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Bootstrap Methods

Randomly draw datasets with replacement from training data

e D=[3.0,2.8,3.7,3.4,3.5] — average = 3.28

* Bootstrap samples Dy could be:
— [2.8,3.4,3.7,3.4,3.5] — 3.36
— [3.5,3.0,3.4,2.8,3.7] — 3.28
— [3.5,3.5,3.4,3.0,2.8] — 3.24
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If sample 1s good approximation of population, bootstrap method will provide
good approximation of sampling distribution of original statistic.



Bootstrapping Parameter Confidence Intervals

1) Fit model to data to obtain parameter estimates

2) Draw a bootstrap sample of the residuals (Fixed-X Bootstrapping)

3) Create bootstrap sample of observations by adding randomly sampled
residual to predicted value of each observation

0.4 04p
0.35 T oy r, 0.35}
5 0.3+ - 0.3
2
Té; 0'022 Repeat % U;z
*§ 0.15 R0 % 0 151 Estimate parameters
" o1 Co for bootstrap samples
0.05 0 05
0 ‘ ‘ ‘ ‘
° 20 Time L(lf?ours) ” % DU ZIO Time ?EOU rs) BIU SIU

Bootstrapping observations also possible — asymptotically equivalent



Bootstrapping Parameter Confidence Intervals

Three commonly used methods: 1. Normal Theory Intervals, 2. Percentile
~ Intervals, 3. Bias Corrected Percentile Intervals

Percentile Intervals

Calculate the parameter for each

bootstrap sample and select a (e.g., 0.05)

LCL = a. /2™ percentile.
UCL = (1-0/2)™ percentile.

Use MATLAB’s prctile function:
= prctile(bootstrap estimates, 0.025)

Parameter estimates for synthetic data

Estimate of s = 0.0017 [0.0009,0.0030]
Estimate of p = 0.0099 [0.0095,0.0100]

Contains 95% of the estimates
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May not have correct coverage when sampling distribution skewed




Practical reference for these kinds of methods

Numerical Recipes:
Includes source code for integration, opt1m1zat10n etc.

The Art of

Scientific Computing Third Edition

TEACHING RESOURCE
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Biomedical Model Fitting and
Error Analysis

Kevin D. Costa,'* Steven H. Kleinstein,?® Uri Hershberg*

www.SCIENCESIGNALING.org 27 September 2011 Vol 4 Issue 192

Free NR versions online at http://www.nr.com/oldverswitcher.html



Hepatitis C Viral Dynamics and Interferon-o Therapy

Modeling 23 patients during 14 days of therapy (daily doses)

Hepatitis C Viral Dynamics in
Vivo and the Antiviral Efficacy

of Interferon-o Therapy

Avidan U. Heumann,*{ Mancy P. Lam,* { Harel Drahari,
David AL Gretch, Thelma E. Wilsy, Thomas . Layden,
Alam 5. Perelson
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How does interferon therapy work?




Model of Hepatitis C Viral Dynamics

Includes virus along with target (T) and infected (I) cells

Infesction rate

Nature Reviews | lmmu nology

Target Cells drldt = s —dT | ‘? (1)
Infected Cells dl/dt = ? B ol (2)
Virus (HCV RNA) dVvidt = pl — cV (3)

Before therapy, virus load 1s approximately constant




Model of Interferon-a Therapy

Includes virus along with target (T) and infected (I) cells

Nature Reviews | lmmu nology

Target Cells dT/dt = s —dT — B F (1)

Infected Cells dl/dt

BVT — dI (2)

Virus (HCV RNA) dV/dt

pl — cV (3)

Therapy can reduce the rate of infection, or production of virions




Hepatitis C Viral Dynamics and Interferon-o Therapy

Modeling 23 patients during 14 days of therapy (daily doses)

Infected cell death

. : IniEti.al ‘n.-'_L Delay Virien clearance (€] Efficacy (=) (5] Pr-:-g-:luv:riu_:-n
Regimen Patient [10% copies (hours) [10% copies
per milliliter) (1/day] * error Percent + error (1 day) + error per day)
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Average virion production rate of 1.3x10!? virions per day



Hepatitis C Viral Dynamics and Interferon-o Therapy

Modeling 23 patients during 14 days of therapy (daily doses)
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Patients with undetectable HCV after 3 months of therapy
(filled symbols) had significantly faster cell death rates




Major impact on understanding HIV/AIDS

HIV-I protease inhibitor given to twenty infected patients in order to
perturb the balance between virus production and clearance.

ARTICLES

Rapid turnover of plasma virions and CD4
lymphocytes in HIV-1 infection

David D. Ho, Avidan U. Neumann ', Alan S. Perelson’, Wen Chen,
John M. Leonard’ & Martin Markowitz

Aaron Diamond AIDS Research Center, NYU School of Medicine, 455 First Avenue, New York, New York 100186, USA
* Santa Fe Institute, Santa Fe, New Mexico 87501, USA

t Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

1 Pnarmaceutical Products Division, Abbott Laboratories, Abbott Park, lilinois 50064, USA

Treatment of infected patients with ABT-538, an inhibitor of the protease of human immuno-
deficiency virus type 1 (HIV-1), causes plasma HIV-1 levels to decrease exponentially (mean
half-life, 2.1 + 0.4 days) and CD4 lymphocyte counts to rise substantially. Minimum estimates
of HIV-1 production and clearance and of CD4 lymphocyte turnover indicate that replication of
HIV-1 in vivo is continuous and highly productive, driving the rapid turnover of CD4 lymphocytes.
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We believe our new kinetic data have important implications for
HIV-1 therapy and pathogenesis. It is self evident that, with
rapid turnover of HIV-1, generation of viral diversity and the
attendant increased opportunities for viral escape from thera-
peutic agents are unavoidable sequelae'” ™. Treatment strategies,
if they are to have a dramatic ¢linical impuct, must therefore be
initiated as early in the infection course as possible, perhaps even
during seroconversion. The rapid turnover of HIV-1 in plasma
also suggests that current protocols for monitoring the acute
antiviral activity of novel compounds must be modified to focus
on the first few days following drug initiation. Our interventional

Viral dynamics applied to a wide variety of systems




The SIR Model of Epidemics

Model for many infectious diseases including measles
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Other versions allow recovered individual to be re-infected



The basic reproductive ratio: R,

average number of secondary cases caused by an infectious
individual 1n a totally susceptible population
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‘The value of Rg for some well-known diseases
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R, indicates whether population at risk from disease




ODEs are deterministic

Predicts epidemic even with non-zero chance that disease dies out

6 stochastic epidemics Probability of disease
with R,=3. extinction following

introduction of 1 case.
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Stochasticity =2 risk of disease extinction when number of cases
is small, even if R>1.

Simulate using stochastic approach — Gillepsie Method




Simulating Stochastic Models

How can we generate random number stream(s)?

A MILLION

Random Digits

WITH

100.000 Normal Deviates

RAND 1955

amazoncom Hello, Steve

1 Kleinstein. We have recommendations for you. (Mot Steven?)

Steven's Amazon.com 4 7 Today's Deals | Gifts & Wish Lists | Gift Cards

e | S ——

Books Advance Browse Subjects v Releazes Beatzellerz The New York Timez® Bestzelers
ek 1o LOOK INSIDE! A Million Random Digits with 100,000 Normal Deviates [Paperback]
lickto e — RAND Corporation (—\uthcr

Yrdrdndr | (214 customer reviews)
A MILLION
R d D_ i List Price: $90.00
anaom 1glts Price: $81.01 & this item ships for FREE with Super Saver Shipping. Details

You Save: $8.99 (10%)

100,000 Normal Deviates In Stock.
Ships frem and sold by Amazon.com. Gift-wrap available.
Only 1 l=ft in stock--order soon (more on the way)

RAND
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almost perfect

Such a terrific reference work! But with so
many terrific random digits, it's a shame
they didn't sort them, to make it easier to
find the ane you're looking for.

Published on October 26, 200& by a curicus reader

Now we have algorithms to generate random # streams



Pseudo-Random Number Generators (PRNGs)

Starting with the same seed will give you equivalent stream

Uniform deviates: [0,1)

Linear congruential generator Fast, but sequential calls can be

correlated, so not used much

lisi1—al; te (mod m)

. Fa

I, 1s the seed (common to use system clock) Better approach

Mersenne Twister
(period 219937-1)

[,,,= 31,+7 (mod 10)

Produces: 6,5,2,3

Period: time before stream repeats itself
(maximum m)

Be careful on computer clusters (streams can be correlated):
Check out the “parallel” package in R



Simulating from other distributions

Transformation Method: indefinite integral of p(y) must be known and invertible

Lmil} L O \

g . iy
deviate in Fy) = Jop(y)dy

X

<— pi V)

transformed
deviate out

Transformation to generate exponential distribution (Poisson process)

Exponential(a) = - 1 In [Uniform(O, 1 )]
o

Methods based on underlying ability to generate uniform distributions




Boolean Network Models

Qualitative approach
Can be useful where kinetic parameters are not sufficiently known

* A directed graph (network)
* Nodes represent the elements of a system
* Edges represent regulatory relationships between elements

* Nodes characterized by True/False state
* Network with N nodes will have 2N possible states

« As time passes, node state determined by the states of

neighbors, through a rule called a transfer function
 Eg, logical function using the operators NOT, AND, OR
e QOutput of transfer function determines state of the node

Often matches biological intuition: eg, genes are on/off.




Boolean Network Models

Qualitative approach
Can be useful where kinetic parameters are not sufficiently known

specifying instances in
which the state of the

(d)
time 1s discrete,
@ nodes may change
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Courrant Opimson in Misrobiclogy

(Thakar and Alberta, 2010)

Easy to model combinatorial regulatory relationships




Boolean Interaction Network of Immune Response

Can be useful where kinetic parameters are not sufficiently known
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Future states of each node decided by transition rules using Boolean operators




Nodes encompass related functions

Cells with unigue functions
are mcorporated as nodes
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ODEs Neglect Spatial Structure

Several approaches to including spatial effects

 Partial Differential Equations (PDES)
e Allows quantities to vary over both space and time
e Continuous and deterministic
« Compartment Modeling
e Compartments assumed to be well-mixed
e Elements present in each compartment tracked using ODEs.
e ODEs incorporate coupling between compartments
« Agent-Based Modeling (ABM)
e object-oriented, discrete-event, rule-based, stochastic
e views system as an aggregation of components (agents) that
follow intrinsic rules of behavior (agent-rules)

“Right” approach depends on question, and available data




Cellular Automata Models

A regular grid of cells, each 1n one of a finite number of states

A classic example is Conways Game of Life based on the following rules of ﬂ 1 -
occupancy of 8 surrounding cells : [ | |:::l
"

Birth: A dead cell with | 0) In all other cases, a "

exactly three live 0@ ® cell dies or remains

neighbors becomes a live l | dead (overcrowding or -

cell (birth). - loneliness).

i || ﬁ r

0 @ | 00 O e [@ .

® ® I. | 1@ ® | 00 Gosper's Glider Gun

| _ 11N ee

. . _ A live cell with two _ -
%g @ or three live ® | |
j!. neighbors stays alive U '
@ (survival). |

(John Parkinson)

A new generation 1s created (advancing t by 1), according to some fixed rule
(generally, a mathematical function) that determines the new state of each cell in
terms of the current state of the cell and the states of the cells in its neighborhood.



Agent-based Models (ABMs): IMMSIM

Individual cells given unique properties: receptors and internal state

A computer model of cellular interactions in

the immune system
Franco Celada and Philip E. Seiden

Immunology Today §¢ Vol 13 No. 2 1992

Antigen 198 218

e Gy

MHC 137

=TT

Receptor 57

B

Peptide 218
MHC/Peptide 141
MHC 137

(Kohler et al, 2000)

study immune receptor signal—based cellular behavior with a bit-string

representation for receptor specificities




Detailed spatial pattern formation

Realistic models of cell diffusion and response to chemokines

New intravital imaging techniques provide underlying data




Range of Current Modeling Frameworks

Various types of computational models can be built

Table 1

Computational approaches and tools for systems biology

Modeling approach

Typical applications

Limitations

Tools

Individual particle-
based stochastic

Small subcellular signaling
processes, aspects of
bacterial biochemistry

Applies only to small systems (in terms
of space and chemical complexity)

MCell (32), Smoldyn (314),
ChemCell (315), GetBonNie
(nonspatal) (49)

Particle number
stochastic

Signaling processes with
important stochastic aspects
(due to small system size or
high sensitivity)

Applies only to small systems (in
terms of space and chemical
complexity), has less detail than
individual particle simulation

MesoRD (35), SmartCell (33),
GetBonNie (nonspatial)

Concentration-based
spatial, nonstochastic

Cellular signaling processes
with important spatial
aspects

Provides either high spatial resolution
or biochemical complexity, has no
stochasticity

Virtual Cell (37), Simmune (36)

Concentration-based,
nonspatial,
nonstochastic

Cellular signaling processes
without spatial aspects

Assumes global biochemical
homogeneity in the simulated system

Copasi (46), E-cell (44),
Cellware (45), Systems
Biology Workbench (47),
GetBonNie

(Germain et al, 2010)

Each method has advantages and limitations — no one right approach.




Interchange format for computer models

XML encoding: wide variety of models can be described

GM |_.Dl‘g The Systems Biology Markup Language

[ T o O o

Fd P [ Dol Pd b b b b ok ek b ek ek ek
P A R I - T Sy P i

<7?xm]l version="1.0" encoding="UTF-8"7>
<sbml xmlns="http://www.sbml.org/sbml/levell"
level="1" versiom="2">
<model name="gene network _model">
<li=t0fUnitDefinitions>

</list0fUnitDefinitions>
<li=t0fCompartments>

</list0fCompartments>
<list0fSpecies>

</list0fSpecies>
<list0fParameters>

</1ist0fParameters>
<list0fRules>

</1ist0fRules>
<list0fReactions>

</1ist0fReactions>
</model>
</sbml>

A software package can read in a
model expressed in SBML and
translate it into its own internal

format for model analysis.

<list0fReactions>
<reaction name="R1" reversible="false">
<list0fReactants>
<species Reference species="src" />
</list0fReactants>
<list0fProducts>
<gpecies Reference species="RNAP"/>
</list0fProducts>
<kineticLaw formula="Vi/(1+P/Ki}" />
</reaction>

</list0fReactions>

Still, most researchers develop models from scratch for every project




Repository of mathematical models

BioModels (http://www.biomodels.org)

Two branches M Logical Constraint-based ODE
¥ Manually curated

V] Non curated
Model formats

650

M SBML 3
M CellML 561 600
¥ Matlab 452 g
T
Modelling approaches 3 300
M Ordinary Differential Equation <l 10 150
V] Logical

8 ‘ 5

¥ Constraint-based Manually curated
O Non curated

750

Still, most researchers develop models from scratch for every project




For more information. . .

OPEN a ACCESS Freely available online PI .OS COMPUTATIONAL BIOLOGY
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Getting Started in Computational Immunology

Steven H. Kleinstein*®

Interdepartmental Program in Computational Biclogy and Bioinformatics, and Department of Pathology, Yale University School of Medicine, New Haven, Connecticut,
United States of America
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