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Inverse Model

A mathematical model designed to fit experimental data so as
to explicitly quantify physical or physiological parameters of
interest

Values of model elements are obtained using parameter
estimation techniques aimed at providing a “best fit” to the
data

Generally mnvolves an iterative process to minimize the
average difference between the model and the data

Evaluating the quality of an inverse model involves a
combination of established mathematical techniques as well as
intuition and creative insight



Understanding cell proliferation and death

BrdU (thymidine analog) incorporated into cell DNA during S-phase

Flow cytometry to quantify antigen-specific germinal center B cells...
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Labeling curves look similar — suggests same proliferation rate?



Understanding cell proliferation and death

At steady-state, rate at which the fraction of BrdU labeled cells increases is
indicative of the sum of the per cell proliferation and death rates
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Models of BrdU incorporation integral part of many studies




BrdU labeling of CD4+ and CD8+ T lymphocytes

SIV-infected and an uninfected macaque. Data are from Mohri et al., Science (1998)
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Is there a difference 1n cell turnover?

SIV infected

uninfected




Model of BrdU Labeling

Start with a basic model of cell population dynamics...

proliferation
p
S d
——i B —
source death
Rate of change

in B cell

opulation
. 9B i pB-dB
dt

Often can often assume population in steady-state (1.e., constant)




Model of BrdU Labeling

Split the B cell population into Labeled (B, ) and Unlabeled (By)) subsets

B) During BrdU dB
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) dB
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Do data contain enough information to estimate parameters?




Model of BrdU Labeling

Label 1s administered continuously over some time-period
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Labeling curve reflects both proliferation AND death




Model Identifiability

A model is identifiable if possible to learn true value of underlying
~ parameter after obtaining enough observations

Identifiable parameters are those which effect the
value of the data and can be estimated with some
degree of certainty.
Non-identifiable parameters are those which effect
the value of the data but which cannot be estimated
accurately
Non-observable parameters are those which don't
have an effect on the data.

Cannot estimate both proliferation AND death




Model of BrdU DE-Labeling

Stop administering label after some time (t,)

C) After BrdU . —(d—p)(t-t,)
administration 1:L (t) — Az T A3e e )
p
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time (weeks)

Now, we can estimate BOTH proliferation AND death




Model of BrdU Labeling

Model changes with experiment

A) Before BrdU B) During BrdU C) After BrdU

|
|
administration i administration administration
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We can express these as sets of ordinary differential equations
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Characteristics of a
Good Inverse Model

* Fit1s good—model should be able to adequately
describe a relatively noise-free data set (of
course a poor fit provides some 1nsight also)

* Model parameters are unique
— Theoretically 1dentifiable for noise-free data

— Well-determined model parameters in presence of
measurement noise

* Values of parameter estimates are consistent with

hypothesized physical or physiologic meanings and
change appropriately 1n response to alterations in the
actual system



Six Steps for Inverse-Modeling of Data

1. Select an appropriate mathematical model
* Polynomial or other functional form
* Based on underlying theoretical equations

2. Define a “figure of merit” function
* Measures agreement between data & model for given parameters

3. Adjust model parameters to get a “best fit”
 Typically involves minimizing the figure of merit function

4. Examine “goodness of fit” to data
» Never perfect due to measurement noise

5. Determine whether a much better fit 1s possible
* Tricky due to possible local minima vs. global minimum
* F-test for comparing models of different complexity

6. Evaluate accuracy of best-fit parameter values
* Provide confidence limits and determine uniqueness
 Assess physical reasonability of estimated parameter values

(Costa, Kleinstein and Hershberg, Sci Signal. 2011)



Interaction of Computation & Experiment

Compare simulation and experiment using least-squares objective

Experimental Observations Computational Model
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Continuous cycle of modeling and experimentation



Simulated Experiment

Demonstrate full cycle of fitting model to data to estimate parameters

Fraction Labeled

0.4/ A) Before BrdU ! B) During BrdU | C) After BrdU
0.35 o e o administration E administration E administration
. [¢] o ! P ! P

. O ; O
0.3+ Proli]t;eration : L _d’_ : . i-'
0.25/ S O o : | -
o — T = : O
0 2 | source death : . d ' . d
0.15;
0.1¢ )
Parameters used to create synthetic data
0.05 s = 0.003 per hour
% 20 40 60 80 p=10.01 per hour

Time (hours) d =p + s (to achieve steady state)

Random noise added to each data point

BrdU withdrawn

How can we estimate flow/proliferation/death rates?




Numerical solution to ODEs

Euler’s Method

y'(t) = ft,y®),  ylta) =y,

r — y':f + h’j T y':fj

y(t + h) = y(t) + hf(t,y(t)).

Leonhard Euler
(1707-1783)

From any point on curve, find approximation of nearby point on curve
by moving a short distance along a line tangent to the curve



Numerical solution to ODEs: Euler Method

From any point on curve, find approximation of nearby point on curve by
moving a short distance along a line tangent to the curve

|
y(t + h) = y(t) + hf(L,y(t)).

200 + | | h=15
& < Initial point
y 200
Actual h=7.5
\.\\
0 : : \ <-- Euler’s T T
0 30 estimate zuu;-
\ Time | \ h=3.75

Much better ways to do this in practice. Eg, Runge-Kutta




Stmulating the BrdU Labeling Model

Use integration functions (e.g., ode45 in MATLAB)

A) Before BrdU | B) During BrdU i C) After BrdU function dy = fode(t’ Y, pr)
administration ! administration : administration
O i oY s =pr(1); p = pr(2); d = pr(3); tau = pr(4);
proliferation : d ) d
2 | o L U=y(); L=y(2);
Qo i ,,
(EE T TE;h P O) dy = zeros(2,1);
'E LN LN , LI L if (t<tau) % During BrdU Administration (B)
dy(l) = s-p.*U-d.*U;
Yin =[10]; % Initial Conditions [unlabeled labeled] dy(2) = 2*p.*U+p.*L-d.*L;
pr=1[spdtau]; % Model Parameters else % After BrdU Administration (C)
t=10,12,24,36,48,60,72]; % Times to evaluate dy(1) = s+p*U-d.*U;
| [T,Y] = ode45(@fode,t,Yin,opts,pr); dy(2)=  p*L-d*L;
fl=Y(:,2) ./ sum(Y,2); % Fraction labeled end

Simple models can be solved analytically -- faster



Least-Squares A

c e . y . .
Error Minimization P
L e data (x,Y;)
s x model (x;,¥;)
Goal is to fit N data points (x;, y) i=1..N X
The model is a function with M adjustable V. =y(X,,a..a)

parameters a,, k=1..M used to generate N
model points (x;, ¥:)
The residual measures the difference between a

data point and the corresponding model y. —V(x.,a..4a,)
estimate

Since residuals can be positive or negative, a N i

sum of residuals 1s not a good measure of Z[yi - Y(X;,a,..ay )]
overall error 1n the fit i=1

A better measure 1s the sum of squared \

residuals, E, which is only zero if eachand E = > [y, - y(x,.a,.a,, )]’
every residual 1s zero i=1

(Costa, Kleinstein and Hershberg, Sci Signal. 2011)



Maximum Likelihood Estimation

* Not meaningful to ask “What 1s the probability
that my set of model parameters 1s correct?”

— Only one correct parameter set & Mother Nature!

« Better to ask “Given my set of model parameters,
what 1s the probability that this data set could be
obtained?”

— What 1s the likelihood of the parameters given the data?

* Inverse modeling 1s also known as “maximum
likelithood estimation™.

(Costa, Kleinstein and Hershberg, Sci Signal. 2011)



Fitting the Model to Experimental Data

Compare simulation and experiment using least-squares objective

Fraction Labeled
i L]
k. %

=
—

Find parameters to minimize obj ective

i 30 40 50 20

Time (hours)

Many options for how to optimize the fit




Local and Global Optimization

The error function depends on M model parameters, and can be thought of
as an M-dimensional “surface” of which we seek the minimum

\ 4+ Local

4 Global

Error in Fit

Parameter Value

Local optimization techniques find optimal fit around given starting point
Global optimization attempts to avoid local minima




Fitting Models to Data in MATLAB

Several optimization functions available in many programming languages

A) Before BrdU | B) During BrdU i C) After BrdU
administration E administration | administration
oy 1 o
proliferation H d - d
P | L — ! L —
A | :
s d . P :
o] T oo s O
d d
U S i U —

pri =[.01 01]' %Initial guess for parameter values to be fitted [s p]

________________________________________________________________________________________________

s =pr(1); p =pr(2); % Optimal meter values

Optional parameters

function error = efun (pr,fl_observed,t,tau)
s=pr(1); p=pr(2); d=s+p; % Assume steady-state
[fl_predicted] = labelBrdU(s,p,d,tau,t); % Function that simulates model

error = sum((fl_predicted-fl_observed).”2); 9% Lecast-squares objective

Isgnonlin, fminsearch, fmincon, fminbnd




Goodness of Fit and the Residuals Plot

A high correlation can exist even for a model fits ~ residuals
model that systematically differs from A s A

the data (all 3 examples have r2>0.99) .|  ~° & ol

One must also examine the T s
distribution of residuals—a good “

model fit should yield residuals B . 2 15] B

equally distributed along x and ger : A I

normally distributed around zero 01 =98l "

with no systematic trends, as in A S w wm = o
rather than B or C e

log protein concentration

adapted from Lobemeier, 2000



Optimal Parameter Estimates
Least-squares fit using Isqnonlin in MATLAB

0.4,
0.35/ T T L
Plot local curvature to check minimization...
0.3+
3 -3
0.2+ 3

Parameter estimates

Fraction Labeled

s =0.002 per hour

105° &

N
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Objective Function
N
w
Objective Function
N
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o

RN
©
(&)
N

1.05

p =0.01 per hour

(2

0.05}

0 20 40 60 80
Time (hours) Recall, parameters used to create data:
s = 0.003 per hour

p =0.01 per hour

d =p + s (to achieve steady state)

Is inflow necessary to fit the data? Can we use simpler model?



Is inflow (s) significant?

(1) smaller D (2) larger qu
3 :

d| - d] -

Residual Sum of Squares |RSS = Z (y| o yi )2

RSS

smaller

df } Reduction in RSS per extra parameter

larger

larger . .
} Measure of ‘noise’ in model

Degrees of Freedom |df = # observations —# parameters

smaller

F=

RSS

F distribution with (df; ) degrees of freedom

maller

_dflargerﬂ df,

larger



Is inflow (s) significant?

S
1) smaller 2) larger
®) @p (2) larg hp
B B
RSS —RSS . .
smaller 1% _df ~ Reduction in RSS per extra parameter
F — smaller larger <
RSSlarger . .
Of e ~ Measure of ‘noise’ in model
Observations Parameters RSS F test
(1-fcdf in MATLAB)
(1) No flow (s=0) 6 1 9.38¢-7
(2) Including flow 6 2 0.95e-7 53.1 (p<0.0004)

Inflow (s) 1s important to explain observations



Comparing Two Model Fits Y :

model 1
model 2

The number of data points, N, must exceed the
number of model parameters, M, yielding the X
degrees of freedom (DOF = N-M)

»
»

Increasing M using a more complex model will M<N-1
generally improve the quality of fit and reduce

RSS

Increasing MSE W.ith decreasing RSS can reveal RSS  RSS
an over-parameterized model MSE = = DoF

An F-statistic can be computed to compare
the results of two model fits

— F ~1, the simpler model is adequate

— F > 1, the more complex model is better,
or random error led to a better fit with the
complex model

— P-value defines the probability of such a
“false positive” result (lookup in F table)

(Costa, Kleinstein and Hershberg, Sci Signal. 2011)



Building models with variable selection

F statistic determines if variable added or deleted from model

Backward Elimination

Start with all independent
parameters in model

Compute F statistic and
p-value for each independent [«

parameter in model

Other Variations:

Any
p-value > a
to remove

Independent parameter with
largest p-value is
removed from model

Forward selection: adds
variables one at a time as
long as significant F test.

Stepwise procedure:
allows for removal of a
parameter at each step

No guarantee that globally optimal model with be found
(need all subsets, but prohibitive for large parameter space)




How much confidence to put 1n estimate?

Construct confidence intervals for model parameters

0.4,

0.35/ T

o
w

0.25}

Parameter estimates
s = 0.002 per hour

o
—_—
(&)

Fraction Labeled
o
N

o
—_—

0.05 p = 0.01 per hour

0 20 40 60 80
Time (hours)

Estimate uncertainty given limited number of experimental observations




Accuracy of Estimated Model Parameters

Underlying true set of model parameters (a,.,.) known to
Mother Nature but hidden from the experimenter

;':2

» True parameters are statistically
realized as measured data set D,

° Flttlng D(()) y1elds estlmated model parameters a(o) from Numerical Recipes online

» Other experiments could have resulted in data sets D), D,y), etc.
which would have yielded model parameters a,,,, &,), etc.

Estimate probability distribution of &, - &, without knowing a,,,,.

true




Monte Carlo Simulation of

Synthetic Data Sets
: data set 1 11"’; palam((est)exs
AP Ds(l) . a)
synthetic L5 O]
data set 2 e
Assume that if a,y is a et |2 | fited Do
. ata se > arameters
reasonable estimate of TR [min] e
Ay ye, then the distribution Suhete, | oY
. DS,
of a;-a,0) should be similar to that of a-ae =
With the assumed @, and some understanding of the Tuhede [ st
characteristics of the measurement noise, we can generate )

“synthetic data sets” T}, D),...  at the same X; from Numerical Recipes online
values as the actual data set, D), that have the same
relationship to a, as D,y has to a

true

For each T®;), perform a model fit to obtain corresponding
as(j),.yieldi.ng one point. a}s(j)_ 8) for.simulati_ng?r the desired S
M-dimensional probability distribution. This Is a very 2-parameer probapilty distiution for
powerful technique!! |

a -a
(DOl (o

(Costa, Kleinstein and Hershberg, Sci Signal. 2011)



The Bootstrap Method

Estimating generalization error based on “resampling’:
Randomly draw datasets with replacement from training data

« Ifdon’t know enough about the measurement errors (1.e. cannot even say they
are normally distributed) so Monte Carlo simulation cannot be used.

* Bootstrap Method uses actual data set Dy, with its N data points, to generate
synthetic data sets Ty, D",),... also with N data points.

* Randomly select N data points from D, with replacement, which makes TF;
differ from D,,, with a fraction of the original points replaced by duplicated
original points.

 Fitting the Ds(j) data yields model parameter sets as(j) using actual
measurement noise.

If sample 1s good approximation of population, bootstrap method will provide
good approximation of sampling distribution of original statistic.




Bootstrap Methods

Randomly draw datasets with replacement from training data

e D=[3.0,2.8,3.7,3.4,3.5] — average = 3.28

* Bootstrap samples Dy could be:
— [2.8,3.4,3.7,3.4,3.5] — 3.36
— [3.5,3.0,3.4,2.8,3.7] — 3.28
— [3.5,3.5,3.4,3.0,2.8] — 3.24

5 —
‘o
M
=] 3 -
2 —|
T 1

3.28

If sample 1s good approximation of population, bootstrap method will provide
good approximation of sampling distribution of original statistic.



