be framed in terms of the 3Vs (data volume, velocity, and variety) to contextualize the 87 
discipline in the "big-data world". We also explore how genomics processes can be framed in terms 88 
of the 4Ms (measurement, mining, modeling, and manipulating) to discuss how physical and 89 
biological modeling can be leveraged to generate better predictive models. Genomics researchers 90 
have been exchanging ideas with those from other data science subfields; we review some of these 91 
“imports” and “exports” in a third section. Finally, we explore issues related to data availability in 92 
relation to data ownership and privacy. Altogether, this perspective discusses the past, present, and 93 
future of genomics as a subfield of data science.  94 

Genomics vs. other data science applications in terms of the V framework 95 
One way of categorizing the data in data science disciplines is in terms of its volume, velocity, and 96 
variety. Within data science, this is broadly referred to as the V framework [23]. Over the years, 97 
the V framework has been expanded from its original 3Vs [24] (volume, velocity, and variety) to 98 
the most recent versions with four and five Vs (3V + value and veracity – Figure 1C) [25]. In 99 
general, the distinct V frameworks use certain data-related parameters to recognize issues and 100 
bottlenecks that might require a new set of tools and techniques to cope with unstructured and 101 
high-volume data. Here, we explore 102 
 how we can use the original 3V framework to evaluate the current state of data in genomics in 103 
relation to other applications in data sciences. 104 

Volume 105 

One of the key aspects of genomics as a data science is the sheer amount of data being generated 106 
by sequencers. As shown in Figure 2, we tried to put this data volume into context by comparing 107 
genomics datasets to other data-intensive disciplines. Figure 2A shows that the total volume of 108 
data in genomics is considerably smaller than the data generated by earth science (NASA; 109 
https://earthdata.nasa.gov) but orders of magnitude larger than the social sciences. The data growth 110 
trend in genomics, however, is greater than other disciplines. In fact, some researchers have 111 
suggested that if the genomics data generation growth trend remains constant, genomics will soon 112 
generate more data than applications such as social media, earth sciences, and astronomy [26].  113 
 114 
Many strategies have been used to address the increase in data volume in genomics. For example, 115 
researchers are now tending to discard primary data (e.g. FASTQ) and prioritizing the storage of 116 
secondary data such as compressed mapped reads (BAMs), variant calls (VCFs) or even only 117 
quantifications such as gene expression [27].  118 
 119 
In Figure 2B, we compare genomics to other data-driven disciplines in the biological sciences. 120 
This analysis clearly shows that the large amount of early biological data was not in genomics, but 121 
rather in macromolecular structure. Only in 2001, for example, did the number of datasets in 122 
genomics finally surpassed protein-structure data. More recently, new trends have emerged with 123 
the rapidly increasing amount of Electron Microscopy (EM) data, due to the advent of cryo-EM, 124 
and of mass spectrometry-based proteomics data. Perhaps these trends will shift the balance of 125 
biomedical data science in the future. 126 



 

 4 

Velocity 127 

There are two widely accepted interpretations of data velocity: (1) the speed of data generation 128 
(Figure 2) and (2) the speed at which data is processed and made available [28].  129 
 130 
We explored the growth of data generation in the previous section in relation to genomics. The 131 
sequencing a human genome could soon take less than 24 hours, down from two to eight weeks 132 
by currently popular technologies and 13 years of uninterrupted sequencing work by the Human 133 
Genome Project (HGP) [29]. Other technologies, such as diagnostic imaging and microarrays, 134 
have also experienced remarkable drops in cost and complexity and, therefore, resulting data is 135 
much quicker to generate. 136 
 137 
The second definition of data velocity speaks to the speed at which data is processed. A remarkable 138 
example is the speed of fraud detection during a credit card transaction or some types of high-139 
frequency trading in finance [30]. In contrast, genomics data and data processing has been 140 
traditionally static, relying on fixed snapshots of genomes or transcriptomes. However, new fields 141 
leveraging rapid sequencing technologies, such as rapid diagnosis, epidemiology, and microbiome 142 
research, are beginning to use nucleic acid sequences for fast, dynamic tracking of diseases [31] 143 
and pathogens [32]. For these and other near future technologies, we envision that fast, real-time 144 
processing might be necessary. 145 
 146 
The description of the volume and velocity of genomics data has great implications for what types 147 
of computations are possible. For instance, when looking at the increase of genomics and other 148 
types of data relative to network traffic and bandwidth, one must decide whether to store, compute, 149 
or transfer datasets. This decision-making process can also be informed by the 3V framework. In 150 
Figure 2, we show that the computing power deployed for research and development (using the 151 
top 500 supercomputers as a proxy) is growing at a slower pace than genomic data growth. 152 
Additionally, while the global web traffic throughput has no foreseeable bottlenecks (Figure 2A) 153 
[33], for researchers the costs of transferring such large-scale datasets might hinder data sharing 154 
and processing of large-scale genomics projects. Cloud computing is one way of addressing this 155 
bottleneck. Large consortia already tend to process and store most of their datasets on the cloud 156 
[34-36]. We believe genomics should consider the viability of public repositories that leverage 157 
cloud computing more broadly. At the current rate, the field will soon reach a critical point at 158 
which cloud solutions might be indispensable for large-scale analysis. 159 

Variety  160 

Genomics data has a two-sided aspect to it. On one side is the monolithic sequencing data, ordered 161 
lists of nucleotides. In human genomics, traditionally these are mapped to the genome and are used 162 
to generate coverage or variation data. The monolithic nature of sequencing output, however, hides 163 
a much more varied set of assays that are used to measure many aspects of genomes. In Figure 3 164 
we illustrate this issue by showing the growth in the diversity of sequencing assays over time and 165 
displaying a few examples. We also display how different sequencing methods are connected to 166 
different omes [19]. The other side of genomics data is the complex phenotypic data with which 167 
the nucleotides are being correlated. Phenotypic data can consist of such diverse entities as simple 168 
and unstructured text descriptions from electronic health records, quantitative measurements from 169 
laboratories, sensors, and electronic trackers, and imaging data. The varied nature of the 170 
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phenotypic data is more complicated; as the scale and diversity of sequencing data grows larger, 171 
more attention is being paid to the importance of standardizing and scaling the phenotypic data in 172 
a complementary fashion. For example, mobile devices can be used to harness large-scale 173 
consistent digital phenotypes [37]. 174 
 175 

Genomics and the 4M framework  176 
Two aspects distinguish data science in the natural sciences from social science context. First, in 177 
the natural sciences much of the data is quantitative and structured; it often derives from sensor 178 
readings from experimental systems and observations under well-controlled conditions. In 179 
contrast, data in the social sciences are more frequently unstructured and derived from more 180 
subjective observations (e.g., interviews and surveys). Second, the natural sciences also have 181 
underlying chemical, physical, and biological models that are often highly mathematized and 182 
predictive. 183 
 184 
Consequently, data science mining in the natural sciences is intimately associated with 185 
mathematical modeling. One succinct way of understanding this relationship is the 4M framework, 186 
developed by Lauffenburger [38]. This concept describes the overall process in systems biology, 187 
closely related to genomics, in terms of (1) Measuring the quantity, (2) large-scale Mining, which 188 
is what we often think of as data science, (3) Modelling the mined observations, and finally (4) 189 
Manipulating or testing on this model to ensure it is accurate. 190 
 191 
The hybrid approach of combining data mining and biophysical modeling is a reasonable way 192 
forward for genomics (Figure 1B). Integrating physical-chemical mechanisms into machine 193 
learning provides valuable interpretability, boosts the data-efficiency in learning (e.g. through 194 
training-set augmentation and informative priors) and allows data extrapolation when observations 195 
are expensive or impossible [39]. On the other hand, data mining is able to accurately estimate 196 
model parameters, replace some complex parts of the models where theories are weak and emulate 197 
some physical models for computational efficiency [40]. 198 
 199 
Short-term weather forecast as an exemplar of this hybrid approach is perhaps what genomics is 200 
striving for. For this discipline, predictions are based on sensor data from around the globe and are 201 
then fused with physical models. Weather forecasting was, in fact, one of the first applications of 202 
large-scale computing in the 1950s [40,41]. However, it was an abject flop trying to predict the 203 
weather solely based on physical models. Predictions were quickly found to only be correct for a 204 
short time, mostly because of the importance of the initial conditions. That imperfect attempt 205 
contributed to the development of the fields of nonlinear dynamics and chaos, and to the coining 206 
of the term ‘butterfly effect’ [42]. However, subsequent years dramatically transformed weather 207 
prediction into a great success story, thanks to integrating physically based models with large 208 
datasets measured by satellites, weather balloons, and other sensors [42]. Moreover, the public's 209 
appreciation for the probabilistic aspects of a weather forecast (i.e., people readily dress 210 
appropriately based on a chance of rain) foreshadows how it might respond to probabilistic “health 211 
forecasts” based on genomics.  212 
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Imports and Exports 213 
Thus far, we have analyzed how genomics sits with other data-rich subfields in terms of data 214 
(volume, velocity, and variety) and processes. We argue that another aspect of genomics as an 215 
applied data science subfield is the frequent exchange of techniques and cultural practices. Over 216 
the years, genomics has imported and exported several concepts, practices, and techniques from 217 
other applied data science fields. While listing all of the movements is impossible in this piece, we 218 
will highlight a few key examples. 219 

Technical imports  220 

A central aspect of genomics —the process of mapping reads to the human reference genome— 221 
relies on a foundational technique within data science: fast and memory-efficient string-processing 222 
algorithms. Protein pairwise alignment predates DNA sequence alignment. One of the first 223 
successful implementations of sequence alignment was based on Smith-Waterman [43] and 224 
dynamic programming [44,45]. These methods were highly reliant on computing power and 225 
required substantial memory. With advances in other string-alignment techniques and the 226 
explosion of sequencing throughput, the field of genomics saw a surge in the performance of 227 
sequence alignment. As most sequencing technologies produce short reads, researchers generated 228 
several new methods using index techniques, starting around 2010. Several methods are now based 229 
on the Burrow-Wheeler transformation (BWA, bowtie) [46,47], De Bruijn graphs (Kallisto, 230 
Salmon) [48,49], and the Maximal Mappable Prefix (STAR) [50]. 231 
 232 
Hidden Markov Models (HMMs) are well-known algorithms used for modeling the sequential or 233 
time-series correlations between symbols or events. HMMs have been widely adopted in fields 234 
such as speech recognition and digital communication [51]. Data scientists also have long used 235 
HMMs to smooth a series of events in a varied number of datasets, such as the stock market, text 236 
suggestions, and in silico diagnosis [52]. The field of genomics has applied HMMs to predict 237 
chromatin states, annotate genomes, and study ancestry/population genetics [53]. Figure 4A 238 
displays the adoption of HMM in genomics compared to other disciplines. It shows that the fraction 239 
of HMM papers related to genomics has been growing over time and today it corresponds to more 240 
than a quarter of the scientific publications related to the topic. 241 
 242 
Another major import into genomics has been network science and, more broadly, graphs. Other 243 
subfields have been using networks for many tasks, including algorithm development [54], social 244 
network research [55], and modeling transportation systems [56]. Many subfields of genomics 245 
heavily rely on networks to model different aspects of the genome and subsequently generate new 246 
insights [57]. One of the first applications of networks within genomics and proteomics was 247 
protein-protein interaction networks [58]. These networks are used to describe the interaction 248 
between several protein(s) and protein domains within a genome to ultimately infer functional 249 
pathways [59]. After the development of large-scale transcriptome quantification and chromatin 250 
immunoprecipitation sequencing (ChIP-Seq), researchers built regulatory networks to describe co-251 
regulated genes and learn more about pathways and hub genes [60]. Figure 4B shows the usage of 252 
“scale-free networks” and “networks” as a whole. While the overall use of networks continues to 253 
the grow in popularity in genomics, after their introduction, the specific usage of scale-free has 254 
been falling, reflecting the brief moment of popularity of this concept.  255 
 256 
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Given the abundancy of protein structures and DNA sequences, there has been an influx of deep-257 
learning solutions imported from machine learning [61]. Many neural network architectures can 258 
be transferred to biological research. For example, the convolutional neural network (CNN) is 259 
widely applied in computer vision to detect objects in a positional invariant fashion. Similarly, 260 
convolution kernels in CNN are able to scan biological sequences and detect motifs, resembling 261 
position weight matrices (PWMs). Researchers are developing intriguing implementations of 262 
deep-learning networks to integrate large datasets, for instance,  to detect gene homology [62], 263 
annotate and predict regulatory regions in the genome [63]; predict polymer folding [64]; predict 264 
protein binding [65]; and predict the probability of a patient developing certain diseases from 265 
genetic variants [66]. While neural networks offer a highly flexible and powerful tool for data 266 
mining and machine learning, they are usually “black-box” models and often very difficult to 267 
interpret.   268 

Cultural imports 269 

The exchanges between genomics and other disciplines are not limited to methods and techniques, 270 
but also include cultural practices. As a discipline, protein-structure prediction pioneered concepts 271 
such as the Critical Assessment of Protein Structure Prediction (CASP) competition format. CASP 272 
is a community-wide effort to evaluate predictions. Every two years since 1994, a committee of 273 
researchers has selected a group of proteins for which hundreds of research groups around the 274 
world will (1) experimentally describe and (2) predict in-silico its structure. CASP aims to 275 
determine the state of the art in modeling protein structure from amino acid sequences [67]. After 276 
research groups submit their predictions, independent assessors compare the models with the 277 
experiments and rank methods. In the most recent instantiation of CASP, over 100 groups 278 
submitted over 50,000 models for 82 targets. The success of the CASP competition has inspired 279 
more competitions in the biological community, including genomics. DREAM Challenges, for 280 
example, have played a leading role in organizing and catalyzing data-driven competitions to 281 
evaluate the performance of predictive models in genomics. Challenge themes have included 282 
“Genome-Scale Network Inference”, “Gene Expression Prediction”, “Alternative Splicing”, and 283 
“in vivo Transcription Factor Binding Site Prediction” [68]. DREAM Challenges was initiated in 284 
2006, shortly before the well-known Netflix Challenge and the Kaggle platform, which were 285 
instrumental in advancing machine-learning research [69]. 286 

Technical exports  287 

A few methods exported from genomics to other fields were initially developed to address specific 288 
biological problems. However, these methods were later generalized for a broader set of 289 
applications. A notable example of such an export is the Latent Dirichlet Allocation (LDA) model. 290 
Pritchard et. al. initially proposed this unsupervised generative model to find a group of latent 291 
processes that, in combination, can be used to infer and predict individuals' population ancestry 292 
based on single nucleotide variants[70]. Blei, Ng and Jordan independently proposed the same 293 
model to learn the latent topics in natural language processing (NLP) [71]. Today, LDA and its 294 
countless variants have been widely adapted in, for example, text mining and political science. In 295 
fact, when we compare genomics other topics such as text mining, we observe that genomics 296 
currently accounts for a very small percentage of works related to LDA (Figure 4C). 297 
 298 
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Genomics has also contributed to new methods of data visualization. One of the best examples is 299 
the Circos plot [72], which is related to the import above of network science. Circos was initially 300 
conceptualized as a circular representation of linear genomes. In its conception, this method 301 
displayed chromosomal translocations or large syntenic regions. As this visualization tool evolved 302 
to be more generic networks, it was also used to display highly connected data sets. In particular, 303 
the media has used Circos to display and track customer behavior, political citations, and migration 304 
patterns [72]. In genomics, networks and graphs are also being used in order to represent the human 305 
genome. For instance, researchers are attempting to represent the reference genome and its variants 306 
as a graph [73]. 307 
 308 
Another prominent idea exported from genomics is the notion of family classification based on 309 
large-scale datasets. This derives from the biological taxonomies dating back to Linnaeus, but also 310 
impacts the generation of protein and gene family databases [74,75]. Other disciplines, for example 311 
linguistics and neuroimaging have also been addressed similar issues by constructing semantic and 312 
brain region taxonomies [76,77]. This concept has even made its way into pop culture; for 313 
example, Pandora initially described itself as the music genome project [78]. Another example is 314 
the art genome project (www.artsy.net), which maps characteristics (referred to as “genes”) that 315 
connect artists, artworks, architecture, and design objects across history. 316 

Cultural exports 317 

Genomics has also tested and exported several cultural practices that can serve as a model for other 318 
data-rich disciplines [79]. On a fundamental level, these practices promote data openness and re-319 
use, which are central issues to data science disciplines.  320 
 321 
Most genomics datasets, the most prominently datasets derived from sequencing, are frequently 322 
openly accessible to the public. This practice is evidenced by the fact that most genomics journals 323 
require a public accession identifier for any dataset associated with a publication. This broad 324 
adoption of data openness is perhaps a reflection of how genomics evolved as a discipline. 325 
Genomics mainly emerged after the conclusion of HGP—a public initiative that has at its core to 326 
release a draft of the human genome that was not owned or patented by a company. It is also 327 
notable that the public effort was in direct competition with a private effort by Celera Genomics, 328 
which aimed to privatize and patent sections of the genome. Thus, during the development of the 329 
HGP, researchers elaborated the Bermuda principles, a set of rules that called for public releases 330 
of all data produced by HGP within 24 hours of generation [80]. The adoption of the Bermuda 331 
principles had two main benefits to genomics. First, it facilitated the exchange of data between 332 
many of the dispersed researchers involved in the HGP. Second, perhaps due to the central role of 333 
the HGP, it spurred the adoption of open-data frameworks more broadly. In fact, today most large 334 
projects in genomics adopt Bermuda-like standards. For example, the 1,000 Genomes [81] and the 335 
ENCODE projects [34] release their datasets openly before publication to allow other researchers 336 
to use their datasets [82]. Other subfields such as neuroscience (e.g. the human connectome) were 337 
also inspired by the openness and setup of the genomics community[79]. 338 
 339 
In order to attain a broad distribution of open datasets, genomics has also adopted the usage of 340 
central, large-scale public dataset repositories. Unlike several other applied fields, genomics data 341 
is frequently hosted on free and public platforms. The early adoption of these central dataset 342 
resources such as the SRA, ENA, GenBank and PDB to host large amounts of all sorts of genetics 343 
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data including microarray and sequencing data has allowed researchers to easily query and 344 
promoted re-use datasets produced by others [83].  345 
 346 
The second effect of these large-scale central dataset repositories, such as the National Center for 347 
Biotechnology Information and European Nucleotide Archive (NCBI and ENA), is the incentive 348 
for early adoption of a small set of standard data formats. This uniformity of file formats 349 
encouraged standardized and facilitated access to genomics datasets. Most computations in 350 
genomics data are hosted as FASTA/FASTQ, BED, BAM, VCF, or bigwig files, which 351 
respectively represent sequences, coordinates, alignments, variants, and coverage of DNA or 352 
amino acid sequences. Furthermore, as previously discussed, the monolithic nature of genomic 353 
sequences also contributes to the standardization of pipelines and allows researchers to quickly 354 
test, adapt, and switch to other methods using the same input format [84]. 355 
 356 
The open-data nature of many large-scale genomics projects also may have spurred the adoption 357 
of open-source software within genomics. For example, most genomics journals require public 358 
links to source codes to publish in silico results or computational methods. To evaluate the 359 
adoption of open source in genomics, we used the growth of GitHub repositories and activity 360 
(commits) over time (Figure 5). Compared to many fields of similar scale (e.g. astronomy and 361 
ecology) genomics has particularly large representation on GitHub and this is growing rapidly.  362 

Data science issues with which genomics is grappling  363 

Privacy 364 

In closing, we consider the issues that genomics and, more broadly, data science face both now 365 
and in the future. One of the major issues related to data science is privacy. Indeed, the current 366 
privacy concerns related to email, financial transactions, and surveillance cameras are critically 367 
important to the public [85]. The potential to cross-reference large datasets (e.g. via quasi 368 
identifiers) can make privacy leaks non-intuitive [69]. Although genomics-related privacy 369 
overlaps with data science-related privacy, the former has some unique aspects given that the 370 
genome is passed down through generations and is fundamentally important to the public [86]. 371 
Leaking genomic information might be considered more damaging than leaking other types of 372 
information. Although we may not know everything about the genome today, we will know much 373 
more in 50 years. At that time, a person would not be able to take their or their children's variants 374 
back after they have been released or leaked [86]. Finally, genomic data is considerably larger in 375 
scale than many other bits of individual information; that is, the genome carries much more 376 
individual data than a credit card or social security number. Taken together, these issues make 377 
genomic privacy particularly problematic. 378 
 379 
However, in order to carry out several types of genomic calculations, particularly for phenotypic 380 
associations like genome-wide association studies, researchers can get better power and a stronger 381 
signal by using larger numbers of data points (i.e., genomes). Therefore, sharing and aggregating 382 
large amounts of information can result in net benefits to the group even if the individual’s privacy 383 
is slightly compromised. The Global Alliance for Genomics and Health (GA4GH) has made strides 384 
in developing technical ways to balance the concerns of individual privacy and social benefits of 385 
data sharing  [87]. This group has discussed the notion of standardized consents associated with 386 
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different datasets. The fields of security and privacy are undertaking projects like homomorphic 387 
encryption, where one can make certain calculations on an encrypted dataset without accessing its 388 
underlying contents [88]. 389 

Data ownership  390 

Privacy is an aspect of a larger issue of data ownership and control. Although the individual or 391 
patient typically is thought to own their personal data, a countervailing trend in biomedical 392 
research is the idea that the researcher who generates a dataset owns it. There is a longstanding 393 
tradition among researchers who have generated large datasets to progressively analyze their data 394 
over the course of several papers, even a career, to extract interesting stories and discoveries [89]. 395 
There is also the notion that human data, particularly health data, has obvious medical and 396 
commercial value, and thus companies and nations often seek ownership and control over large 397 
datasets.  398 
 399 
From the data miner's perspective, all information should be free and open, since such a practice 400 
would lead to the easy aggregation of a large amount of information, the best statistical power, and 401 
the optimally mined results. Intuitively, aggregating larger datasets will, most frequently, give 402 
progressively better genotypes being associated to phenotypes.  403 
 404 
Furthermore, even in an ideal scenario which individuals consent to free access and the resulting 405 
dataset is completely open and freely shared by users, we imagine complications will arise from 406 
collection and sharing biases such as particular cohort ethnicity, diseases, and phenotypes, being 407 
more open to share their genetic data. Socioeconomic status, educations, and access to healthcare 408 
are all possible causing sources of skews in the dataset, which would further bias mining efforts 409 
such as machine learning algorithms and knowledge extraction. For example, ImageNet, a heavily 410 
used dataset in image classification, has nearly half of the images coming from the United States. 411 
Similarly, about 80% of GWAS catalog participants are of European descents, a group which only 412 
makes up 16% world population [90]. 413 
 414 
For this reason, completely open data sharing will probably not be a reasonable future for the best 415 
future genomic association studies. One possible technical solution for sharing genomics data 416 
might be the creation of a massive private enclave. This is very different from the World Wide 417 
Web, which is fundamentally a public entity. A massive private enclave would be licensed only to 418 
certified biomedical researchers to enable data sharing and provide a way to centralize the storage 419 
and computation of large datasets for maximum efficiency. We believe this is the most practical 420 
viewpoint going forward.  421 
 422 
On the other hand, the positive externality of data sharing behaviors will become more significant 423 
as genomic science develops and becomes more powerful in aggregating and analyzing data. We 424 
believe in the future, introducing data property rights, Pigouvian subsidies and regulations may be 425 
necessary to encourage a fair and efficient data trading and using environment. Furthermore, we 426 
imagine a future where people will grapple with complex data science issues such as sharing 427 
limited forms of data within certain contexts and pricing of data accordingly.   428 
 429 
Lastly, data ownership is also associated with extracting profit and credit from the data. Companies 430 
and the public are realizing that the value of data does not only come from generating it per se, but 431 
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also from analyzing the data in meaningful and innovative new ways. We need to recognize the 432 
appropriate approaches to not only recognize the generation of the data but also to value the 433 
analysis of large amounts of data and appropriately reward analysts as well as data generators.  434 
 435 

Conclusion 436 
In this piece, we have described how genomics fits into the emergence of modern data science. 437 
We have characterized data science as an umbrella term that is increasingly connecting disparate 438 
application subdisciplines. We argue that several applied subdisciplines considerably predate 439 
formal data science and, in fact, were doing large-scale data analysis before it was "cool". We 440 
explore how genomics is perhaps the most prominent biological science discipline to connect to 441 
data science. We investigate how genomics fits in with many of the other areas of data science, in 442 
terms of its data volume, velocity, and variety. Furthermore, we discuss how genomics may be 443 
able to leverage modeling (both physical and biological) to enhance predictive power, similar in a 444 
sense to what has been achieved in weather forecasting. Finally, we discuss how many data science 445 
ideas have been both imported to and exported from genomics. In particular, we explore how the 446 
HGP might have inspired many cultural practices that led to large-scale adoption of open-data 447 
standards.  448 
 449 
We conclude by exploring some of the more urgent issues related to data, and how they are 450 
impacting data in genomics and other disciplines. Several of these issues do not relate to data 451 
analytics per se but are associated with the flow of data. In particular, we discuss how individual 452 
privacy concerns, more specifically data ownership, are central issues in many data-rich fields, 453 
and especially in genomics. We think grappling with several of these issues of data ownership and 454 
privacy will be central to scaling genomics to an even greater size in the future. 455 
 456 
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Figures 688 
 689 

 690 

Figure 1. A holistic view of biomedical data science. A) Biomedical data science emerged at the 691 
confluence of large-scale datasets connecting genomics, metabolomics, wearable devices, 692 
proteomics, health records, and imaging to statistics, and computer science. B) Diagram displaying 693 
the 4M processes framework. C) Diagram displaying the 5V data framework. 694 

 695 

Figure 2. Data volume growth in genomics vs other disciplines. A) Data volume growth in 696 
genomics is put in context to other domains and data infrastructure (computing power and network 697 
throughput). Solid lines represent the amount of data archived in public repositories in Genomics 698 
(Sequence Read Archive -SRA), Astronomy (Earth Data - NASA), and Sociology (Harvard 699 
dataverse). Data infrastructure such as computing power (TOP 500 Supercomputing) and Network 700 
throughput (IPData) are also included. The dashed lines are projections of future growth in data 701 
volume and infrastructure capacity for the next decade. B) Solid lines show the cumulative number 702 
of datasets being generated for Whole Genome Sequencing (WGS) and Whole Exome Sequencing 703 
(WES) in comparison to molecular structure datasets such as X-ray and EM.  704 
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 705 

Figure 3. Variety of sequencing assays. Number of new sequencing protocols published per year. 706 
Popular protocols are highlighted in their year of publication and their connection to omes. 707 

 708 

Figure 4. Technical exchanges between genomics and other data science subdisciplines. The 709 
background area displays the total number of publications per year for the terms A) Hidden 710 
Markov Model B) Scale-free Network C) Latent Dirichlet Allocation. At the foreground, solid 711 
lines represent the fraction of papers related to topics in genomics and in other disciplines.  712 

 713 

Figure 5. Open source adoption in genomics and other data science subdisciplines. Lines 714 
represent the number of GitHub commits (top) and new GitHub repositories (bottom) per year for 715 
a variety of subfields. Subfields repositories were selected by GitHub topics such as genomics, 716 
astronomy, geography, molecular dynamics, quantum chemistry, and ecology. 717 


