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Inverse Model

• A mathematical model designed to fit experimental data so as 
to explicitly quantify physical or physiological parameters of 
interest

• Values of model elements are obtained using parameter 
estimation techniques aimed at providing a “best fit” to the 
data

• Generally involves an iterative process to minimize the 
average difference between the model and the data

• Evaluating the quality of an inverse model involves a 
combination of established mathematical techniques as well as 
intuition and creative insight 



Understanding cell proliferation and death
BrdU (thymidine analog) incorporated into cell DNA during S-phase

Labeling curves look similar – suggests same proliferation rate?Labeling curves look similar – suggests same proliferation rate?

Flow cytometry to quantify antigen-specific germinal center B cells…

BrdU incorporated
during S phase

science.csustan.edu/confocal/Images/SCE/index.SCE.htm

Higher Affinity Transgenic (B1-8)

Lower Affinity Transgenic (V23)



Understanding cell proliferation and death
At steady-state, rate at which the fraction of BrdU labeled cells increases is 

indicative of the sum of the per cell proliferation and death rates

Models of BrdU incorporation integral part of many studiesModels of BrdU incorporation integral part of many studies



BrdU labeling of CD4+ and CD8+ T lymphocytes 
SIV-infected and an uninfected macaque. Data are from Mohri et al., Science (1998)

Is there a difference in cell turnover?Is there a difference in cell turnover?



Model of BrdU Labeling

Often can often assume population in steady-state (i.e., constant)Often can often assume population in steady-state (i.e., constant)

Start with a basic model of cell population dynamics…
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Model of BrdU Labeling
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Do data contain enough information to estimate parameters?Do data contain enough information to estimate parameters?

Split the B cell population into Labeled (BL) and Unlabeled (BU) subsets

BL

BU



Model of BrdU Labeling
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Labeling curve reflects both proliferation AND deathLabeling curve reflects both proliferation AND death

Label is administered continuously over some time-period
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Model Identifiability

Cannot estimate both proliferation AND deathCannot estimate both proliferation AND death

A model is identifiable if possible to learn true value of underlying 
parameter after obtaining enough observations

Identifiable parameters are those which effect the 
value of the data and can be estimated with some 

degree of certainty. 
Non-identifiable parameters are those which effect 
the value of the data but which cannot be estimated 

accurately 
Non-observable parameters are those which don't 

have an effect on the data. 



Model of BrdU DE-Labeling

Now, we can estimate BOTH proliferation AND deathNow, we can estimate BOTH proliferation AND death

Stop administering label after some time (te)
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Model of BrdU Labeling

We can express these as sets of ordinary differential equationsWe can express these as sets of ordinary differential equations

Model changes with experiment



Characteristics of a 
Good Inverse Model

• Fit is good—model should be able to adequately 
describe a relatively noise-free data set              (of 
course a poor fit provides some insight also)

• Model parameters are unique
– Theoretically identifiable for noise-free data
– Well-determined model parameters in presence of 

measurement noise

• Values of parameter estimates are consistent with 
hypothesized physical or physiologic meanings and 
change appropriately in response to alterations in the 
actual system

38



Six Steps for Inverse-Modeling of Data
1. Select an appropriate mathematical model

• Polynomial or other functional form
• Based on underlying theoretical equations

2. Define a “figure of merit” function
• Measures agreement between data & model for given parameters

3. Adjust model parameters to get a “best fit”
• Typically involves minimizing the figure of merit function

4. Examine “goodness of fit” to data
• Never perfect due to measurement noise

5. Determine whether a much better fit is possible
• Tricky due to possible local minima vs. global minimum
• F-test for comparing models of different complexity

6. Evaluate accuracy of best-fit parameter values
• Provide confidence limits and determine uniqueness
• Assess physical reasonability of estimated parameter values

(Costa, Kleinstein and Hershberg, Sci Signal. 2011)
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Interaction of Computation & Experiment

Continuous cycle of modeling and experimentationContinuous cycle of modeling and experimentation

Compare simulation and experiment using least-squares objective
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Least-squares objective function
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Simulated Experiment

How can we estimate flow/proliferation/death rates?How can we estimate flow/proliferation/death rates?

Demonstrate full cycle of fitting model to data to estimate parameters

BrdU withdrawn

Parameters used to create synthetic data

s = 0.003 per hour

p = 0.01 per hour

d = p + s (to achieve steady state)

Random noise added to each data point
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Numerical solution to ODEs

From any point on curve, find approximation of nearby point on curve 
by moving a short distance along a line tangent to the curve

From any point on curve, find approximation of nearby point on curve 
by moving a short distance along a line tangent to the curve

Euler’s Method

Leonhard Euler
(1707-1783)



Numerical solution to ODEs: Euler Method

Much better ways to do this in practice. Eg, Runge-KuttaMuch better ways to do this in practice. Eg, Runge-Kutta

From any point on curve, find approximation of nearby point on curve by 
moving a short distance along a line tangent to the curve

Actual
y

h=15

h=7.5

h=3.75



Simulating the BrdU Labeling Model

Simple models can be solved analytically -- fasterSimple models can be solved analytically -- faster

Use integration functions (e.g., ode45 in MATLAB)

Yin = [1 0]; % Initial Conditions [unlabeled labeled]

pr = [s p d tau];  % Model Parameters

t = [0,12,24,36,48,60,72];   % Times to evaluate

[T,Y] = ode45(@fode,t,Yin,opts,pr);

fl = Y(:,2) ./ sum(Y,2); % Fraction labeled

function dy = fode(t, y, pr)

s = pr(1); p = pr(2); d = pr(3); tau = pr(4);

U = y(1); L = y(2);

dy = zeros(2,1); % Vector of derivatives

if (t<tau) % During BrdU Administration (B)

dy(1) =  s - p.*U - d.*U; % dbU/dt

dy(2) =  2.*p.*U + p.*L - d.*L;       % dbL/dt

else % After BrdU Administration (C)

dy(1) =  s + p.*U - d.*U; %dbU/dt

dy(2) =        p.*L - d.*L; %dbL/dt

end



Least-Squares 
Error Minimization y

x

data (xi,yi)

x

x
x

x
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x x x x

x model (xi,ŷi)

• Goal is to fit N data points (xi, yi) i=1..N

ˆ y i  ˆ y (xi,a1..aM )• The model is a function with M adjustable 
parameters ak, k=1..M used to generate N
model points (xi, ŷi)

yi  ˆ y (xi,a1..aM )
• The residual measures the difference between a 

data point and  the corresponding model 
estimate

[yi  ˆ y (xi,a1..aM )]
i1

N


• Since residuals can be positive or negative, a 

sum of residuals is not a good measure of 
overall error in the fit

• A better measure is the sum of squared 
residuals, E, which is only zero if each and 
every residual is zero

E  [ y i  ˆ y ( x i , a1 ..a M )] 2

i1

N


(Costa, Kleinstein and Hershberg, Sci Signal. 2011)



Maximum Likelihood Estimation 
• Not meaningful to ask “What is the probability 

that my set of model parameters is correct?”
– Only one correct parameter set Mother Nature!

• Better to ask “Given my set of model parameters, 
what is the probability that this data set could be 
obtained?”
– What is the likelihood of the parameters given the data?

• Inverse modeling is also known as “maximum 
likelihood estimation”.

(Costa, Kleinstein and Hershberg, Sci Signal. 2011)



Fitting the Model to Experimental Data

Many options for how to optimize the fitMany options for how to optimize the fit

Compare simulation and experiment using least-squares objective
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Least-squares objective function

Find parameters to minimize objective



Local and Global Optimization

Local optimization techniques find optimal fit around given starting point
Global optimization attempts to avoid local minima

Local optimization techniques find optimal fit around given starting point
Global optimization attempts to avoid local minima

The error function depends on M model parameters, and can be thought of 
as an M-dimensional “surface” of which we seek the minimum
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Fitting Models to Data in MATLAB

lsqnonlin, fminsearch, fmincon, fminbndlsqnonlin, fminsearch, fmincon, fminbnd

Several optimization functions available in many programming languages

pri = [.01 .01];  %Initial guess for parameter values to be fitted [s p]

[pr,fval,exitflag] = lsqnonlin (@efun,pri,[],[],options,fl_observed,t,tau);

s = pr(1); p = pr(2); % Optimal parameter values

function error = efun (pr,fl_observed,t,tau)

s = pr(1); p = pr(2); d = s+p;                             % Assume steady-state

[fl_predicted] = labelBrdU(s,p,d,tau,t);           % Function that simulates model

error = sum((fl_predicted-fl_observed).^2);   % Least-squares objective

Optional parameters



Goodness of Fit and the Residuals Plot

• A high correlation can exist even for a 
model that systematically differs from 
the data (all 3 examples have r2 > 0.99)

adapted from Lobemeier, 2000

model fits
A

B

C

residuals
A

B

C

• One must also examine the 
distribution of residuals—a good 
model fit should yield residuals 
equally distributed along x and 
normally distributed around zero 
with no systematic trends, as in A 
rather than B or C
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Optimal Parameter Estimates

Is inflow necessary to fit the data? Can we use simpler model?Is inflow necessary to fit the data? Can we use simpler model?

Least-squares fit using lsqnonlin in MATLAB

Parameter estimates

s = 0.002 per hour

p = 0.01 per hour 0.95 1 1.052.25
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Plot local curvature to check minimization…

Recall, parameters used to create data:

s = 0.003 per hour

p = 0.01 per hour

d = p + s (to achieve steady state)



Is inflow (s) significant?

F distribution with (dfsmaller-dflarger, dflarger) degrees of freedomF distribution with (dfsmaller-dflarger, dflarger) degrees of freedom
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Reduction in RSS per extra parameter

Measure of ‘noise’ in model



Is inflow (s) significant?

Observations Parameters RSS F test 
(1-fcdf in MATLAB)

(1) No flow (s=0) 6 1 9.38e-7

(2) Including flow 6 2 0.95e-7 53.1 (p<0.0004)

Inflow (s) is important to explain observationsInflow (s) is important to explain observations
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Measure of ‘noise’ in model



Comparing Two Model Fits
• The number of data points, N, must exceed the 

number of model parameters, M, yielding the 
degrees of freedom (DOF = N-M)

• Increasing M using a more complex model will 
generally improve the quality of fit and reduce 
RSS

M  N 1

y

x

model 1
model 2

• An F-statistic can be computed to compare 
the results of two model fits  
– F ~ 1,  the simpler model is adequate
– F > 1, the more complex model is better, 

or random error led to a better fit with the 
complex model 

– P-value defines the probability of such a 
“false positive” result (lookup in F table)

DOF
RSS

MN
RSSMSE 



• Increasing MSE with decreasing RSS can reveal 

an over-parameterized model

(Costa, Kleinstein and Hershberg, Sci Signal. 2011)



Building models with variable selection
F statistic determines if variable added or deleted from model

No guarantee that globally optimal model with be found 
(need all subsets, but prohibitive for large parameter space)

No guarantee that globally optimal model with be found 
(need all subsets, but prohibitive for large parameter space)

Forward selection: adds 
variables one at a time as 
long as significant F test.

Stepwise procedure: 
allows for removal of a 
parameter at each step

No

Stop

Compute F statistic and
p-value for each independent

parameter in model

Independent parameter with
largest p-value is

removed from model
Yes

Start with all independent
parameters in model

Any
p-value > 
to remove

?

Backward Elimination
Other Variations:
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How much confidence to put in estimate?

Estimate uncertainty given limited number of experimental observationsEstimate uncertainty given limited number of experimental observations

Construct confidence intervals for model parameters

Parameter estimates

s = 0.002 per hour

p = 0.01 per hour



D(o)

D(1)

D(2)

D(3)

• Fitting D(o) yields estimated model parameters a(o)
• Other experiments could have resulted in data sets D(1), D(2), etc. 

which would have yielded model parameters a(1), a(2), etc.

• True parameters are statistically 
realized as measured data set D(o)

from Numerical Recipes online

Estimate probability distribution of a(i) - atrue without knowing atrueEstimate probability distribution of a(i) - atrue without knowing atrue

Accuracy of Estimated Model Parameters
Underlying true set of model parameters (atrue) known to 

Mother Nature but hidden from the experimenter



DS
(1)

DS
(2)

DS
(3)

DS
(4)

D(o)

Monte Carlo Simulation of 
Synthetic Data Sets

from Numerical Recipes online

• Assume that if a(0) is a 
reasonable estimate of 
atrue, then the distribution
of a(j)-a(0) should be similar to that of a(j)-atrue

• With the assumed a(0), and some understanding of the 
characteristics of the measurement noise, we  can generate 
“synthetic data sets” DS

(1), DS
(2),…      at the same xi

values as the actual data set, D(0), that have the same 
relationship to a(0) as D(0) has to atrue

• For each DS
(j), perform a model fit to obtain corresponding 

aS
(j), yielding one point aS

(j)- a(0) for simulating the desired 
M-dimensional probability distribution.  This is a very 
powerful technique!!

2-parameter probability distribution for 
1,000 Monte Carlo simulations

(Costa, Kleinstein and Hershberg, Sci Signal. 2011)



The Bootstrap Method

• If don’t know enough about the measurement errors (i.e. cannot even say they 
are normally distributed) so Monte Carlo simulation cannot be used.

• Bootstrap Method uses actual data set D(o), with its N data points, to generate 
synthetic data sets DS

(1), DS
(2),… also with N data points.

• Randomly select N data points from D(o) with replacement, which makes DS
(j)

differ from D(o) with a fraction of the original points replaced by duplicated
original points.

• Fitting the DS
(j) data yields model parameter sets aS

(j) using actual 
measurement noise.

59

Estimating generalization error based on “resampling”:
Randomly draw datasets with replacement from training data

If sample is good approximation of population, bootstrap method will provide 
good approximation of sampling distribution of original statistic.

If sample is good approximation of population, bootstrap method will provide 
good approximation of sampling distribution of original statistic.



Bootstrap Methods
Randomly draw datasets with replacement from training data

If sample is good approximation of population, bootstrap method will provide 
good approximation of sampling distribution of original statistic.

If sample is good approximation of population, bootstrap method will provide 
good approximation of sampling distribution of original statistic.

• D = [3.0, 2.8, 3.7, 3.4, 3.5] → average = 3.28
• Bootstrap samples DN could be:

– [2.8, 3.4, 3.7, 3.4, 3.5] → 3.36
– [3.5, 3.0, 3.4, 2.8, 3.7] → 3.28
– [3.5, 3.5, 3.4, 3.0, 2.8] → 3.24
– ...

3.28


